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Abstract
Purpose  To evaluate the efficiency of an integrated model on MRI scans of hepatocellular carcinoma (HCC) patients for 
preoperative prediction of transcatheter arterial chemoembolization (TACE) treatment response.
Methods  Radiomics and deep learning features were integrated to build a prediction model for preoperative procedures so as 
to obtain a fast and accurate prediction of TACE treatment response. This is a retrospective study and the data consists of 71 
HCC patients who underwent TACE treatment in a single center. These patients were divided into two groups: progressive 
disease (PD) response (20 patients) and non-progressive disease (N-PD) response (51 patients). fivefold cross-validation was 
applied to the data set to validate model performance. A receiver operating characteristic (ROC) curve was used to assess 
the predictive ability of the model. Quantification of its results was performed by calculating the area under the receiver 
operating characteristic curve (AUC). The accuracy, recall, specificity, precision and f1_score were also calculated for the 
cutoff value that maximized the AUC value.
Results  As assessed by the fivefold cross-validation, the integrated model had the best prediction ability, with a value of AUC 
0.947 ± 0.069, an accuracy of 0.893 ± 0.088, f1-score of 0.700 ± 0.245, specificity of 0.700 ± 0.245, precision of 0.700 ± 0.245 
and a recall of 0.600 ± 0.279. This was followed by the deep learning-based model with an AUC of 0.867 ± 0.121 and the 
radiomics-based model with an AUC of 0.848 ± 0.128.
Conclusion  The experiment results demonstrate that a feature set that combines radiomics and deep learning features tends 
to be effective in predicting TACE treatment response as opposed to using only one feature. However, due to the limited 
amount of data, more data will be needed to verify the effectiveness of this method in the future.
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1  Introduction

Hepatocellular carcinoma (HCC) is the third leading cause 
of cancer-related death worldwide [1]. It is the 2nd and 6th 
common cancer worldwide in men and women respectively. 
Every year, there are approximately 905,677 new cases and 
830,180 deaths globally [2]. Transcatheter arterial chem-
oembolization (TACE) is considered a routine and standard 
treatment for unresectable liver cancer, which has proven 
effective for the treatment of liver cancer in its intermedi-
ate stages [3–7]. However, due to the highly heterogeneous 
biological behavior of tumor cells, the results of TACE treat-
ment vary between individuals [8]. The objective response 
rates of progressive disease following TACE range from 
15 to 61% [9–12]. Therefore, it is necessary to quickly 
and accurately select ideal candidates for TACE therapy 
preoperation, in order to improve treatment efficacy and 
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overall survival rate. Previous studies have reported that 
genes and proteins might be biomarkers for TACE treat-
ment response [13, 14]. However, obtaining these biomark-
ers is quite time-consuming and expensive, which further 
increases the financial burden on the patients. Radiomics, 
a high-dimensional quantitative feature analysis approach, 
can extract high-throughput features from medical imaging 
and perform quantitative analysis on tumor heterogeneity. 
Several studies have shown that radiomics features can char-
acterize the tumor and the tumor microenvironment (TME) 
[15–21]. These were closely related to specific microscopic 
features at the genetic, protein and molecular levels. The 
use of radiomic features has been suggested in predicting 
molecular subtyping, tumor gene expression, pathological 
classification, treatment response and survival rates [17–25]. 
Deep learning is a type of machine learning method that can 
extract a large number of higher-level deep features from 
deep hidden layers of the convolution neural network (CNN) 
and has been widely successful in image recognition and 
classification compared with the handcrafted features, these 
deep features contain more abstract medical image informa-
tion and provide more insight for predictive patterns. Incor-
porating deep learning into the current radiomics model can 
enrich the judgment factor of the model and improve its 
prediction performance. Although there are many studies 
using radiomics or deep learning to predict the response of 
TACE in HCC patients, there are still relatively few studies 
combining deep learning and radiomics features for preop-
eratively predicting TACE treatment response.

In this study, we propose an integrated model for TACE 
treatment response prediction of HCC patients by integrat-
ing deep learning and radiomics features in MRI scans and 
carry out a quantitative analysis of the features. Our goal is 
to aid doctors in making decisions regarding pre-treatment 
based on our model. We only use the deep learning method 
as a feature extractor for the model and then integrate deep 
learning features into the radiomics analysis model, which 
enriches the judgment factor of the model and improves its 
prediction performance with limited training data. Patients 
with high levels of positive predicted response outcomes 
are selected for TACE treatment, while patients with poorly 
predicted treatment outcomes can have their treatment plan 
adjusted accordingly while there is still time.

2 � Materials and Methods

2.1 � Patients

The data in this study consisted of 71 HCC patients who 
received TACE treatment in our center from February 2016 
to August 2020. This is a retrospective study from a single 
center. The hospital ethical review committee approved our 

research protocol and waived the requirement for informed 
consent (B2019-336). Table 1 shows the clinical informa-
tion of the patients. The patients were followed up once in 
the first month after the operation and subsequently every 
2–3 months. The modified RECIST criteria were used to 
determine whether there was a treatment response in a 
6-month follow-up venous phase MRI scan. The criteria 
for patient inclusion are as follows: (1) A multifunctional 
MR test was performed within one week before surgery; 
(3) The patient has a confirmed clinical diagnosis of HCC; 
(4) TACE was used as the initial treatment protocol; (5) 
Complete clinical information on the patient was available. 
The criteria for exclusion of patients were as follows: (1) 
Poor image quality (blurry images); (2) The follow-up time 
was less than six months; (3) There were other malignant 
tumors; (4) Other surgical or chemotherapy interventions 
were received before TACE; (5) Expected survival time is 
less than 12 months. Finally, as shown in Fig. 1, 20 patients 
with progressive disease (PD) response and 51 patients with 
non-progressive disease (N-PD) response after TACE treat-
ment were selected.

Table 1   Clinical characteristics of the patients

Total PD N-PD P value

Age 54.69 ± 
12.19

54.42 ± 
12.85

53.37 ± 
10.58

0.909

Sex 0.001
Male 51 9 42
Female 20 11 9
AFP(ng/ml) 0.632
≥ 25 60 16 38
< 25 11 4 13
HBV-DNA 0.375
  +  40 11 29
  −  31 9 22
Tumor num-

ber
0.607

 ≤ 3 32 10 22
 > 3 39 10 29
Tumor size 

(cm)
9.98 ± 3.7 9.95 ± 3.4 10.1 ± 3.7 0.698

 EOCG 0.952
 0 44 8 20
 1 27 12 31
CNLC HCC 

stage
0.375

 Ib 33 11 22
 IIa 38 9 29
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2.2 � TACE Procedure

The TACE procedure was performed by six interventional 
radiologists (IR) with more than 5 and 10 years of clinical 
experience with TACE respectively. A 5F catheter (RH cath-
eter) was used to selectively perform diagnostic angiography 
of the celiac trunk and superior mesenteric artery. The pro-
cess of super-selective catheterization for the tumor-feeding 
artery was conducted using a 2.7-F microcatheter (Progreat; 
Terumo). Thereafter, a mixture of 75 mg/m2 oxaliplatin and 
500 mg/m2 5-fluorouracil was infused. This was mixed with 
5–20 mL of iodized oil (Lipiodol Ultrafluido; Guerbet), 
30–50 mg/m2 epirubicin (Pfizer Inc.) and gelatin sponge 
(Bi-Trumed Biotech Co., Ltd.) for chemical embolization. 
The embolic material was applied under the guidance of 
a fluoroscope. The chemical embolization preprocess con-
cluded when the contrast agent stopped being removed from 
the blood vessel after 10 consecutive heartbeats.

2.3 � Image Acquisition and Preprocessing

MRI scans were acquired on a 3.0 T MRI scanner device 
(Verio; Siemens, Erlangen, Germany). The MRI pro-
tocol consisted of a T2-weighted TSE sequence (TR/
TE = 3320 ms/83 ms; an acquired resolution of 0.74 × 0.74 
mm2, slice thickness = 6  mm; matrix = 320 × 320). The 
segmentation of the entire tumor volume of interest (VOI) 
was manually dissected slice-by-slice using the T2-WI by 
a radiologist with 10 years of experience. Thereafter, each 
segmentation slice was reviewed and modified by a chief 
radiologist with over 20 years of experience in HCC MRI 
analysis. The volume of interests(VOIs) covered the whole 
tumor. The Medical Imaging Interaction Toolkit (MITK) 
software was applied to draw the tumor VOI. Figure 2 shows 

an example of the tumor VOI in a sequence. The dimension 
of each MRI image was 256 × 256 × 40, the intensity value 
for the T2-WI was normalized by N4BiasFieldCorrection 
[26] and the intensity range was standardized using histo-
gram matching [27].

2.4 � Feature Extraction

2.4.1 � Radiomics Features (RsF)

A total of 1595 3D radiological features were extracted from 
each VOI with Pyradiomics [28]. These radiomic features 
can be divided into three categories: texture characteristics, 
intensity characteristics and geometry characteristics. The 
texture characteristics of VOI can be described by 16 Gy-
level size zone matrix (GLSZM) features, 24 Gy-level co-
occurrence matrix (GLCM) features, 5 neighboring gray 
tone difference matrix (NGTDM) features, 16 Gy-level run 
length matrix (GLRLM) features and 14 Gy-level depend-
ence matrix (GLDM) features. The intensity characteristics 
within the tumor were reflected by 18 first-order statistical 
features. The geometry characteristics of the tumor were 
described using 14 three-dimensional shape features. In 
addition, eight different image filters were also applied to the 
original image to yield its corresponding derived image. The 
filters are gradient, wavelet, square, square root, logarithm, 
exponential, Laplacian of Gaussian (LoG), and local binary 
pattern 3D (LBP-3D). The above radiomic features exclud-
ing shape features were also extracted from these derived 
images.

2.4.2 � Deep Learning Features (DLF)

A total of 1024 deep learning features for each patient were 
extracted from a 3D CNN, which consists of two 3D con-
volution layers and two fully connected layers. The deep 

Fig. 1   A flowchart describing how the authors enrolled and excluded 
patients

Fig. 2   An example of the tumor ROI segmentation on one slice of 
T2WI
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features were obtained from the outputs of the first fully con-
nected layer after applying the rectified linear unit (ReLU) 
[29] activation function which maintained values at 0 if the 
values were < 0. The number 1024 for deep learning features 
was found to be very effective after a series of trials. The 
architectures and parameters used are described in Table 2. 
3D CNN architecture was designed with Tensorflow [30]. 
The training batch size was set to 20 and the model was 
trained using the Adam optimizer [31] with a learning rate 
of 10–3 and 50 epochs.

2.4.3 � Radiomics + Deep Learning Features

The output features of the first fully connected layer of the 
3D CNN framework were connected with the latter half of 
the radiomics process so that the extracted 1595 radiomics 
features and 1024 deep learning features could be merged 
into an integrative feature space. The total number of fea-
tures after the fusion was 2619 as shown in Fig. 3. After 
feature reduction, these were input into the machine learning 
classifier for joint training.

2.4.4 � Feature Selection and Classifier Modeling

We applied normalization to the feature matrix. Each feature 
vector was subtracted from the average value of the vector 
and then divided by its length. Due to the high dimensional-
ity of the feature space, we utilized Pearson correlation coef-
ficient (PCC) [32] analysis to identify redundant features. 
One of the feature pairs would be removed when the absolute 
value of the PCC was larger than 0.86 as it was considered 
to be redundant. After that, the dimensionality of the feature 
space was reduced and each feature became independent of 
the others. Before building the classifier model, a recursive 
feature selection approach support vector machine-recursive 
feature elimination (SVM-RFE) was used to select features. 
The SVM-RFE method has proven to be very effective in 
finding worthwhile and significant features for improving 
classification performance [33, 34]. It selects features based 

Table 2   3D CNN architecture for extraction of deep learning features

Layers Parameter setting

Conv 3D-1 Size = 5 × 5x5; stride = 1; zero-padded
Relu-1 Alpha = 0.2
Max pool 3D-1 Size = 4 × 4 × 4; stride = 4; zero-padded
Conv 3D-2 Size = 5 × 5 × 5; stride = 1; zero-padded
Relu-2 Alpha = 0.2
Max pool 3D-2 Size = 4 × 4 × 4; stride = 4; zero-padded
Fully connected-1
Flat-1
Relu-3 Alpha = 0.2
Dropout-1 P = 0.5
Fully connected-2
SoftMax

Fig. 3   The predictive models from the integration of radiomics and deep features



173Prediction of TACE Treatment Response in a Preoperative MRI

1 3

on the SVM classifier by recursively considering the smaller 
size of feature sets. The SVM-RFE algorithm obtained a 
ranking list of all features by eliminating only one feature 
that had the least impact on the prediction of the SVM model 
during each cycle [35, 36]. The first item in the ranking list 
was the most relevant feature and the last item was the least 
relevant feature. Finally, the ranking list of the top N features 
was selected to build the SVM model. Here we used a linear 
kernel function for building the SVM classifier model [37] 
with these selected features, which made it easier to inter-
pret the characteristic coefficients of the final model [38]. 
When the SVM classifier model was built, each selected 
feature would get a corresponding coefficient. Finally, the 
predicted RsF + DLF_Score would be calculated by the lin-
ear weighted summation of the selected features. Since the 
number of samples was limited, we also applied an imbal-
ance strategy named SMOTE (Synthetic Minority Oversam-
pling Technique) in the training process [39].

2.5 � Statistical Analysis

The receiver operating characteristic (ROC) curve was used 
to assess the predictive ability of the model and quantifi-
cation of its results was performed by estimating the area 
under the receiver operating characteristic curve (AUC). The 
accuracy, recall, specificity, precision and f1_score were also 
calculated at the cutoff value that maximized the AUC value. 
To validate the performance of the model, we used fivefold 
cross-validation on the data set. In fivefold cross-validation, 
the data set was randomly divided into five unique subsets 
S = [s1, s2, s3, s4, s5] to train five independent models. The 
first model was trained using the subsets [s2, s3, s4, s5] and 
tested using s1, while the second model was trained using 
[s1, s3, s4, s5] and tested using s2. This procedure was 
repeated until all five subsets had been tested. We ensured 
that there was no patient overlap between the subsets. The 
mean and standard deviation of the above-mentioned met-
rics were estimated to evaluate overall model performance. 
The P value is calculated by univariable association analyses 
between clinical parameters and TACE treatment response 
status with the statistical significance set at 0.05. Keras was 
used to conduct feature selection, feature extraction, clas-
sification and statistical analysis. The experiment code was 
implemented on an Nvidia GeForce GTX 1070 GPU with 
8 GB of GDDR5 memory.

3 � Results

Table 3 shows the predictive performance of the radiomics-
based model, deep learning-based model and integrated 
model on the data set after fivefold cross-validation. The 
integrated model had the best predictive ability, with an 
AUC value of 0.947 ± 0.069, an accuracy of 0.893 ± 0.088, 
a f1-score of 0.700 ± 0.245, a specificity of 0.700 ± 0.245, 
a precision of 0.700 ± 0.245 and a recall of 0.600 ± 0.279. 
This was followed by the deep learning-based model with an 
AUC of 0.867 ± 0.121 and lastly the radiomics-based model 
with an AUC of 0.848 ± 0.128. The ROC curves for the three 
models are shown in Fig. 4. The blue line represents the 
radiomics feature-based model; the green line corresponds to 
the deep learning feature-based model; the orange line rep-
resents the model with radiomics and deep learning features 
(the best predictive ability). We also performed a Delong 
test with the P-value [40] (0.036) between the AUC values 
of RsF + DLF and the DLF was less than 0.05. However, 
the difference in P-value between the RsF + DLF and RsF 
is 0.214 and the difference in P-value between the DLF and 
RsF is 0.896.

In Table 1, all clinical information is not statistically 
significant except sex, with the P value being less than 
0.05. However, the correlation between sex and TACE effi-
cacy has not been confirmed in medicine, so this factor 

Table 3   The performance of radiomics-based model, deep learning-based model and integrated model on 5-Fold cross-validation

Model AUC​ 95% AUC CI Accuracy F1-score Specificity Precision Recall

RsF 0.848 ± 0.128 [0.720 0.987] 0.866 ± 0.032 0.627 ± 0.128 0.960 ± 0.055 0.867 ± 0.183 0.533 ± 0.183
DLF 0.867 ± 0.121 [0.759 0.971] 0.878 ± 0.088 0.673 ± 0.239 0.960 ± 0.055 0.833 ± 0.236 0.600 ± 0.279
RsF + DLF 0.947 ± 0.069 [0.869 0.998] 0.893 ± 0.088 0.700 ± 0.245 0.980 ± 0.045 0.900 ± 0.224 0.600 ± 0.279

Fig. 4   ROC curves of the prediction models
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is not included in the model analysis. Finally, no clinical 
characteristics are taken into consideration when building 
the model. For the integrated model, 864 features remained 
after PCC screening. The top 30 features were selected by 
SVM-RFE for model building. The integrated predictive 
model with the best AUC used 20 selected features and the 
details are shown in Table 4. By linearly combining the 20 
features, the integrated score can be computed as

4 � Discussion

Previous studies have shown that early response assessment 
of TACE treatment response is crucial for successful treat-
ment, which may help to modify the treatment plan in time 
for further effective treatment [41]. Fast and accurate pre-
diction of treatment response before TACE treatment is of 
great significance for improving overall patient prognosis. 
Currently, radiomics features have been proven to be inex-
tricably linked to clinical prognosis and tumor genomic pat-
terns [42–46]. Recently, the utilization of radiomics features 
for preemptively predicting TACE response in HCC patients 
before surgery has attracted a lot of attention in literature. 
However, studies that integrate radiomics and deep learn-
ing features for preoperative assessment of TACE response 
are very few.. In our study, we presented an integrated 
model for quickly and accurately predicting the response of 

RsF + DLF _Score = (0.379) × wavelet − LHL_glcm_Idmn

+ 0.600) × wavelet − HLH_firstorder_Skewness

+(−0.356) × wavelet − HHL_firstorder_Mean

+ (0.385) × wavelet − HHL_glcm_MCC

+ (0.764) × wavelet − HHH _firstorder_Kurtosis

+ (0.233) × wavelet − HHH_ngtdm_Complexity

+ (0.991) × exponential_ngtdm_Busyness

+ (−0.993) × lbd − 3D −m2_glszm_GrayLevelVariance

+ (−0.618) × lbd − 3D − k_ngtdm_Contrast

+ (0.981) × lbd − 3D − k_ngtdm_Busyness

+ (−0.481) × deep_feature_15

+ (1.423) × deep_feature_151

+ (0.999) × deep_feature_231

+ (−0.550) × deep_feature_253

+ (0.242) × deep_feature_387

+ (0.692) × deep_feature_454

+ (0.662) × deep_feature_508

+ (0.863) × deep_feature_594

+ (0.762) × deep_feature_611

+ (1.019) × deep_feature_757

unresectable HCC patients before TACE therapy based on 
analysis using both radiomics and deep learning features.

As assessed using fivefold cross validation, the integrated 
model achieved the highest AUC of 0.947 ± 0.069, while the 
deep learning-based and radiomics-based model had AUC 
values of 0.867 ± 0.121 and 0.848 ± 0.128 respectively. We 
also performed a Delong test. The P-value between the AUC 
values of RsF + DLF and DLF was 0.036 which is less than 
0.050. However, the P-value between the RsF + DLF and 
RsF is 0.214 and the P-value between the DLF and RsF 
is 0.896. In theory, more dimensional feature information 
should improve model performance. However, the statisti-
cally significant difference between the integrated model and 
radiomics is not very clear. It is only the statistically signifi-
cant difference between the integrated model and the deep 
learning model that is obvious. This may be a deviation in 
results from theory and could be caused by the small amount 
of data. More data will be collected in the future to verify 
the proposed theory. The experiment results may not be suf-
ficient to strongly demonstrate that the feature set integrating 
radiomics and deep learning features is more effective than 
using one feature type alone in predicting response to TACE 
treatment. Nonetheless, the integrated model still achieved 
good performance for predicting TACE treatment response 
from preoperative MRI scan analyses of HCC patients.

Table 4   A multivariate analysis of preoperative factors

Statistically significant level: significant (P value < 0.05); highly sig-
nificant (P value < 0.01)

Features Coefficient P-value

wavelet-LHL_glcm_Idmn 0.379 0.208
wavelet-HLH_firstorder_Skewness 0.600 0.007
wavelet-HHL_firstorder_Mean − 0.356 0.770
wavelet-HHL_glcm_MCC 0.385 0.373
wavelet-HHH_firstorder_Kurtosis 0.764 0.747
wavelet-HHH_ngtdm_Complexity 0.233 0.453
exponential_ngtdm_Busyness 0.991 0.285
lbp-3D-m2_glszm_GrayLevelVariance − 0.993 0.007
lbp-3D-m2_ngtdm_Contrast − 0.618 0.036
lbp-3D-k_ngtdm_Busyness 0.981 0.390
deep_feature_15 − 0.481 0.537
deep_feature_151 1.423 0.019
deep_feature_231 0.999 0.227
deep_feature_253 − 0.550 0.010
deep_feature_387 0.242 0.048
deep_feature_454 0.692 0.647
deep_feature_508 0.662 0.876
deep_feature_594 0.863 0.762
deep_feature_611 0.762 0.267
deep_feature_757 1.019 0.047
Rs_DL Score 0.005
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Additionally, we formulated the predictive score equa-
tion based on 20 features from the integrated model with 
the highest AUC, of which 10 were radiomics features and 
10 were deep learning features. In our integrated model, 
both the deep learning and radiomics features contribute to 
the prediction of TACE treatment efficacy. In deep learn-
ing features, deep_feature_151 and deep_feature_253 are 
strongly correlated with efficacy prediction with P-values of 
0.019 and 0.010 respectively, followed by deep_feature_387 
(p = 0.048) and deep_feature_757 (p = 0.047). The num-
ber in the deep_feature represents the order of neurons in 
the fully connected layer. For example, deep_feature_151 
indicates that this feature is taken from the 151st neuron of 
the fully connected layer. Among the radiomics features, 
wavelet-HLH_firstorder_Skewness and lbd-3D-m2_glszm_
GrayLevelVariance have an extremely high correlation with 
efficacy prediction (p = 0.007 and p = 0.007 respectively), 
followed by lbd-3D-k_ngtdm_Contrast (p = 0.036).

Wavelet filters are mainly used to optimize radiomics 
features, which can quantify the heterogeneity of tumors 
at different scales. Previous studies have demonstrated 
that wavelet features had a strong ability to predict treat-
ment outcomes and could be an important predictor for 
constructing radiomic features [47–49], which is consist-
ent with the results of our study. First-order radiomics can 
reflect the distribution of voxel intensities within the tumor 
ROI region. A significant difference is observed between 
wavelet-HLH_firstorder_Skewness values of the PD and 
N-PD cohorts (Fig. 5, left panel) and the median in the PD 
group is higher than that for the N-PD group. This result 
demonstrates that voxel intensity information in the tumor 
area may be related to the TACE treatment response and that 
with stronger voxel intensity, the therapeutic response may 
be weaker. The neighborhood gray tone difference matrix 
(NGTDM) textural features can describe the differences 
between the gray value of a voxel and the average gray value 
of its neighboring voxels [50]. The NGTDM features have 
been applied to tumor heterogeneity analysis [51–53]. In our 
result, the N-PD group is mostly distributed in the negative 
value area of the lbd-3D-k_ngtdm_Contrast feature while 
the N-PD group is mostly distributed in the positive value 
area. (Fig. 5, middle panel). This may indicate that NGTDM 
texture features are a good predictor that can provide doctors 
with more information about TACE treatment response. The 
Gray Level Size Zone Matrix (GLSZM) can quantify the 
number of connected voxels that share the same gray level 
intensity in the tumor area [54]. The GLSZM features are 
particularly efficient at characterizing texture homogeneity, 
non-periodicity or speckle-like textures, which could provide 
better characterizations than granulometry for medical image 
analysis [55–58]. Figure 5 (right panel) shows that the PD 
group has a lower median for the lbd-3D m2_glszm_Gray-
LevelVariance feature than the N-PD group. The variance in 

gray level intensities for tumor zones is significantly differ-
ent between the PD and N-PD groups, which indicates that 
this feature may have an impact on TACE response predic-
tion. The Rs_DL Score is high and statistically significant 
(0.005), as seen in Table 4. Figure 6 shows the distribution 
of the Rs_DL Score between the N-PD group and the PD 
group. The distribution gap is obvious and the case scores in 
the N-PD group mainly concentrated between 0.0 and − 0.5, 
while the case scores in the PD group are above 0. This 
indicates that the characteristics of the two groups on the 
Rs_DL Score are different, which can be used to predict the 
therapeutic effect of TACE.

However, there are some limitations to this study. First, 
it is a retrospective study from a single center without 
additional validation by other hospitals. In addition, the 
number of HCC cases was limited, especially the propor-
tion of patients with treatment responses. Therefore, the 
validity of our research results may have been impaired. 
In future research, more cases and multi-center research 
are needed. Second, although we have provided the fea-
tures that contribute to predicting TACE efficacy in the 
combined model, only the radiomics features can be inter-
preted, while interpretation of the deep learning features 
still poses a major problem. The possible correlation 
between the tumor biological mechanisms and these deep 
learning features will be investigated from molecular, pro-
tein and genetic levels in future work. Also, due to data 
collection issues, only the T2-WI sequence of MRI scans 
was available for analysis in this study, which may have 
omitted information from other kinds of sequences.

In conclusion, we proposed a predictive model to inte-
grate the radiomics and deep learning features for quick 
and accurate prediction of TACE treatment response for 
unresectable HCC patients before TACE therapy. The 

Fig. 5   The violin plot of three radiomics features value distributions 
between the PD response and N-PD response
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experiment results demonstrate that although a feature set 
that combines radiomics and deep learning features tends 
to be effective in predicting response to TACE treatment, 
further validation studies are needed using multi-center 
data to support this study in the future.
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