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Abstract
Purpose  Exoskeleton control based on motion intention recognition has received increasing attention due to its promising 
prospect, and estimating joint torque is an effective approach to conduct intention recognition. In this paper, a surface elec-
tromyography (sEMG) signals-based joint torque estimation strategy is proposed to quantify the motion intention.
Methods  Different from the majority of existing torque estimation strategies, two major improvements have been achieved. 
System identification is presented to estimate elbow angle which can be used in the Hill-type muscle model, and hence, 
the use of angular transducer is replaced. Besides, neural network is used to train the optimal factor of muscle activation to 
make the estimated torque more accurate. Finally, static and dynamic experiments are conducted respectively to verify the 
effectiveness and improvements of this strategy in terms of torque estimation accuracy.
Results  Compared to the other two existing torque estimation strategies, results show that this method is proved to make 
some progress in respect of torque estimation accuracy under different experimental conditions. The correlation coefficient 
increases by 2–9%; root-mean-square error (RMSE) reduces by 0.2–2.5 Nm; normalized root-mean-square error (NRMSE) 
reduces by 0.5–9.5%.
Conclusion  The proposed torque estimation strategy could accurately identify the motion intention and reduce the use of 
angle sensor. Besides, it lays a foundation for rehabilitation exoskeleton robot control.

Keywords  Intention recognition · Torque estimation strategy · sEMG · Hill-type muscle model · Radical basis function 
neural network (RBFNN)

1  Introduction

With the increasing number of hemiplegic patients and 
demands for machine-assisted rehabilitation, varieties of 
rehabilitation exoskeleton robots have been developed for 
assistance [1–4]. In order to efficiently control robots, the 
first challenge is to recognize human motion intention in 

a rapid and accurate way. Recognition of human motion 
intention based on biological signals [5–7] has become 
increasingly popular due to its promising prospect in 
human–computer interaction. For the different expression 
forms of motion intention, existing recognition methods 
mainly include the forms of physiological signals, such as 
surface electromyography (sEMG) signals, neural signals, 
including electroencephalogram (EEG) signals, and such 
biological force signals, as human–computer interaction 
force signals.

Compared with other signals, sEMG signals are widely 
used in the robotic systems to obtain human motion intention 
due to its effectiveness, safety, portability and non-invasive, 
non-delay features [8, 9]. In order to improve patients’ mus-
cle coordination and exercise ability, the sEMG signals have 
been introduced as driving or feedback signals into the reha-
bilitation process for the elderly, stroke patients or others 
in need [10–12]. Previous researchers show that estimating 
joint torque is one of the effective approaches to realizing 
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intention recognition [13]. Hence, it is necessary to propose 
a joint torque estimation method based on sEMG signals to 
realize intention recognition and then continuously control-
ling the robots.

Existing joint torque estimation methods can be listed 
as follows [14–17]. Cai [14] estimated the knee torque 
using Support Vector Regression (SVM) which required 
a large amount of matrix storage and computation, thus a 
large amount of machine memory and operation time were 
consumed. Besides, it was difficult to implement this algo-
rithm for large-scale training samples. Researchers [15, 17] 
established various non-linear relationships between sEMG 
and joint torque, which didn’t take human muscle models 
into account. Tyler et al. [16] put forward a complex mus-
cle activation model, including neural activation dynamics, 
muscle activation dynamics, muscle contraction dynamics, 
muscle moment arms and skeletal motion model. Obviously, 
too many human parameters needed to be identified, and 
complex functional relationships between variables needed 
to be established, which complicated the operation process 
and limited the application to robot controlling.

In prior research, the joint angle was often utilized to esti-
mate joint torque. Angle was measured by different sensors 
in traditional methods [17, 18]. However, the application of 
the angle sensors not only brought the installation problems 
for exoskeleton robots, but also often needed complicated 
algorithms to figure out the angle. Aiming at the problems 
mentioned above, researchers have done lots of research on 
the angle estimation [19–21]. Zhang [19] used a feedfor-
ward artificial neural network model to make the mapping 
from sEMG to the elbow joint angle. Principle component 
analysis (PCA) or independent component analysis (ICA) 
was used in the process of feature extraction. Researchers 
[20–22] used Back-Propagation neural network (BPNN) 
and RBFNN to acquire the relationship between the sEMG 
and joint angle. The input, output and other parameters 
of the neural network needed to be set before the training 
which complicated the estimation process. Therefore, it is 
necessary to develop a relatively simple and accurate angle 
estimation strategy to ensure the estimation accuracy and 
simplify the operation.

In this paper, a sEMG-based joint torque estimation 
strategy combining with Hill-type muscle model (HMM) 
by using RBFNN and system identification is proposed to 
make the results of muscular movement digitized. Elbow 
joint angle is estimated through a transfer function model 
which interpreted a non-linear relationship. RBFNN is 
used to get the optimal factor of muscle activation, mak-
ing the estimated joint torque more accurate. Compared to 
the existing torque estimation strategy, this method not only 
improves the estimation accuracy but also replaces the angle 
sensors. Finally, static and dynamic experiments based on 
these three different methods are conducted to prove that 

the improvements of this new strategy in terms of torque 
estimation accuracy.

2 � Method

The joint torque estimation strategy will be carried out in 
several steps, which involve the processing of sEMG signals, 
system recognition and neural networks. This method will 
be introduced in two parts as follows. One is the joint angle 
estimation strategy, and the other is the muscle activation 
and muscle model.

2.1 � Joint Angle Estimation Strategy

In order to replace the angle transducer and optimize the 
process of angle estimation, a new joint estimation angle 
method that establishes a relationship between sEMG and 
the joint angle is presented in this paper. A transfer function 
model is built up to relate sEMG signals from the biceps 
brachii to the joint angle. Furthermore, system identification 
is applied to estimate the parameters of the transfer function 
model, which only focuses on the input and output values. 
In this way, only a few calibration tests need to be done and 
simplify the hardware in practical application.

The entire process of angle estimation strategy is 
described in Fig. 1. In order to obtain high-quality required 
sEMG signals, a series of processing steps are adopted, part 
of which can refer to the paper [17, 23]. In this research, the 
biceps brachii is selected as the main responsible muscle of 
the elbow joint [24, 25]. Before collecting sEMG signals 
by the sEMG sensor (MyoWare Sensor), the muscle’s sur-
face must be cleaned with alcohol cotton to remove grease 
and stains. The fine hairs on the surface of the human body 
need to be removed with special cutting tools to ensure the 
high-quality original signals. Next, the sEMG sensor is put 
on the center of muscle and it should be mounted paral-
lel to the direction of muscle fiber [26]. In addition, due to 
the influences of noise and other interference factors, the 
original sEMG signals are not suitable for direct application, 
so it must go through a series of filtering and rectification 
operations.

Fig. 1   The procedure of the angle estimation strategy
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Besides, data amplitude is susceptible to several factors, 
such as electrodes location, subjects or even mental condi-
tion and so on. Normalizing sEMG data to 0–1 can solve 
some of these problems. Hence, after 1 Hz low-pass filter, 
the sEMG signals should be normalized with regard to the 
amplitude of sEMG.

Furthermore, in order to make the low amplitude increase 
of sEMG more obvious during the slow motion, the input 
signals of the transfer function model can be computed from 
the normalized sEMG signals, and the corresponding rela-
tionship can be described as shown below:

where

Here, v(t) is the input signals of transfer function model 
and u(t) is the normalized sEMG signals. This research pre-
sents a relationship between the sEMG and the joint angle, 
which can be defined as follows:

where G(s) is the transfer function; v(s) is the input signals 
of this model and it is the Laplace transform of the processed 
sEMG v(t); θ(s) is the output signals of this model and it is 
the Laplace transform of the elbow joint angle θ(t); s is a 
complex variable; k, Tz, Tp1, Tp2, Tp3 are all coefficients in 
this transfer function model. Moreover, the parameters of 
the transfer function are different under different load con-
ditions. Also, all the coefficients can be obtained through 
system identification module in the Host personal computer 
(PC).

Usually, the signals obtained after these processing steps 
also contain gaussian white noise. Therefore, Kalman filter-
ing is used to remove gaussian white noise and smooth the 
signals.

2.2 � The Muscle Activation and Muscle Model

In this part, sEMG signals could be transformed into muscle 
activation through a series of processing, and then combined 
with the muscle model and neural network to obtain the 
estimated torque of the elbow joint.

2.2.1 � From the sEMG Signals to the Muscle Activation

Some of the preprocess of sEMG has been described above 
and the following operations will be discussed in the fol-
lowing part. The operation procedure of torque estimation 

(1)v(t) = −
1

ln (u(t))

(2)0 < u(t) < 1

(3)G(s) =
v(s)

�(s)
=

k
(
1 + Tzs

)
(
1 + Tp1s

)(
1 + Tp2s

)(
1 + Tp3s

)

strategy is illustrated in Fig. 2. In this research, a model is 
proposed to characterize the non-linear relationship between 
sEMG level and muscle activation on the basis of the theory 
reported in the article [27], which can be expressed as:

where u(t) is the normalized sEMG signals; a(t) is muscle 
activation; A is a constant determining the degree of non-
linearity; q is a variable parameter that will be trained in the 
RBFNN, also its specific meaning and expression method 
will be explained in formula (17).

2.2.2 � From Muscle Activation to the Estimated Torque

The muscle activation could be obtained through Eq. (4) and 
then used to compute the muscle force. This model, described 
in Fig. 3, has gone through many times of evolution and sim-
plification. The picture illustrates that a muscle–tendon unit 

(4)a(t) =
1

q
⋅

eA⋅u(t) − 1

eA − 1

Fig. 2   The procedure of elbow joint torque estimation strategy

Fig. 3   Hill-based muscle model (HMM). It contains a number of ele-
ments, that is PE parallel elastic element; CE contractile element; Fmu 
force of the musculotendinous unit; Fm force of muscle fiber; Fc force 
of contractile element; Fp force of parallel elastic element; Lt length 
of tendon; Lm length of muscle fiber; Lmu length of the musculotendi-
nous unit; θp pennation angle
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contains a contractile element (CE), a passive element (PE) 
and tendons. The force Fmu produced by the muscle–tendon 
unit can be given as [28]:

where Fmu represents the force generated by the muscle–ten-
don unit; Fc is the force generated by the contractile element; 
Fp denotes the force generated by the passive element; θp is 
the Pennation angle. Force generated by CE and PE can be 
given by the following equations:

Here, a(t) is muscle activation; Fmo represents the maxi-
mum isometric muscle force; fc (lm) and fc (vm) indicate the 
force–length and force–velocity relationship for the CE, 
respectively, while fp(lm) represents the force–length relation-
ship for the PE. In order to calculate Fmu, these relationships 
can be defined by the following equations:

where Lm is the muscle fiber length and Lmo represents the 
optimal fiber length; r0, r1, and r2 are set to be the constants.

The following formula can be derived from Fig. 3:

(5)Fmu =
(
Fc + Fp

)
⋅ cos

(
�p
)

(6)Fc = fc
(
lm
)
⋅ fc

(
vm
)
⋅ a(t) ⋅ Fmo

(7)Fp = fp
(
lm
)
⋅ Fmo

(8)

fc
�
lm
�
=
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�
Lm

Lmo

�2
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Lm

Lmo
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Lm

Lmo
≤ 1.5
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(9)fc
(
vm
)
= 1

(10)fp
(
lm
)
= e

10⋅
Lm

Lmo
−15

(11)Lmu = Lt + Lm ⋅ cos
(
�p
)

Here, Lt is the length of the tendons and Lmu is the musculo-
tendinous unit length. To simplify the calculation process, the 
following assumptions are made according to the article [27]:

where τ is the joint moment at time t; θe is the estimated joint 
angle; η and μ are constants. Many body parameters can be 
referred to the previous research [28–31]. The parameters 
mentioned above are shown in Table 1. In this research, the 
whole experiment will be conducted in two ways, i.e. the 
static and dynamic experiments, as shown in Figs. 4 and 5, 
respectively.

Experimental setup for static experiment is shown in Fig. 4. 
In this case, the upper arm is always perpendicular to the lower 
arm. The hand pulls the wire rope and the force should be 
completely generated by the biceps brachii. A tension sensor 
(JLBS-MD-10KG) is utilized to measure the tension during 
the experiment. The actual torque can be calculated through 
this formula:

(12)Lmu = � + � ⋅ �e

(13)� = Fmu ⋅ �

(14)�a1 = Ft ⋅ ra

Table 1   Definition and values of parameters

Parameter name Value

Maximum isometric muscle force Fmo [435.6 N,624.3 N]
Optimal fiber length Lmo [0.116 m,0.132 m]
Length of tendon Lt [0.192 m,0.272 m]
Pennation angle θp 0
Length of the lower arm ra 0.33 m
Mass of the lower arm G2 30 N
Constant ro − 2.06
Constant r1 6.16
Constant r2 − 3.13
Nonlinear coefficient A 0.05

Fig. 4   System layout in the static experiment

Fig. 5   System layout in the dynamic experiment
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where τa1 represents the actual torque in the static case, Ft 
represents the force generated by the tension sensor, ra is the 
length of the lower arm.

Experimental setup for dynamic case is shown in Fig. 5. 
The upper arm should always be perpendicular to the ground 
throughout the experiment. The hand lifts the bar and the 
force is completely generated by the biceps brachii too. In 
the dynamic experiment, the actual torque can be calculated 
roughly according to the formula (15), and the calculation 
model is shown in Fig. 6.

where τa2 represents the actual torque in the dynamic experi-
ment; G1 is the mass of the barbell; G2 represents the mass 
of the lower arm; θ is the angle of the elbow joint; F is the 
force perpendicular to the ground. In both cases, muscle 
activation a1(t) can be deduced through the actual torque 
and HMM. Moreover, the muscle activation mentioned in 
the article [27] is described as:

Here, u(t) is the normalized sEMG signals. Lots of exper-
iment results show that there is a deviation between a1(t) and 
a2(t). Therefore, q is used to describe this relationship, which 
can be described as:

According to the paper [32], RBFNN is a kind of local 
approaching neural networks, which is often used to handle 
non-linear control. What’s more, compared with other neural 
networks, RBFNN has some sound characteristics, such as 

(15)�a2 = ra ⋅ F =

(
G1 +

G2

2

)
⋅ ra ⋅ sin �

(16)a2(t) =
eA⋅u(t) − 1

eA − 1

(17)q =
a2(t)

a1(t)

high approximation accuracy and fast training speed. There-
fore, RBFNN will be used to get the real-time parameter q in 
this paper.

Generally speaking, RBFNN has three layers [33], namely 
input layer, hidden layer and output layer. The input layer is 
used to receive all elements which have strong correlations 
with the output results, and passes them to the hidden layer. 
The hidden layer performs multivariate nonlinear transforma-
tion on the input vector for feature extraction. The output layer 
is trained by the model to determine the output weights of 
neurons in each hidden layer, then outputs the weights after 
linear combination. The relationships between the three layers 
can be expressed by the following two formulas:

where x and y are the input and output, respectively; wi rep-
resents the weights for the node i from the hidden layer to 
the output layer, i = 1,2,3,…n; hi is the activation function for 
hidden layer. ci and bi are the parameters of basis function 
and its width for ith node in the hidden layer.

The training process of RBFNN can be roughly divided 
into two stages. Firstly, the center of the activation function 
for the hidden layer is selected. In RBFNN, self-organized 
center selection is the most widely used learning algorithm 
and orthogonal least square method is the most commonly 
utilized self-organized center selection method. Therefore, the 
orthogonal least square method is chosen to select the center. 
Furthermore, the Gram–Schmidt algorithm is used to select 
and update the center. Next, determine the output weights of 
neurons in each hidden layer. Adaptive gradient descent is used 
to adapt the weights. All the values of RBFNN can be acquired 
when the output errors meet the requirements. In this paper, 
muscle activation a2(t), Normalized sEMG u(t), elbow joint 
angle θ(t) and raw sEMG r(t) are selected as the inputs of 
the neural network [34], while q is the output of the neural 
network. The inputs of neural network are in conformity with 
the following principles. One is that all inputs have certain 
impacts on the output. The other is that the numbers of inputs 
should not be too small and the comprehensive effects could 
make the output more accurate. The structure of the RBFNN 
is shown in Fig. 7.

(18)y =

n∑
i=1

wihi

(19)hi = exp

{
−
∥ x − ci ∥

2

2 ⋅ b2
i

}
biith

Fig. 6   The actual torque calculation model in the dynamic experi-
ment
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3 � Experimental Setup

In this research, a healthy male adult, aged 23, height 180.5 
cm, weight 68 kg, has participated in the experiments. The 
employed experimental methods of this paper have been 
approved by the Institutional Review Board of Nanjing Uni-
versity of Aeronautics and Astronautics.

As stated above, this paper will verify the feasibility of 
the torque estimation strategy in static and dynamic cases. 
In the static case, just as shown in Fig. 4, the experimenter 
stands by the experimental platform, keeping the upper and 
lower arms perpendicular, and pulls the tension sensor by 
the biceps brachii. The force signals are collected by the 
tension sensor (JLBS-MD-10KG). In the dynamic case, 
just as demonstrated in Fig. 5, the experimenter holds bar-
bells of different mass, raising and laying down them at a 
constant rate with different frequencies. The experiments 
are conducted at different frequencies (1/2 Hz, 1/3 Hz and 
1/4 Hz) and loads (0 kg, 3 kg and 5 kg). Elbow angle is 
provided by the encoder (MINI-1024 ATI Industrial Auto-
mation) and angle calculation algorithm is carried out in 
the microcontroller (ALIENTEK STM32F103C8T6). The 
angle signals are sent to the development board (ALIENTEK 
STM32F407) through the WIFI module (ATK-ESP8266) 
and then transmitted to the Target PC. Finally, the relation-
ship between the sEMG and the joint angle will be estab-
lished in System identification module in the Host PC. The 
experimenter takes a 3-min break to relieve muscle fatigue 
after each test. Moreover, to avoid electromagnetic interfer-
ence, the unnecessary motors and machines are removed.

Considering the correlation coefficient between estimated 
joint torque and measured joint torque, the validity of esti-
mated joint torque can be measured as follows:

(20)�Ta,Te =
Cov

(
Ta, Te

)
�Ta ⋅ �Te

where Ta and Te represent the actual joint torque and esti-
mated joint torque; Cov defines the covariance. In addition, 
σTa and σTe indicate the standard deviation of actual and esti-
mated joint torque. Apart from that, in order to calculate the 
error between the actual joint torque and the estimated joint 
torque, root mean square error (RMSE) and normalized root 
mean square error (NRMSE) are taken into account [17], 
which are shown as:

where N is the number of joint torque data; Tat, Tet are the 
actual joint torque and estimated joint torque at time t. Tetmax, 
Tetmax represent the maximum and minimum of Tet.

4 � Experiments and Analysis

Results of the static case are shown in Fig. 8. Considering 
the contingency in a single experiment, three experiments 
are conducted under the static condition in search of a more 
general conclusion. The measuring standards ρ, RMSE and 
NRMSE in each experiment are listed in Table 2. The results 
of experimental methods (Method 1–3) proposed in this 
research and the articles [17, 28] are shown successively. 
In the Method 2, the researcher used the IMU to get the 
joint angle and did not consider the optimal factor in the 
process of getting muscle activation while the method just 
established a non-linear relationship between the sEMG and 
joint torque in the Method 3.

In the static experiments, the average correlation coeffi-
cient between actual joint torque and estimated joint torque 
obtained by Methods 1, 2 and 3 are 97.88%, 95.90% and 
94.86%, respectively. The results show that the estimated 
joint torque calculated by Method 1 has better correlations 
with the actual joint torque than that by Methods 2 and 3. In 
addition, according to the pictures (c) in three trials, the esti-
mated torque obtained by Method 1 is highly in accordance 
with the trend of actual torque, demonstrating that Method 
1 can identify the variation like muscle changes, which 
cannot be accomplished by Methods 2 and 3. The average 
RMSE between actual joint torque and estimated joint torque 
obtained by Methods 1, 2 and 3 are 1.447 Nm, 3.908 Nm and 
5.714 Nm, respectively. The average NRMSE between actual 
joint torque and estimated joint torque obtained by Methods 
1, 2 and 3 are 5.446%, 9.200% and 14.574%, respectively. 
Besides, according to the pictures (d) in three trials, errors 
obtained by Method 1 are mainly focus on the range of ± 4 

(21)RMSE =

�∑N

t=1

�
Tat − Tet

�
N

(22)NRMSE =
RMSE

Tetmax − Tetmin

Fig.7   Schematic diagram of neural network
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Nm, which are acceptable. Plus, errors obtained by Method 
1 are smaller than that by Methods 2 and 3, which indicates 
that at most time, estimated joint torque obtained by Method 
1 is closer to actual joint torque than that by Methods 2 and 
3. In conclusion, in the static experiment, Method 1 has a 
better performance than Methods 2 and 3.

In the dynamic case, experiments have been conducted 
three times at each frequency and load. The results of the 
dynamic experimental method under 0 kg, 3 kg and 5 kg 
are shown in Figs. 9, 10 and 11, respectively. Moreover, the 
average values of ρ, RMSE and NRMSE at different frequen-
cies (1/2 Hz, 1/3 Hz and 1/4 Hz) and loads (0 kg, 3 kg and 5 
kg) are recorded in Tables 3, 4 and 5.

Just as the pictures (b) shown in Figs. 9, 10 and 11, the 
estimated angle and actual angle have positive correlations, 
and the errors between the actual and estimated angle are 
smaller enough to be accepted. Tables 3, 4 and 5 show that 
the estimated torque obtained by Method 1 has a better cor-
relation with the actual torque than that by Methods 2 and 3. 
Except that, RMSE and NRMSE calculated by Method 1 are 
smaller than that by Methods 2 and 3 at most of time, which 
means the accuracy of estimated torque obtained by Method 

1 is higher compared to the other two methods. Results show 
that compared to the other two existing torque estimation 
strategies, this method is proved to make progress in the 
aspect of torque estimation accuracy under different experi-
mental conditions. The correlation coefficient increases by 
2–9%; root-mean-square error (RMSE) reduces by 0.2–2.5 
Nm; normalized root-mean-square error (NRMSE) reduces 
by 0.5–9.5%. Moreover, under the same load condition, the 
performances at high frequency (1/2 Hz) are better than low 
frequency (1/4 Hz) while worse than moderate frequency 
(1/3 Hz); at the same frequency, the performances under 0 
kg are slightly worse than moderate load (3 kg) condition 
and better than the big load (5 kg). Two main reasons can 
explain these two phenomena. Firstly, the degree of mus-
cle activation is relatively low as the experimenter lifts the 
low-mass barbell at a low speed, resulting in relatively poor 
estimation accuracy. The other is that the bigger the load is, 
the longer the load time is, the more energy the experimenter 
consumes, and the greater possibility of muscle shaking and 
fatigue. It requires that the torque estimation strategy can 
accurately detect the muscle condition in a very short time 
and make the corresponding changes, which is no doubt a 

Fig. 8   Above are relevant experimental data in the first experiment. 
T1, T2, T3 represent the estimated torque obtained by Methods 1, 2 
and 3, respectively. E1, E2, E3 represent errors between actual torque 
and estimated torque obtained by Methods 1, 2 and 3, respectively. a 

Raw sEMG signals b Actual torque c Estimated torque obtained by 
three estimation strategies d Errors between actual torque and three 
different estimated torques

Table 2   Comparisons of the 
experimental results obtained by 
methods 1, 2, 3 (M1, M2, M3) 
in the three experiments

ρ (%) RMSE (Nm) NRMSE (%)

M1 M2 M3 M1 M2 M3 M1 M2 M3

Trial 1 97.67 95.42 94.98 1.016 3.039 3.502 5.932 9.081 14.723
Trial 2 98.31 95.53 95.69 1.767 4.061 6.128 4.534 9.984 13.512
Trial 3 97.66 96.74 93.91 1.559 4.623 7.511 5.873 8.537 15.488
Average 97.88 95.90 94.86 1.447 3.908 5.714 5.446 9.200 14.574
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Fig. 9   Above are experimental results under no load condition. T1, 
T2, T3 represent the estimated torque obtained by Methods 1, 2 and 
3, respectively. E1, E2, E3 represent errors between actual torque and 
estimated torque obtained by Methods 1, 2 and 3, respectively. A1, A2 
are the actual angle and the estimated angle; a Raw sEMG signals b 
Actual angle and estimated angle c Actual torque d Estimated torque 
obtained by three estimation strategies e Errors between actual torque 
and three different estimated torques

Fig. 10   Above are experimental results under 3 kg load condition. T1, 
T2, T3 represent the estimated torque obtained by Methods 1, 2 and 
3, respectively. E1, E2, E3 represent errors between actual torque and 
estimated torque obtained by Methods 1, 2 and 3, respectively. A1, A2 
are the actual angle and the estimated angle; a Raw sEMG signals b 
Actual angle and estimated angle c Actual torque d Estimated torque 
obtained by three estimation strategies e Errors between actual torque 
and three different estimated torques
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big challenge even if the new proposed method can detect 
muscle changes to a certain extent.

5 � Conclusions and Future Works

In order to identify the motion intention, a new torque esti-
mation strategy is proposed in this paper which integrates 

Fig. 11   Above are experimental results under 5 kg load condition. T1, 
T2, T3 represent the estimated torque obtained by Methods 1, 2 and 
3, respectively. E1, E2, E3 represent errors between actual torque and 
estimated torque obtained by Methods 1, 2 and 3, respectively. A1, A2 

are the actual angle and the estimated angle; a Raw sEMG signals b 
Actual angle and estimated angle c Actual torque d Estimated torque 
obtained by three estimation strategies e Errors between actual torque 
and three different estimated torque

Table 3   Comparisons of the 
experimental results obtained by 
methods 1, 2, 3(M1, M2, M3) 
AT 1/2 Hz

ρ (%) RMSE (Nm) NRMSE (%)

M1 M2 M3 M1 M2 M3 M1 M2 M3

0 kg 93.27 92.95 89.51 3.340 6.125 4.353 13.360 24.500 17.412
3 kg 94.16 93.30 88.02 2.635 4.181 2.862 10.540 16.724 11.448
5 kg 88.50 86.42 83.15 7.007 8.045 7.816 21.897 25.141 24.425

Table 4   Comparisons of the 
experimental results obtained by 
methods 1, 2, 3(M1, M2, M3) 
AT 1/3 Hz

ρ (%) RMSE (Nm) NRMSE (%)

M1 M2 M3 M1 M2 M3 M1 M2 M3

0 kg 93.02 91.92 87.12 3.447 6.250 4.327 13.788 25.000 17.308
3 kg 96.68 94.74 87.35 1.914 4.760 2.487 9.550 23.800 12.435
5 kg 92.25 91.46 88.59 6.032 8.936 6.470 18.850 27.925 20.219
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sEMG, tension sensor and angle signals to estimate real-
time elbow joint torque. Firstly, system identification is 
proposed to estimate elbow angle, which can be used in the 
Hill-type muscle model, and replace the use of the angle 
transducer. In addition, the adaptive adjustment factor is 
presented to describe the non-linear relationship between 
sEMG signals and the muscle activation, enabling the 
estimated torque to be more accurate. Finally, static and 
dynamic experiments are conducted respectively to verify 
the improvements of this strategy in terms of torque esti-
mation accuracy.

The purpose of intention recognition is controlling reha-
bilitation exoskeleton robots and helping patients with 
hemiplegia to carry out limb rehabilitation training. Thus, 
developing control strategies based on this torque estimation 
method to control the rehabilitation exoskeleton robots will 
be the focus of future works.
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