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Abstract
We investigated plausible changes in spectral and higher order statistical properties of tracheal respiratory sounds from wake-
fulness to sleep in relation to obstructive sleep apnea (OSA). Data consisted of expiratory sounds of 30 participants suspected 
of OSA during wakefulness and sleep, both recorded in supine position. Participants were divided into two groups of mild 
and severe OSA (15 in each group) based on their apnea/hypopnea index (AHI) per hour. Three different frequency-based 
features of their power spectra in addition to Kurtosis and Katz fractal dimension (KFD) were estimated from each normal-
ized expiratory sound; they were compared within and between the groups. During wakefulness, the sounds average power at 
low-frequency components in severe group was lesser than that of the mild group. However, during sleep, the average power 
of high-frequency components in severe subjects was more than that of the mild group. The kurtosis value of both mild and 
severe OSA groups increased significantly from wakefulness to sleep using both mouth and nasal breathing sounds during 
wakefulness. The KFD increased significantly from wakefulness to sleep for both mild and severe OSA group using only 
nasal breathing sounds during wakefulness. These changes are indicative that the upper airway of severe OSA show more 
compliance and thickness compare to that of the mild OSA during both wakefulness and sleep and represent an increased 
stiffness during sleep. This implies a regional narrowing which cause both more compliance and stiffness simultaneously in 
different regions of the upper airway.
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1  Introduction

Obstructive sleep apnea (OSA) syndrome is due to the 
partial or complete collapse of the upper airway (UA) [1], 
resulting from relaxation of muscles controlling the soft pal-
ate or tongue. [2]. An individual with OSA, despite persis-
tent efforts to breathe, may experience periods of cessation 
of breathing (apnea) and/or more than 50% reduction in air-
flow (hypopnea). Such event is called apnea or hypopnea if 
it lasts at least 10 s and is associated with a minimum of 4% 
drop in oxygen saturation level in blood [1]. The severity of 

OSA is measured by apnea/hypopnea index (AHI) per hour 
of sleep.

OSA is a prevalent health problem that affects both chil-
dren and adults. It has been reported that about 10% of the 
North American population suffer from OSA [3], while it 
is believed there are many undiagnosed cases [4]. OSA is 
associated with an increased risk of cardiovascular disease, 
daytime sleepiness, reduced concentration and increased risk 
of car accidents [1]. The current gold standard for diagnosis 
of OSA is full-night polysomnography (PSG). Many physi-
ological signals such as heart and muscle signals, respiratory 
effort, respiratory flow, and brain waves (EEG) are recorded 
during a PSG assessment to provide a full physiological pic-
ture of the patients’ sleep apnea and sleep quality. How-
ever, PSG assessment is time-consuming, cumbersome and 
expensive with long waiting list around the world. There-
fore, designing simpler assessment methods such as portable 
home monitoring devices offer an alternative way to detect 
sleep apnea while overcoming the drawbacks of PSG. In 
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this study, we aimed to explore the use of breathing sounds 
in understanding UA differences in OSA individuals with 
different levels of OSA severity during both wakefulness 
and sleep. The outcomes of our study may lead to a better 
physiological understanding of the mechanism of the UA 
collapse during sleep using only breathing sound analysis.

Various features of UA anatomy and neuromuscular 
control contribute to OSA development [5]. Therefore, the 
cause of OSA may vary considerably between individuals. 
Some of the previous studies using MRI/CT imaging dur-
ing wakefulness have shown that OSA individuals have a 
narrower and thicker UA compared to non-OSA individu-
als [6]. Also, the lateral narrowing of the UA in OSA indi-
viduals was found to be of an elliptical configuration in the 
anterior-posterior dimension in contrast to a more laterally 
open in non-OSA individuals [7, 8]. Nevertheless, it has 
been reported that the patency of the UA of OSA individuals 
during wakefulness is well maintained due to an increase in 
their dilator muscles activities [9, 10]. On the other hand, 
the UA of OSA participants during sleep has been shown to 
be more collapsible [11], most probably due to the changes 
in neuromuscular control and airway physiology at the onset 
of sleep [12].

Our team and a few others around the world have been 
using tracheal respiratory sounds to monitor and assess 
OSA. It is known that structural and physiological proper-
ties of the UA (such as diameter, wall thickness, and length) 
will affect the breathing sound generation mechanism [13]. 
Therefore, we hypothesize that respiratory sounds are able 
to convey valuable information in relation to monitoring and 
detecting OSA. Some previous studies focused on analyzing 
respiratory sound during wakefulness for OSA assessment 
and classification [14, 15]. In this study, however, we inves-
tigated breathing sound features during both wakefulness 
and sleep to determine which sound features change the most 
from wakefulness to sleep differently among people with 
different levels of OSA severity. We focused on investigat-
ing the spectral and higher order statistical characteristics 
of respiratory sounds during both wakefulness and sleep in 
relation to OSA.

2 � Method

2.1 � Data

We used tracheal respiratory sounds of 30 individuals with 
OSA. Tracheal breathing sounds during both wakefulness and 
sleep were recorded in the supine position with head resting on 
a pillow. During wakefulness, participants were instructed to 
breathe at their normal rate in two maneuvers: first through the 
nose with mouth closed and second through the mouth with a 
nose clip in place; five full breathing cycles in each maneuver 

were recorded. After wakefulness recording, participants were 
prepared for PSG assessment. Breathing sounds recording 
during sleep were conducted simultaneously with full-night 
PSG assessment at Misericordia Health Center (Winnipeg, 
Canada). The severity of OSA was determined using the PSG 
report and an AHI threshold of 15. Data included 15 partici-
pants with mild-OSA (11 male, AHI < 15) and 15 severe-OSA 
(13 male, AHI > 15). Demographic information of the par-
ticipants is shown in Table 1. This study was approved by 
the Biomedical Research Ethics Board of the University Of 
Manitoba and all the participants signed an informed consent 
form prior to data collection.

The breathing sounds during both wakefulness and sleep 
were collected with a small microphone (Sony ECM-77B). 
The Microphone was inserted into a small chamber which 
allowed 2 mm cone-shape space with skin to ensure that it 
never connects the skin of participants during the recording, 
and mounted over the suprasternal notch of their trachea. 
A soft neckband was wrapped around the patient’s neck to 
sustain the microphone and chamber in place, and to ensure 
that the microphone would not be misplaced during the night. 
The recorded breathing sounds were amplified by a Biopac 
(DA100C) amplifier with the band-pass filter in the range of 
0.5–5000 Hz and digitized at 10,240 Hz sampling rate.

2.2 � Signal Analysis

All the recorded tracheal breathing sounds data were 
examined manually by listening to and observing the 
sounds in the time-and-frequency domain for plausible 
occasional swallow that may interfere with altering breath 
phases and to exclude noisy signals or those associated 
with snoring sounds. As the respiratory flow was not 
recorded in this study, to insure the accuracy of the phase 
labels during wakefulness, each recording was always 
started at the inspiration. The inspiratory and expiratory 
phases during wakefulness and sleep were identified semi-
manually using the technique elaborated in [16]. Briefly, 
the log of the variance of each phase is calculated and the 
onset of each phase is identified by an automatic algo-
rithm. Then, based on different features from duration, 
shape and volume of the sound envelope each phase is 
labeled as inspiration or expiration. During sleep, snoring 
usually occurs within the inspiration phase. Therefore, to 
avoid plausible snoring sounds, we selected four noise-free 
expiratory sounds in supine position (determined using the 

Table 1   Study participants demographic information

Severity Age AHI BMI Neck size Sex (M:F)

Mild-OSA 40.7 2.2 29.6 40.9 (11:4)
Severe-OSA 48.7 37.5 33.6 45.7 (13:2)
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PSG assessment). During wakefulness, we also analyzed 
four noise-free expiratory sounds for comparison to those 
during sleep. We extracted sleep data from only stage 2 
of sleep because that was the most common stage in our 
dataset. To remove the effect of low and high-frequency 
noises, including heart and muscle sounds and ambient 
noise, each individual expiratory sound segment was 
passed through a 5th-order Butterworth band-pass filter 
in the range of [75–2500 Hz].

Next, the same procedure as in [15], was applied to each 
selected expiratory sound: each expiratory phase was first 
normalized by its variance envelope (moving average filter 
of the signal with 64 sample sequence) to remove its extra 
fluctuations. Subsequently, they were normalized by their 
energy to compensate for plausible different flow rates in 
each breathing cycle. To capture the stationary part of the 
expiratory breathing sounds, we calculated the logarithm 
of the sound’s variance using the method in [17], and the 
sounds segments corresponding to its middle part (50% 
duration around the maximum) was considered for further 
analysis. Next, we estimated the power spectrum density 
(PSD) of the stationary portion of each expiratory sound 
signal using Welch’s method in windows of 205-point 
(~ 20 ms) with 50% overlap between successive windows, 
and averaged over the four expiratory phases of each par-
ticipant. Next, three frequency-based features were cal-
culated from the average PSD: 30%-freq, 50%-freq and 
70%-freq, the frequency at which the PSD reaches 30, 50 
and 70% of the total power, respectively. In addition, the 
kurtosis and Katz fractal dimension (KFD) [18] were also 
calculated in every 20 ms window with 50% overlap with 
the adjacent windows and then averaged within the station-
ary part of each expiratory phase. They were then averaged 
over the four expiratory phases of each participant.

The extracted features were then compared within the 
mild and severe groups and between the wakefulness and 
sleep. For comparison, we used paired and unpaired t-tests 
(for within and between group comparisons); a p value of 
0.05 was considered as significant.

3 � Results

Investigating different frequency-based features showed 
that the PSD of mild OSA reached their 30%-freq in lower 
frequencies compared to that of severe OSA using both 
mouth and nasal breathing sounds of wakefulness; though, 
it was only significant (p < 0.008) during mouth breathing 
maneuver (Fig. 1). The same pattern was also observed 
during sleep (p < 0.05) (Fig. 1). These results imply that 
the PSD of the mild group at the lower frequencies are 
more powerful than that of the severe participants during 
both wakefulness and sleep.

As shown in Fig. 2, the average power spectra of severe 
OSA reached both their 50 and 70% power in significantly 
higher frequencies than the mild OSA (p < 0.02, p < 0.05, 
respectively). This finding implies that, the average PSD of 
severe participants during sleep has more power in higher 
frequencies compare to the average PSD of mild partici-
pants. No significant difference between the 50%-freq and 
70%-freq of mild and severe OSA groups was observed 
during either mouth or nasal breathing sounds of wakeful-
ness (Fig. 2).

Higher order statistical analysis showed that there was a 
significant change in the kurtosis of the breathing sounds 
from wakefulness to sleep in both mild (p < 0.007) and 
severe (p < 0.002) OSA groups, using the nasal breathing 
sounds during wakefulness (Fig. 3). The same pattern was 
also observed when we used expiratory mouth breathing 
sounds instead of nasal breathing sounds during wake-
fulness (p < 0.02 and p < 0.04 for mild and severe OSA 
groups, respectively).

The KFD analysis revealed that for both mild and severe 
OSA groups, there was no significant change in this feature 
from wakefulness to sleep when using mouth-breathing 
sounds during wakefulness. However, the change of the 
KFD from wakefulness to sleep using nasal breathing 
sounds was significant for both mild and severe OSA group 
(p < 0.05 and p < 0.005, respectively) (Fig. 4). It should be 

Fig. 1   Mean and standard error 
of 30%-freq feature extracted 
from average expiratory breath-
ing sounds PSD of mild and 
severe OSA groups during 
mouth breathing in wakefulness 
and stage 2 of sleep
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Fig. 2   Mean and standard error 
of a 50%-freq and b 70%-freq 
feature. These features were 
extracted from the average 
expiratory breathing sounds 
PSD of mild and severe OSA 
groups during mouth breathing 
maneuver in wakefulness and 
stage 2 of sleep

Fig. 3   t-test outcome of kurtosis 
change from wakefulness to 
sleep in mild and severe OSA 
groups using nasal breathing 
sounds during wakefulness

Fig. 4   t-test outcome of Katz 
fractal dimension change from 
wakefulness to sleep in mild 
and severe OSA group using 
nasal breathing sounds during 
wakefulness
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noted that we could not be sure the breathing sounds dur-
ing sleep were nasal or mouth breathing. In addition, there 
was no significant differences in KFD values of nasal and 
mouth breathing sounds during wakefulness. There was 
also a marginally significant (p < 0.06) difference between 
KFD of mild and severe OSA during sleep.

Table 2 summarizes the score of statistical tests for the 
three frequency-based features and the kurtosis and KFD 
characteristics of expiratory breathing sounds during both 
wakefulness and sleep.

4 � Discussion

Tracheal breathing sounds analysis is a non-invasive method 
for studying the pathophysiology of the airway [19]. They 
have been shown to be affected by the structural and physi-
ological changes of the UA [13]. In this study, we hypoth-
esized that respiratory sounds’ spectral and higher order 
statistical characteristics are able to convey valuable infor-
mation in relation to OSA severity and how they change 
from wakefulness to sleep.

The UA anatomical structure depends on body posi-
tion. Thus, during both wakefulness and sleep, we analyzed 
breathing sounds recorded in supine position. The AHI in 
supine position is also usually higher than that in lateral 
body positions [20].

The 30%-freq feature revealed that during wakefulness 
and sleep the average power at low frequencies of breathings 
sounds of severe OSA is less than that of the mild OSA. This 
pattern was expected because different imaging studies [6, 
11, 21] and our previous tracheal breathing sound studies 
[15, 22] have shown that the UAs of severe OSA compared 
to mild OSA are thicker and more compliant during both 
wakefulness and sleep. It is known that the low frequency 
sounds are absorbed more by more compliant tubes [23]. 

Thus, we expected to see a lower average power at low fre-
quencies during wakefulness and sleep in severe OSA indi-
viduals (Fig. 1).

Based on the results of the 50%-freq and 70%-freq fea-
tures, the average PSD during sleep at high frequencies was 
higher for severe OSA compared to that of mild OSA par-
ticipants. As increased in high frequency power represents 
the increase in stiffness, we speculate that this finding may 
suggest an increased stiffness of the UAs of severe OSA 
subjects during sleep. That is congruent with imaging stud-
ies results [7, 8] and the tube law [24] that have suggests 
more regional compliance and stiffness of the UA due to 
the structural regional changes of the UA shape in severe 
OSA. In addition, in one study based on electromyography 
of anesthetized rats it was shown that simultaneous stimu-
lation of protrudor and retractor muscles of tongue in the 
case of hypercapnia and hypoxia, as in severe OSA, leads to 
tongue retraction and results a narrower but stiffer pharyn-
geal airway [25]. Therefore, in agreement with aforemen-
tioned studies, the observed spectral pattern at low and high 
frequencies are representative of OSA pathophysiology dur-
ing wakefulness and sleep.

The higher order statistical analysis (Kurtosis analysis) 
showed an increase in kurtosis from wakefulness to sleep 
in both mild and severe OSA groups, using both mouth 
and nasal breathing sounds during wakefulness. The kur-
tosis represents peakedness of the probability distribution 
of the time series signals. Thus, the higher kurtosis during 
sleep means the power distribution of tracheal expiratory 
sounds is more clustered around its mean and has relatively 
small standard deviation. We speculate this might be rep-
resentative of the higher stiffness of the UA during sleep.

Fractal dimension analysis, including KFD that was used 
in this study, has often been used as a measure of the com-
plexity of biological signals [26]. Our results showed a sig-
nificant change in KFD from wakefulness to sleep in both 

Table 2   Statistical test outcomes of the extracted features

Feature Mouth breathing sounds 
during wakefulness

Nasal breathing 
sounds during wake-
fulness

Difference of the 30%-freq during wakefulness between mild and severe OSA groups p < 0.008 p > 0.1
Difference of the 30%-freq during sleep between mild and severe OSA groups p < 0.05 p < 0.05
Difference of the 50%-freq during wakefulness between mild and severe OSA groups p > 0.1 p > 0.1
Difference of the 50%-freq during sleep between mild and severe OSA groups p < 0.02 p < 0.02
Difference of the 70%-freq during wakefulness between mild and severe OSA groups p > 0.3 p > 0.3
Difference of the 70%-freq during sleep between mild and severe OSA groups p < 0.05 p < 0.05
Change of the kurtosis from wakefulness to sleep in mild group p < 0.02 p < 0.007
Change of the kurtosis from wakefulness to sleep in severe group p < 0.04 p < 0.002
Change of the Katz fractal dimension from wakefulness to sleep in mild group p > 0.3 p < 0.05
Change of the Katz fractal dimension from wakefulness to sleep in severe group p > 0.2 p < 0.005
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groups of mild and severe OSA. We believe this is in support 
of the kurtosis results that showed more peakedness during 
sleep. Thus, this might also be due to higher stiffness of the 
UA during sleep in OSA individuals.

5 � Conclusion

In this study, we investigated the spectral and higher order 
statistical characteristics of expiratory sounds during both 
wakefulness and sleep in mild and severe OSA groups. Our 
results, congruent with imaging studies of the UA in OSA 
population, are indicative that the UAs of severe OSA are 
mainly characterized by having more compliance (presented 
by lower average power at low frequencies) and also more 
stiffness (presented by higher average power at high frequen-
cies). This implies there must be a regional narrowing to 
cause both more compliance and stiffness simultaneously in 
different regions of the UA. We also observed an increased 
stiffness during sleep particularly in severe OSA group. In 
addition, the results of higher order statistical analysis (kur-
tosis) and complexity measure are indicative of more stiff-
ness as one sleeps; this was observed in both mild and severe 
OSA groups. Overall, the results of this study, although with 
a limited sample size, are encouraging for the use of tracheal 
breathing sounds for examining UA structural changes due 
to OSA during both wakefulness and sleep.
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