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Abstract
The assessment of waveform similarity is a crucial issue in gait analysis for the comparison of electromyography (EMG) 
and kinematic patterns with reference data. A typical scenario is in fact the comparison of a patient’s EMG pattern with a 
relevant physiological pattern. Many methods have been proposed for a quantitative comparison of the two patterns, sug-
gesting the absence of a gold standard. A recently proposed method for comparing kinematic patterns is the linear fit method 
(LFM). This study aims at testing the applicability of this method on data of EMG. The validity of LFM was tested in terms 
of appropriateness, sensitivity, specificity, and reliability, by comparing 20 EMG pathological gait patterns (obtained by a 
group of patients with Parkinson’s Disease) and 20 EMG physiological gait patterns (obtained by healthy subjects). When 
gastrocnemious and tibialis anterior EMG activity was analyzed, the appropriateness of LFM in discriminating pathologi-
cal patterns resulted of 97.5%, with a sensitivity of 95% and a specificity of 100%. The reliability was good for 2 out of 3 
parameters in each group of subjects. The LFM resulted a simple method suitable for analysing the waveform similarity in 
gait EMG clinical analysis.
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1 Introduction

Walking is a complex function involving multiple interac-
tions between different muscle groups that need to be well 
synchronized in order to guarantee an efficient, symmetri-
cal, stable and harmonious locomotion at different speeds or 
on different surfaces [1]. Gait patterns are usually impaired 
in people with muscular deficits [2], as well as in people 
with dysfunction of the Central Nervous System (CNS), 
such as stroke [3] or Parkinson’s Disease (PD) [4]. Instru-
mented gait analysis allows gathering quantitative informa-
tion about electrical activity of muscles (electromyography, 
EMG), joint kinematics and kinetics during walking. The 
conventional output of gait analysis are curves obtained from 

data normalized with respect to the gait cycle [5]. A curve 
obtained from a patient is usually compared with a reference 
curve, typically obtained by averaging data of a group of 
healthy subjects. Clinical information can be obtained by 
visual comparison of the two curves, but a more powerful 
approach should be an objective quantitative assessment of 
the deviation of pathological patterns via an analysis from 
the physiological one through the estimation of few mean-
ingful indices [6–9].

In the literature, quite a few methods have been proposed 
for a quantitative comparison between pairs of gait curves, 
such as the use of Pearson Correlation Coefficient (R, which 
allows for quantifying their shape similarity [10, 11]), the 
Root Mean Square Error (RMSE, which provides a positive 
global index [10]), the Coefficient of Multiple Correlation 
(CMC, which is helpful when the reliability of a group of 
curves is under analysis [12, 13]),

Another simple approach consists in computing the differ-
ence between parameters assumed to be representative of the 
entire curve, such as the amplitude (that could be assessed 
in terms of its range or using its maximum) or the timing, 
in terms of gait cycle percentage at which a particular event 
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may occur, such as the maximum of an EMG signal. Sev-
eral indices have also been proposed in order to assess the 
difference between two muscle patterns during gait, based 
on principal component analysis [14], pattern recognition 
techniques [15] and neural networks [16]. Another approach 
for comparing two EMG curves is to assess their overlap, 
or in terms of percentage of gait cycle [3] or in terms of the 
area of an enveloped overlap [17] (for a review about some 
of the proposed methods see Rosa et al. [18]).

A more simple method proposed for assessing the wave-
form similarity of gait curves is the Linear Fit Method 
(LFM) [19]. Strengths and attractiveness of LFM are based 
on its easy mathematical implementation and a straightfor-
ward clinical meaning of the obtained parameters, as shown 
by results obtained by comparing gait curves among subjects 
with cerebrovascular accident and healthy subjects [19] or 
among different laboratories [20]. The LFM has been previ-
ously proposed and tested for kinematic patterns, but not for 
EMG patterns.

The aim of this study is to assess the applicability of the 
LFM to EMG-data, in particularly those of medial gastroc-
nemius and tibialis anterior in order to compare pathological 
walking patterns and physiological ones. Analogously to the 
validation of LFM for kinematic gait data [19], the valida-
tion of LFM for EMG data was tested in terms of appro-
priateness, accuracy, sensitivity, specificity and reliability.

2  Materials and Methods

2.1  Validation of LFM

To validate the LFM application to EMG data-sets, we tested 
if this method may answer to the following criteria (ques-
tions): appropriateness (does it provide different results for 
patients when compared to healthy subjects? It represents 
the ability of LFM to provide parameters having values with 
a statistical significant difference between healthy subjects 
and patients), accuracy (does it provide results able to cor-
rectly identify patients and healthy subjects?), sensitivity (is 
LFM able to detect as pathological only actually pathologi-
cal patterns?), specificity (is LFM able to detect as physi-
ological only actually physiological patterns?), reliability 
(can the measures be accurately repeated?). For this pur-
pose, twenty EMG curves obtained from subjects affected 
by Parkinson’s Disease were compared with twenty curves 
obtained from a group of healthy subjects.

2.2  Gait and EMG Analysis

Gait datasets were acquired using a 6-camera motion cap-
ture system (Smart-D system, BTS Bioengineering, Milan, 
Italy) to reconstruct the 3D position of 21 retro-reflective 

spherical markers located on the subject’s skin according to 
the conventional Davis’ protocol [21], during level walking 
in barefoot conditions at self-selected speed.

We compared 20 physiological EMG patterns obtained 
from two trials of left and right legs of 5 healthy sub-
jects (mean age: 33.2 ± 6.2 years) and 20 pathological 
EMG patterns obtained from two trials of left and right 
legs of 5 patients with Parkinson’s Disease (mean age: 
74.6 ± 5.5 years). Because the aim of the study was to test 
the LFM when it is used to compare pathological EMG-
data vs. physiological ones, we enrolled a group of young 
healthy subjects for obtaining physiological reference pat-
terns. Age-matched comparison is usually more helpful from 
a clinical point of view, but this is beyond the scope of this 
methodological study in which the reference curves should 
be representative of physiological patterns.

Instrumented kinematic gait analysis has been performed 
using a stereophotogrammetric system (SMART system, 
BTS Padua, Italy) with 6 infrared cameras, an acquisition 
frequency of 50 Hz, and a resolution of 640 × 286 pixels 
[22]. Twenty-one retroflective markers were located on 
subject skin in the body landmarks defined by the Davis’ 
Protocol [21]. According to the purpose of this study, the 
data extracted by the stereophotogrammetric system has 
been used to define the spatio-temporal parameters of walk-
ing, and in particular the gait cycle on respect to which the 
EMG curves have been normalized. In particular, this system 
has been used for time-normalizing the data between two 
selected events, such as two consecutive foot-strikes of the 
same limb which define the gait cycle [5]. We recorded on 
each subject 4 walking trials, and analyzed the two steps per-
formed in the center of stereophotogrammetric workspace. 
We excluded the first two trials because of adaptation to the 
environment, and analysed the last two.

The EMG signals were obtained using four wireless sen-
sors (FREEEMG 300 System, BTS, Padua, Italy) with a 
sample frequency of 1000 Hz and positioned on left and 
right anterior tibialis and left and right medial gastrocne-
mious of the subjects according to the SENIAM protocol 
[23]. We used a FREEEMG 300 System with four wire-
less miniaturised probes (mass of 7.5 g) and one receiving 
unit using a PocketPC platform. Each probe consisted of a 
mother electrode and a satellite electrode (both with a diam-
eter of 17 mm) connected via a flexible cable for optimiz-
ing the electrode distance (between 16 and 66 mm). In the 
mother electrode there is the preamplifier, the A/D converter, 
the antenna and battery. The input impedance was higher 
than 10GΩ the common-mode rejection ratio higher than 
110 dB at 50–60 Hz.

On EMG signals it has been applied a 4th order Butter-
worth pass-band filter (30–450 Hz, [24]). Then, the filtered 
EMG-signal was rectified and its envelopment was obtained 
with a 4th order Butterworth low-pass filter with a cut-off 
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frequency of 5 Hz [25]. Finally, the obtained signal has been 
interpolated for reporting it with respect to the gait cycle 
identified by stereophotogrammetric system and enveloped 
averaging data with a mobile window of 50 ms. In particular, 
the identification of foot strikes was performed analyzing 
kinematic data by the identification of downward peak of 
the position of lateral malleolus markers [26].

2.3  Brief Analytical Description of the Linear Fit 
Method

The analytical extended description of the LFM has been 
provided in Iosa et al. [19], and briefly summed up in what 
follows in order to describe applications on EMG-data given 
a reference curve X, representative of a physiological pat-
tern, and a curve Y of a subject to analyse (such as that of 
a patient). Since X and Y are normalized with respect to 
the gait cycle, they result in two arrays of real numbers of 
the same length. Hence, it is possible to plot Y against X, 
to define a set of points in a Cartesian coordinate system, 
where X values correspond to values of horizontal-axis of 
the Cartesian system and Y to those of vertical-axis (Fig. 1). 
The LFM method is based on applying a linear fit to this set 
of points. This fitting minimizes, in a least squares sense, the 

sum of the square vertical distances between the points and 
the fitting line (regression line, right plot of Fig. 1):

where Y1 represents the linear function which approximates 
Y values by means of a linear transformation of values of X; 
a is the angular coefficient and b is the intercept of the fitting 
line. The goodness of the fit can be easily assessed by the 
coefficient of determination R2 that coincide with the square 
of the Pearson’s correlation coefficient R.

The LFM relies on the interpretation of the values of R2, 
a and b for assessing curve similarity between Y and X in 
terms of shape similarity, offset and amplitude scaling fac-
tor [19]. It should be noted that if Y = X then the values of 
LFM parameters are a = 1, b = 0, R2 = 1, that represent the 
theoretical situation in which the Y curve is perfectly physi-
ological. In real data, and especially in pathological cases, a 
could be lower or higher than 1, b could be higher or lower 
than 0 and R2 could be lower than 1.

In this study, we firstly applied the LFM on healthy 
subjects’ data in which Y was one of the 20 EMG-curves 
obtained by 5 healthy subjects per 2 trials per 2 legs. The 
obtained parameters formed the data for healthy groups 
(summarized in mean ± standard deviation in Table 1). 

�1 = a ⋅ � + b,

Fig. 1  EMG data (left above 
graph, expressed in microvolt) 
for a healthy subject (HS, dot-
ted curve), patient 1 with mild 
Parkinson’s Disease (P1, thin 
black curve), patient 2 with 
severe Parkinson’s Disease (P2, 
bold black curve), and refer-
ence data (Pref, grey curve). 
In the other plots, each one of 
the subjects’ curve (Pa) were 
compared with reference data 
(one-hundred circles) and the 
regression line (bold black line) 
shows the application of LFM 
on these data

Table 1  Mean and standard 
deviation for the LFM 
parameters computed for PG 
(patients’ group) and HG 
(healthy subjects’ group), with 
the p values of t test

Muscles Gastrocnemious Tibialis anterior

Groups A b R2 a b R2

HG 1.0 ± 0.39 0.0 ± 7.1 0.76 ± 0.17 1.0 ± 0.54 0.0 ± 14.3 0.52 ± 0.30
PG 0.31 ± 0.22 18.5 ± 7.4 0.27 ± 0.25 0.06 ± 0.54 52.7 ± 26.4 0.04 ± 0.04
p values p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001
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Then, we applied LFM to the patients’ data, using as Y one 
of the 20 EMG-curves obtained by 5 patients per 2 trials per 
2 legs. These data formed those of patients’ group (Table 1). 
For both the groups, the X-curve, that is the reference physi-
ological curve, was obtained as the average curve of the 20 
EMG-patterns of healthy subjects. This approach was per-
formed for medial gastrocnemius data, as well as for tibialis 
anterior data. Figure 1 reports the example of this approach 
for the EMG-patterns of one healthy subject and two differ-
ent patients.

2.4  Statistical Analysis

Mean and standard deviation of the LFM parameters were 
computed for describing data. Kolmogorov–Smirnov test, 
applied with the Lilliefors significance correction, revealed 
normal distribution for all the analyzed data-sets (p ≥ 0.108 
for all of them), allowing the use of parametric inferential 
tests. To assess the LFM appropriateness, the values of 
parameters extracted by LFM obtained from physiological 
data were compared with those obtained from pathological 
data by means of unpaired 2-tailed t-tests. For this and all 
the other statistical tests applied in the present study the 
threshold for statistical significance was set at 0.05.

LFM accuracy, sensitivity and specificity were assessed 
performing a Wilk’s lambda discriminant analysis computed 
on the above described real data. This analysis was carried 
out to assess the capacity of LFM to cluster each one of the 
40 analyzed EMG-datasets as physiological or pathologi-
cal. Wilk’s lambda discriminant analysis was performed not 
using the information about the number of data to include 
into two categories (it means it was applied without impos-
ing to classify 20 datasets as physiological and 20 as patho-
logical). Then a confusion matrix using a 2 × 2 table has 
been defined counting the number of patterns correctly 
classified as physiological (true negatives, TN), correctly 
classified as pathological (true positives, TP), incorrectly 
classified as physiological (false negatives, FN) and incor-
rectly classified as pathological ones (false positives, FP). 
Accuracy has been computed as the general ability to well 
classify the patterns: (TP + TN)/(TP + TN + FP + FN); 
sensibility as the ability to detect true positives on all the 
pathological patterns: TP/(TP + FN), specificity as the abil-
ity to detect true negatives on all the physiological patterns: 
TN/(TN + FP). Further, graphical description of sensitivity 
and specificity parameters was shown for the two muscles 
by means of ROC-curve (Fig. 2).

The reliability of LFM was evaluated by computing the 
intra-class correlation coefficient (ICC(2,1)) between two 
trials of the same subject. The absence of interaction factors 
leaded to a coincidence between the evaluated ICC and the 
Cronobach’s alpha value [27]. According to literature [28], 
the meaning of ICC value was defined as follows: between 0 

and 0.01 no reliability, between 0.01 and 0.20 slight reliabil-
ity, between 0.21 and 0.40 fair reliability, between 0.41 and 
0.60 moderate reliability, between 0.61 and 0.80 substantial 
reliability, between 0.81 and 1 almost perfect reliability.

3  Results

3.1  Exemplificative Application of the Linear Fit 
Method

Figure 1 shows an exemplificative application of the linear 
fit method when applied to medial gastrocnemious EMG 
data for a healthy subject, a mildly affected patient, and a 
severely affected patient compared to the reference curve. 
The linear fit showed a very good association between refer-
ence and healthy subject’s data, with R2 = 0.94, a = 0.75, 
b = 3.2. The mild affected patient 1 showed a curve quite 
different from results, as also shown by LFM parameters: 
R2 = 0.63, a = 0.60, b = 26.2. A completely different shape 
was found for the severely affected patient, also confirmed 
by the results of linear fit method: R2 = 0.15, a = 0.40, 
b = 6.75. In this last, extreme case, the a and b parameters 
lost their significance because R2 was lower than 0.20 (that 
is the minimum value still statistically significant for two 
vectors of 100 elements).

3.2  Appropriateness

LFM has been applied to analyze the EMG signals of 
Patients’ Group (PG) vs. healthy subjects’ group (HG). 
Means and standard deviations of the LFM-parameters (a, b, 
R2) were reported in Table 1. For healthy subjects, the mean 
a and b resulted equal to ideal values 1 and 0, respectively, 
whereas the mean R2 was close to its ideal value for gastroc-
nemious EMG signal and lower for tibialis anterior. All the 
relevant values computed for patients resulted significantly 
lower than those obtained for healthy subjects, as shown by 
p-values reported in Table 1.

3.3  Accuracy, Sensitivity and Specificity

LFM sensitivity and specificity was assessed performing a 
Wilk’s lambda discriminant analysis on the three parameters 
of LFM for the two muscles analyzed at the same time. This 
analysis was carried out to assess the capacity of LFM of 
clusterizing as pathological or physiological each one of the 
40 analysed EMG curves (5 subjects per 2 groups per 2 mus-
cles per 2 trials). The confusion matrices evaluated using 
data of both muscles together or separately are reported in 
Table 2.
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As shown, most of the EMG signals were correctly clas-
sified. Accuracy ranged from 90 to 97.5%, sensitivity from 
90 to 100% and specificity from 85 to 100%. As expected 
the best results were obtained when the EMG of both mus-
cles were analyzed together in the Wilk’s lambda discri-
minant analysis. Figure 2 reports the ROC curve when the 
three parameters were separately analyzed.

3.4  Reliability

The reliability of LFM was evaluated by computing the 
intra class correlation coefficient (ICC(2,1)) estimating 
the absence of any interaction effect, so that the reported 
ICC-values coincide with the values of Cronbach’s alpha. 
The ICC values evaluated for a, b, and R2 resulted for HG: 
0.715, 0.628, 0.389, and for PG: 0.119, 0.707, 0.638. So, a 

Fig. 2  ROC curves for the three LFM parameters computed for medial gastrocnemious (above) and tibialis anterior (below)

Table 2  Confusion matrices obtained using Wilk’s lamba discriminant analysis on data of both muscles together or separately analyzed for 
patients’group (PG) and healthy subjects’ group (HS)

Muscles Gastrocneumious and tibialis anterior Gastrocnemious Tibialis anterior

Groups Estimation (%) Estimation (%) Estimation (%)

Pathological Physiological Pathological Physiological Pathological Physiological

Actual groups PG 19 1 18 2 20 0

HG 0 20 2 18 3 17

Accuracy 97.5 90 92.5
Sensitivity 95 90 100
Specificity 100 90 85
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substantial reliability was found for four out of 6 parameters, 
close to moderate reliability for R2 in HG, and slight reli-
ability for a in PG.

4  Discussion

The aim of our study was to validate the Linear Fit Method 
for assessing the similarity between electomyographical 
curves relative to gait datasets. This assessment is usually 
the basis of gait analysis, both for clinical and research pur-
poses. Such as for kinematic gait data comparison [19, 20], 
the meaning of a, b, and R2 is respectively related to ampli-
tude differences, offset differences and shape differences. 
As for kinematic data, the linearity of the model allowed to 
obtain the theoretical values of a and b for healthy subjects 
(a = 1, b = 0). Continuing the similarity with the application 
of LFM to kinematic data, also for EMG-data the  R2 values 
were < 1, and those of HG defined the physiological refer-
ence. Finally, also in EMG-signals, when these parameters 
were computed on pathological patterns the values resulted 
far from theoretical ones, and significantly different from 
those of healthy subjects. However, the clinical meaning 
of these parameters obtained from EMG-signal is differ-
ent from that in kinematic analysis. We found for patients 
a-values < 1 and b-values > 0, that represent an incorrect 
activation (a < 1) of muscle and a diffuse muscular rigidity 
related to a hypertone (b > 1). The R2-values were very low 
for patients, especially for tibialis anterior, showing that the 
pathological curves had a quite different shape of activation 
with respect to physiological ones.

The values of the LFM-parameters easily allowed iden-
tifying pathological patterns with respect to physiological 
ones. The numbers of false positives and false negatives 
were in fact very low, leading to high values of accuracy, 
sensitivity and specificity. It should be noted that, for being 
closer to real clinical situation, we applied the Wilk’s 
lambda discriminant analysis without using the information 
on the number of cases for each category (physiological vs. 
pathological). Although we did not perform any a-prioristic 
assumption on the categorization that could facilitate the 
discriminant analysis, the results were very satisfying, espe-
cially when data of both muscles were analysed together.

The reliability of these parameters resulted good, but with 
the exception of a in PG. Also, the R2 in HG shows only a 
fair reliability, but it could be related to the fact that the ICC 
compares inter-subject variability to intra-subject variability, 
but being physiological patterns very similar among healthy 
subjects, the within-subject variability could be similar to 
the between-subject variability [7]. For PG, a good variabil-
ity should be required for validating the method. At the same 
time, it is well known that the high variability of muscular 
activity from trial to trial in Parkinson’s Disease (such as 

other neurological diseases) is a common sign of the motor 
control deficits [29].

When we applied to EMG data, the parameters of LFM 
can be easily computed, as for kinematics data. Other meth-
ods [14–16] need a disadvantageous more complex compu-
tation, especially during clinical routine.

At the same time, the proposed LFM have some limi-
tations which should be considered and which can bind 
its fields of application. Firstly, we compared 20 patterns 
of patients with Parkinson’s Disease (PD) vs. 20 patterns 
obtained from healthy subjects. Despite the number of pat-
terns was adequate to identify statistically significant differ-
ences, the number of subjects and trials from which these 
patterns were obtained is small. However, we would high-
light that the aim of this study is methodological and not 
clinical, and hence the aim was to show the appropriateness 
of application of LFM method even on small data-sets, more 
than clinically studying pathological patterns that needed 
a higher number of subjects and an age-matched control 
group. In this study the healthy group was composed by 
adults and not by elderly people in order to obtain physi-
ological patterns; however, it may have introduced a bias 
and further studies should compare patients’ patterns with 
those of age-matched healthy subjects. Then, the values of 
a and b may reduce their meaning when the linear relation-
ship between pathological and physiological curves is poor 
(for low value of R2). Further, we compared EMG-patterns 
of patients walking at slower speed than healthy subjects; 
however, it may have introduced a bias because, in physi-
ological condition, higher speeds are associated to higher 
muscular activity. Then, we applied the LFM on EMG-data 
just filtered but not normalized. Many different methods 
have been proposed to normalize EMG-data with the aim 
of facilitating comparison between subjects (such as peak 
dynamic method [30], mean dynamic method [31] or divid-
ing data for maximum voluntary contraction [32]). We did 
not apply any normalization with the idea that if LFM works 
for not normalized data, it will be easier that it works also for 
normalized data independently by the selected normalization 
method, but further studies should verify this assumption.

Another potential limit of this study is the absence of 
comparison with another method, such as for example the 
Root Mean Square [10] or the Coefficient of Multiple Cor-
relation [12, 13] or statistical methods for assessing co-con-
traction [33, 34], but too many methods exists in the litera-
ture, without one well acknowledge as the gold standard. 
This requires a new method, such as LFM, that is easy-to-use 
and with a clear clinical meaning of its parameters. Although 
it has been recently proposed, the LFM has already been 
applied in many studies on gait kinematics: for comparing 
curves among different laboratories [20], for assessing the 
repeatability and reproducibility of foot- gait analysis pro-
tocols [29], for assessing the reliability of gait kinematics in 
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obese subjects [35]. Further studies could investigate if LFM 
could be applied also to investigate relationship of muscular 
activity with functional patterns such as gait harmony [36], 
and/or to other physiological curves, for example for assess-
ing the similarity between electroencephalographic curves 
[37].

The present study supports the idea that the LFM can also 
be successfully applied to EMG-data and it can be appropri-
ate to differentiating pathological from physiological pat-
terns with a very high accuracy, sensitivity and specificity, 
and with a moderate reliability that is strictly related to and 
affected by the intrinsic variability of EMG-signals recorded 
in patients with neurological disorders.
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