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Abstract
Most image denoising methods process each noise-corrupted pixel from the top-left to the bottom-right of the images using 
a sliding window. By firstly processing a noise-corrupted pixel with plenty of noise neighbor pixels in a local window may 
deteriorate the quality of subsequent pixels, enabling the quality of the denoised image to be reduced. In this paper, we 
present a method to change the process order on noise-corrupted pixels to improve the performance of bio-image denoising 
according to the confidence measure. If the center pixel of a local window with a non-extreme gray value (the pixel value 
is neither 0 nor 255 for an 8-bit gray bio-image) represents a noise-free pixel, no processing is performed. Conversely, the 
gray level of the center pixel is modified by a restored value. Two confidence measures are used to determine the order of 
producing the restored value, including direction confidence and noise-free confidence. An analysis window both with a 
greater quantity of noise-free pixels and with a consistent pixel change direction is defined as a high confidence region which 
will be processed firstly. If the variation direction of a pixel is consistent with the neighbor pixels, directional mean filtering 
is performed. Conversely, median filtering is performed for the pixels with low confidence where the quantity of noise-free 
pixels is low in a local window or the directions of pixel changes are inconsistent. The experimental results show that the 
proposed method can further improve the performance of an image denoising method which utilizes the sliding window 
from the top-left to the bottom-right. The major reason is because of the prior restoration of the noise-corrupted pixels in 
high confidence regions. These restored pixels are subsequently employed to restore the noise-corrupted pixels with low 
confidence, resulting in the quality of restored bio-image being improved.
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1 Introduction

An X-ray bio-image would be interfered by impulse noise. 
This interference may be caused by malfunctioning pixels 
in X-ray receiver sensors, transmission in a noisy channel, 
bit errors in transmission, and fault memory locations in 
hardware. Salt-and-pepper (SAP) noise is a major type of 
impulse noise which can seriously impact X-ray bio-images. 
This noise significantly corrupts pixels, causing the gray 
levels of the interfered pixels to be either the minimum or 

maximum values. This noise deteriorates the quality of an 
X-ray bio-image. How to remove the SAP noise effectively 
is an important research task for bio-image processing.

Recently, plenty of novel methods were proposed for 
the reconstruction of the images corrupted by SAP noise 
[1–19]. Wang et al. [1] proposed an adaptive fuzzy-switch-
ing-weighted-mean filter to remove SAP noise. They com-
puted the maximum absolute luminance difference of pro-
cessed pixels next to possible noise pixels to classify them 
into three categories: uncorrupted pixels, lightly corrupted 
pixels, and heavily corrupted pixels. The gray level of a 
lightly corrupted pixel is replaced by the weighted average 
value of the weighted mean and its own value. A heavily 
corrupted pixel is modified by the weighted mean. Deivalak-
shmi and Palanisamy [2] proposed a tolerance based adap-
tive masking selective arithmetic mean filter which is com-
bined with wavelet thresholding. This method can cope 
with a heavy noise-corrupted image. Lu et al. [3] proposed 
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a three-values-weighted approach to denoising. Non-extreme 
pixels in an analysis window are classified and placed into 
the minimum, middle, or maximum group. The distribu-
tion ratios of the three groups were utilized to weight the 
neighbor noise-free pixels, enabling a noise-interfered pixel 
to be reconstructed. In [4], a directional-weighted-median 
(DWM) filter was proposed to remove random-valued noise 
and SAP noise. The method selects the variation direction 
of neighbor pixels in four directions. The noise-corrupted 
center pixel was modified by the weighted median on the 
selected direction. In [8], a modified DWM (MDWM) fil-
ter was proposed. This method utilized twelve directions to 
find a better pixel variation direction for noise removal. The 
experimental results showed that this method can improve 
the performance of the DWM filter [4] significantly. Deng 
et al. [5] proposed an adaptive noise removal method by a 
multilayered pulse coupled neural network (PCNN). SAP 
noise was located by the PCNN and removed by a modi-
fied median filter which only utilizes noise-free pixels to 
determine the median value. SAP noise is removed itera-
tively. Wang et al. [6] proposed an iterative nonlocal mean 
filter which exploits the image non-local similarity feature 
in the procedure of SAP noise removal. In addition, this 
method iteratively updates the similarity weights and the 
estimated values to improve the performance. Ahmed and 
Des [7] proposed using an adaptive fuzzy detector to detect 
noise-corrupted pixels. They employed a weighted mean fil-
ter on the noise-free neighbor pixels to modify the noise-cor-
rupted pixels iteratively, enabling SAP noise to be removed. 
This method performs well in heavy noise densities. Xiao 
et al. [8] proposed a denoised method for an X-ray image. 
They utilized region and degree detection to fuzzily detect 
noise-corrupted pixels which are filtered by a modified 
weight median filter. Hence, the denoised image is sharp-
ened by a high-pass enhancement filter. Esakkirajan et al. 
[9] proposed using a modified decision based unsymmetric 
trimmed median (MDBUTM) filter [9] for noise removal. 
This approach replaces a noise-corrupted pixel by trimmed 
median value of non-extreme values in an analysis window. 
In [10], a non-recursive local window was proposed for 
noise removal. This method adaptively obtains the weighted 
mean of a non-recursive or recursive analysis window to 
reconstruct a noise-corrupted pixel according to the noise 
density. In [11], a block-based method was proposed for 
noise detection and noise density estimation. This method 
considers global image information for noise removal. A 
weighted mean filter with two-phase noise detection was 
proposed in [12]. Initially, noise candidates are detected 
by the rank-ordered difference. Hence, the minimum pixel 

difference is utilized to identify the edge pixels from the 
noise candidates. In turn, SAP noise was iteratively removed 
by a weighted mean filter.

Based on the above analysis, most image denoising meth-
ods utilize the sliding window to process noise-corrupted 
pixels from the top-left corner to the bottom-right corner 
of an image. The regions first processed will affect the sub-
sequent image area. If a heavily noise-corrupted region is 
firstly reconstructed, restored pixels will deteriorate sub-
sequent processed pixels. This enables the denoised image 
quality to be reduced. In this paper, the variation direction of 
a pixel and the number of noise-free pixels are considered as 
confidence measures which are employed to determine the 
process order for bio-image denoising. When the variation 
directions of pixels in a region are consistent, this region is 
located on an edge line. In addition, if the number of noise-
free pixels in a region is large, there are sufficient clean pix-
els to reconstruct noise-corrupted pixels. Thus this region 
is defined as a high degree of confidence region. The region 
is prioritized to perform image reconstruction, enabling the 
quality of the restored image to be improved. The experi-
mental results showed that the proposed method of using 
noise-free pixel number and consistency of change direction 
as the confidence measures can improve the performance 
of using the sliding window from the top-left corner to the 
bottom-right corner of an image.

The remainder of this paper is organized as follows: 
Sect. 2 describes the proposed non-sequential process order 
approach. Section 3 demonstrates the experimental results. 
Conclusions are finally drawn in Sect. 4.

2  Proposed Non‑sequential Process Order 
Approach

Figure 1 shows the block diagram of the proposed method. 
Firstly, a noise-corrupted bio-image is windowed and ana-
lyzed with the size of 3 × 3. In each 3 × 3 window, if the 
center pixel has a non-extreme gray value (pixel value is 
neither 0 nor 255 for an 8-bit gray bio-image), it is noise-
free; no processing is performed to maintain the quality of 
reconstructed image. Conversely, the gray level of the center 
pixel is extreme; the center pixel is classified as suspected 
noise and the direction and clean-pixel confidence analy-
ses are performed. If the direction changes in the neighbor 
pixels of the center pixel are consistent and the quantity of 
noise-free pixels is sufficient, the center pixel is determined 
to be a high confidence one, and directional mean filtering 
is performed to reconstruct the center pixel. Conversely, the 
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center pixel is left unchanged if the confidence is not suf-
ficient. This pixel will be processed in the next stage. In the 
second stage, the sliding window is moved to the top-left 
corner of an image. Low-confidence pixels are sequentially 
processed from the top-left to the bottom-right of the image. 
The center pixel is median filtered when its gray value in the 
analysis window is extreme. On the contrary, the center pixel 
is kept unchanged when its value is non-extreme.

2.1  Direction Confidence Measure

A local window is employed to analyze the neighbor prop-
erties for noise-like pixels in which the center pixel with 
extreme gray values. The non-extreme pixels are utilized to 
reconstruct the noise-like center pixel in the window. The 
local window W2s+1(u, v) can be expressed as

where s controls the size of the local window. x(u, v) rep-
resents the pixel at the location with the uth row and vth 
column of an X-ray bio-image. The size of the local window 
is equal to (2s + 1) × (2s + 1) ; s = 1 corresponds to the 3 × 3 
window.

Figure 2 shows the directions of the pixel change for the 
3 × 3 analysis window. The directions are constituted of four 
categories. The direction with the minimum pixel distance 
is selected as the optimum one.

The pixel distance of each direction can be computed by 
Eqs. (2–5), given as

(1)
W2s+1(u, v) = { x(u + Δu, v + Δv)| where Δu, Δv ∈ [−s ∼ s]}

Fig. 1  Block diagram of the proposed approach for X-ray bio-image denoising

Fig. 2  Variation directions of a pixel
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where Dmax denotes the maximum value of the pixel 
distance.

The optimum direction of the center pixel k∗ can be 
expressed by

In Eqs. (2–5), when the gray level of a neighbor pixel of 
the center point is an extreme value, the corresponding direc-
tion with the extreme pixels is impossible to be the optimum 
direction, so the pixel distance is set to the maximum value 
Dmax . This prevents the optimum direction containing an 
extreme pixel for the restoration of the center pixel. The con-
sistency of pixel directions is employed to preserve the edge 
lines which can enhance the quality of reconstructed images. 
If the number of identical-pixel-variation-direction (IPVD) 
increases, these neighbor pixels can be regarded as at the 
same edge position. The direction confidence increases, thus 
the noise-corrupted pixels are denoised prior to which the 
pixels have less number of the IPVD pixels. A direction flag 
of direction k can be defined as

The number of each direction N
k
(u, v) can be computed by

The larger the value of N
k
(u, v) , the higher the direction 

confidence. The value of N
k
(u, v) is regarded as direction 

confidence. We will perform the prior denoising processing 
for the pixels with high direction confidence.

2.2  Clean‑Pixel Confidence Measure

In low noise density environments, many noise-free pixels 
can be employed for the restoration of noise pixels, yielding 

(2)d1 =

{ |x(u − 1, v − 1) − x(u + 1, v + 1) |, if x(u − 1, v − 1), x(u + 1, v + 1) ∉ extreme pixels

Dmax, otherwise

(3)d2 =

{ | x(u, v − 1) − x(u, v + 1)|, if x(u, v − 1), x(u, v + 1) ∉ extreme pixels

Dmax, otherwise

(4)d3 =

{ | x(u − 1, v + 1) − x(u + 1, v − 1) |, if x(u − 1, v + 1), x(u + 1, v − 1) ∉ extreme pixels

Dmax, otherwise

(5)d4 =

{ | x(u − 1, v) − x(u + 1, v) |, if x(u − 1, v), x(u + 1, v) ∉ extreme pixels

Dmax, otherwise

(6)k
∗ = argmin

k

{
d
k
, 1 ≤ k ≤ 4

}

(7)F
k
(u, v) =

{
1, if x(u, v) ∈ direction k

0, otherwise

(8)N
k
(u, v) =

1∑
Δu=−1

1∑
Δv=−1

F
k
(u + Δu, v + Δv)

the quality of the denoised image being better. Conversely, 
only a few noise-free pixels can be employed to reconstruct 
noise-corrupted pixels in high noise density conditions, ena-
bling the quality of the denoised image to be poor. There-
fore, the quality of the reconstructed images can be further 
improved by giving the priority to reconstruct noise-cor-
rupted pixels according to the number of noise-free pixels.

The number of noise-free pixels is roughly estimated by 
using the non-extreme pixels. If the gray level of a pixel is 
not extreme, it can be regarded as a noise-free pixel that 
is not disturbed by noise. Thus we set a clean pixel flag 
Fclean(u, v) to 1, representing this pixel as being noise-free. 
In contrast, if the gray level of a pixel is extreme, the pixel 
may be disturbed by noise, and its clean pixel flag Fclean(u, v) 
is set to 0, given as

Equation (9) can be employed to calculate the number of 
noise-free pixels in an analysis window, given as

If the eight neighbor pixels in a 3 × 3 analysis window 
are noise-free, the window is regarded as the lowest degree 
of interference by noise. This window is defined as a high-
confidence one. The value of Nclean(u, v) can be regarded as 
the clean-pixel confidence. We give priority for the recon-
struction of noise-corrupted pixels according to the clean-
pixel confidence. Employing the priority to denoise a noise-
corrupted image can improve the performance of using the 
sequential method which processes each noise pixel from 
the top-left to the bottom-right pixels.

(9)F
clean(u, v) =

{
1, if x(u, v) ∉ extreme pixels

0, otherwise

(10)N
clean(u, v) =

1∑
Δu=−1

1∑
Δv=−1

F
clean(u + Δu, v + Δv)
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2.3  Denoised Pixel

Here we only employ non-extreme pixels to reconstruct the 
center pixel with the extreme value in an analysis window. A 
neighbor pixel with extreme values of 0 or 255 is excluded, 
given as

where x̃(u, v) represents the non-extreme pixel.
In order to remove noise-corrupted pixels in an image, 

an extreme pixel is regarded as a noise-like and will be 
modified. The gray level of the denoised pixel is obtained 
by

where x̂
dir
(u, v) and x̂

median
(u, v) denote the denoised pixel 

obtained by using the directional-median filtering and 
median filtering, respectively. �dir and �clean represent the 
thresholds of direction confidence and clean-pixel confi-
dence, respectively. These two thresholds vary from 8 to 1 
for a 3 × 3 window. x̂

median
(u, v) is computed by

In (12), if an analysis window is confident enough, i.e., 
direction confidence is greater than �dir and clean-pixel con-
fidence is greater than �clean , the denoised pixel is obtained 
by using the directional-median filtering in the optimum 
direction k∗(u, v) defined by Eq. (6), given as

Conversely, the center pixel of the analysis window is 
replaced by the median value of the neighbor non-extreme 
pixels as given in (13).

A bio-X-ray image contains many extreme pixels with 
values of either 0 or 255. The pixel values are the same as 
those of SAP noise. An analysis window may contain some 
noise-free pixels. However the pixel values are all extreme, 
there is no non-extreme pixel for reconstruction. In order to 
retain the noise-free pixels from being deteriorated by the 
median or mean filtering, we employ the majority property 

(11)x̃(u, v) = {x(u, v), x(u, v) ≠ 0 and x(u, v) ≠ 255 }

(12)x̂(u, v) =

{
x̂
dir
(u, v), if direction confidence ≥ 𝛿dir and clean-pixel confidence ≥ 𝛿clean

x̂
median

(u, v), otherwise

(13)
x̂
median

(u, v) = median { x̃(u + Δu, v + Δv),

−1 ≤ Δu ≤ 1,−1 ≤ Δv ≤ 1}

(14)

x̂
dir
(u, v) =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̃(u − 1, v − 1) + x̃(u + 1, v + 1)

2
, if k∗(u, v) = 1

x̃(u, v − 1) + x̃(u, v + 1)

2
, if k∗(u, v) = 2

x̃(u + 1, v − 1) + x̃(u − 1, v + 1)

2
, if k∗(u, v) = 3

x̃(u − 1, v) + x̃(u + 1, v)

2
, if k∗(u, v) = 4

to determine the gray level of the center pixel in the analysis 
window, given as

where N0(u, v) and N255(u, v) denote the numbers of extreme 
pixels with the values 0 and 255 in an analysis window, 
respectively. � represents the bias factor between black and 
white pixels, it is empirically chosen to be 2.

The number of black noise-free pixels (pixel value = 0) 
is greater than that of white pixels (pixel value = 255) in an 

(15)x̂(u, v) =

{
0, if N0(u, v) ≥ N255(u, v) + 𝜎

255, otherwise

X-ray bio-image. We utilize a bias factor � to determine the 
gray level of the center pixel in the analysis window.

3  Experimental Results

In the experiments, X-ray test bio-images were employed to 
measure the performance of a denoising method. The test 
bio-images are with size 512 × 420 and were corrupted by 
SAP noise with various noise densities (from 10 to 90%). 
The standard median filter (Median), the DWM filter [4], 
and the MDBUTM filter [9] were implemented for perfor-
mance comparisons. The proposed method is similar to the 
MDBUTM filter with further consideration on confidence 
measure. Restoration results were quantitatively measured 
by the peak signal-to-noise ratio (PSNR) and the mean struc-
tural similarity (MSSIM) index [20]. The best performance 
among the compared methods is represented by boldface in 
Tables 1, 2, 3, and 4.

3.1  PSNR Measure

The PSNR is one of the objective measures for image qual-
ity. It can be employed to measure the quality of a restored 
X-ray bio-image. The PSNR is expressed as [21] 

where MAX represents the largest value of the energy of 
gray level, it is 2552 for an 8-bit gray level image. The MSE 
denotes the mean-square-error between the original and the 
reconstructed images. It is computed by

(16)PSNR(dB) = 10 × log10

(
MAX

MSE

)

(17)MSE =
1

M × N

M−1∑
u=0

N−1∑
v=0

|s(u, v) − x̂(u, v)|2
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where s(u, v) represents the original clean pixels. M and N 
are the sizes of an image for the width and height; they are 
512 and 420, respectively.

Tables 1 and 2 present the performance comparisons for 
various filters in terms of the PSNR for a chest X-ray bio-
image (named as a Chest1 image). According to (17), the 
larger the value of the PSNR, the better is the quality of 
the restored image. We can find that the proposed approach 
outperforms the other methods in most conditions where the 
noise density ranges from 20 to 90%. In the cases of slight 
noise corruption, such as noise density equaling 10%, the 
MDBUTM filter outperforms the other methods. However, 
this method cannot work well in the environments of heavy 
noise corruption (noise density greater than 80%). The pro-
posed approach is superior to the other approaches in which 
the noise density is greater than 80%.

Table 2 presents the performance comparisons for another 
chest X-ray bio-image (named as a Chest2 image). This table 
shows that the proposed approach is superior to the other 
methods in all noise densities, in particular at heavy noise 

density (noise density greater than 80%). This result is con-
sistent with that as presented in Table 1. Therefore, the pro-
posed confidence measure can improve the performance of 
the MDBUTM filter by further consideration on direction 
confidence and clean-pixel confidence.

3.2  Mean Structural Similarity Index Measure

The structural similarity between the noise-free image and 
restored image can be reflected by a mean structural similar-
ity (MSSIM) index, which is given as [20] 

where w denotes the index of the analysis window. �
sw

 and 
𝜇
x̂w

 represent the means of the noise-free pixels s
w
 and the 

restored pixels x̂
w
 . �

sw
 and 𝜎

x̂w
 represent the standard devia-

tions of s
w
 and x̂

w
 . 𝜎

swx̂
 is the square root of the covariance of 

(18)

MSSIM(s, x̂)=
1

N
w

×

Nw−1∑
w=0

(
(2𝜇

sw
𝜇
x̂w
+ C1) × (2𝜎

swx̂
+ C2)

(𝜇2
sw
+ 𝜇2

x̂w
+ C1) × (𝜎2

sw
+ 𝜎2

x̂w
+ C2)

)

Table 1  Comparisons of restoration results in PSNR (dB) for the 
Chest1 X-ray bio-image

Noisy den-
sity (%)

Median DWM MDBUTM Proposed

10 30.1117 30.9498 31.8379 31.8011
20 27.5802 28.5904 30.3837 30.8249
30 22.8462 27.4982 29.4497 29.8105
40 18.2351 26.6682 28.4453 28.9646
50 14.6366 25.9293 27.1351 28.5944
60 11.7336 25.0986 25.9037 27.6499
70 9.4021 23.7345 23.3513 26.6075
80 7.4785 20.8773 19.5675 25.4081
90 6.0669 16.4377 15.0825 23.8659

Table 2  Comparisons of restoration results in PSNR (dB) for the 
Chest2 X-ray bio-image

Noisy den-
sity (%)

Median DWM MDBUTM Proposed

10 28.5680 31.1175 26.2438 32.4748
20 26.1270 29.2974 22.5827 31.5890
30 21.9409 28.1857 20.2537 30.7255
40 17.5832 27.4399 18.2548 29.9487
50 14.0700 26.6733 16.7544 28.6674
60 11.0643 26.2454 15.3494 27.1562
70 8.6914 24.5627 14.0580 26.4795
80 6.8497 20.4213 12.7546 24.6281
90 5.3733 13.2722 11.2870 25.4760

Table 3  Comparisons of restoration results in mean structural simi-
larity (MSSIM) for the Chest1 X-ray bio-image

Noisy den-
sity (%)

Median DWM MDBUTM Proposed

10 0.9791 0.9738 0.9951 0.9960
20 0.9448 0.9705 0.9917 0.9937
30 0.8016 0.9541 0.9868 0.9897
40 0.5420 0.9293 0.9815 0.9843
50 0.3234 0.8911 0.9667 0.9761
60 0.1695 0.8323 0.9253 0.9615
70 0.0925 0.7476 0.8118 0.9394
80 0.0446 0.5761 0.5713 0.8917
90 0.0218 0.3759 0.3002 0.7836

Table 4  Comparisons of restoration results in mean structural simi-
larity (MSSIM) for the Chest2 X-ray bio-image

Noisy den-
sity (%)

Median DWM MDBUTM Proposed

10 0.9282 0.7047 0.9764 0.9875
20 0.8657 0.6807 0.9418 0.9778
30 0.6665 0.6641 0.8925 0.9643
40 0.3721 0.6450 0.8507 0.9407
50 0.1602 0.6203 0.8048 0.8717
60 0.0715 0.5725 0.7431 0.7697
70 0.0321 0.4765 0.5947 0.6786
80 0.0166 0.3001 0.3739 0.6173
90 0.0074 0.1298 0.1805 0.5635
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s
w
 and x̂

w
 . The constant values of C1 and C2 are (0.01 × 255)2 

and (0.03 × 255)2 , respectively.
In (18), the value of MSSIM is between 0 and 1. The 

higher value of the MSSIM represents better quality of 
the restored image. Tables 3 and 4 present the perfor-
mance comparisons for various approaches in terms of 
the MSSIM for the Chest1 and Chest2 X-ray bio-images. 
Observing Table 3 can find that the proposed approach 
achieves the largest scores of the MSSIM among the four 
methods in all conditions. The results ensure that the pro-
posed approach not only can effectively remove SAP noise 
for a noise-corrupted X-ray bio-image, but also preserves 
the structures of the body tissue well in the reconstructed 
bio-image.

3.3  Reconstructed Images

Figures 3, 4, 5, and 6 show the restored images of various 
approaches for the Chest1 and Chest2 X-ray bio-images. The 
noise densities are equal to 50 and 90%. Figure 3 shows 
the Chest1 X-ray bio-images. The original bio-image is cor-
rupted by SAP noise with a 50% noise density (Fig. 3b). 
In Fig. 3a, the noise-free bio-image contains many pixels 
with extreme values shown as black or white color. It can 
be found that there is a lot of residual noise in the denoised 
bio-image by using the median filter (Fig. 3c). Thus the per-
formance is the worst among the four methods. The DWM 
(Fig. 3d), MDBUTM filters (Fig. 3e) and the proposed 
method (Fig. 3f) can effectively remove the interference 
noise; meanwhile the edge details of the ribs are better pre-
served than the other methods.

Figure 4 shows the Chest1 X-ray bio-image, which is 
corrupted by SAP noise with 90% noise density (Fig. 4b). 
Because the noise density is extremely heavy, the median 
(Fig. 4c) and DWM (Fig. 4d) filters failed to reconstruct 
the Chest1 X-ray bio-image. Although the MDBUTM filter 
(Fig. 4e) can restore the bio-image, the quantity of residual 
noise is great. This phenomenon deteriorates the quality of 
the denoised bio-image. Observing Fig. 4f can find that the 
proposed approach can effectively remove background noise, 
while the ribs are well restored. Therefore, the quality of the 
denoised bio-image for the proposed approach significantly 
outperforms the other methods.

Figure 5 shows the Chest2 X-ray bio-image, which is cor-
rupted by SAP noise with 50% noise density (Fig. 5b). The 
median filter cannot restore the noise-corrupted bio-image 
well. A great quantity of residual noise exists in the denoised 
bio-image (Fig. 5c). The DWM filter can effectively remove 
the background noise (Fig. 5d). However, the denoised bio-
image suffers from a blurred effect. Many white lines inside 
the bones cannot be restored well. The MDBUTM filter 
(Fig. 5e) and the proposed approach (Fig. 5f) can restore 
the noise-corrupted bio-image well. The regions outside the 

tissue of the human body are restored, however, failed in 
which the color of the original bio-image is black. Accord-
ingly, the performance is not satisfactory.

Figure 6 shows the Chest2 X-ray bio-image, which is cor-
rupted by SAP noise with 90% noise density (Fig. 6b). The 
body tissue cannot be identified due to heavy noise corrup-
tion. The median filter (Fig. 6c) and DWM filter (Fig. 6d) 
failed to reconstruct the Chest2 X-ray bio-image. Only 
the MDBUTM filter (Fig. 6e) and the proposed approach 
(Fig. 6f) can restore this bio-image. By using the MDBUTM 
filter (Fig. 6e) the denoised bio-image suffers from a great 
quantity of residual noise and blurred effect, thus the quality 
is not satisfactory. The proposed method firstly rejects the 
extreme pixels in a local window for the restoration of the 
extreme pixels as given in Eqs. (11–14). Thus the value of 
a restored pixel is non-extreme. The SAP noise is removed. 
Because there are many extreme pixels in the Chest2 bio-
X-ray image, we employ the majority property of extreme 
pixels to determine the gray level of the center pixel in the 
local window as given in Eq. (15). The denoised image is 
free from the grayed effect in the black or white regions. 
Accordingly, the Chest2 bio-X-ray image can be restored 
well. Additionally, by further employing direction and clean-
pixel confidence measures to determine the process order 
of the noise-corrupted pixels can improve the performance. 
This is due to the prior restoration of the noise-corrupted 
pixels in which the number of IPVD and the number of 
noise-free pixels are high for reconstructing the noise-cor-
rupted center pixel, yielding the quality of the restored bio-
image being improved.

3.4  Discussions

By comparing the performance of the MDBUTM filter and 
the proposed method in noise density equaling 10% shown 
in Table 1, the MDBUTM filter slightly outperforms the pro-
posed method in terms of the PSNR measure. This may be 
due to the MDBUTM filter is better able to slightly remove 
SAP noise than the proposed method. On the contrary, the 
proposed method outperforms the MDBUTM filter in terms 
of the MMSIM measure as shown in Table 3. It is attrib-
uted to the reservation of the extreme pixels in the proposed 
method, rather than performing median filtering as that in 
the MDBUTM filter. The proposed method is better able 
to restore the details of an image than the MDBUTM fil-
ter. Consequently, the proposed method achieves a higher 
MSSIM score than the MDBUTM filter.

As shown in Tables 1, 2, 3, and 4, the proposed method 
significantly outperforms the compared methods at heavy 
noise corruption conditions, such as noise density is greater 
than 80%. The major reason is that the proposed method not 
only rejects the extreme pixels in a local window for the res-
toration of noise-corrupted pixels as given in Eqs. (11–14), 
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but also employs two confidence measures as given in 
Eqs. (11–14) to determine the process order of noise-cor-
rupted pixels and the majority property of extreme pixels 
to determine the gray level of the center pixel in the local 

window as given in Eq. (15). The denoised image is free 
from the grayed effect in the black or white regions for the 
bio-X-ray images. Accordingly, the proposed method can 

Fig. 3  Restored X-ray bio-images of compared approaches for the 
Chest1 bio-image with 50% noise density. a Noise-free bio-image, b 
noise-corrupted bio-image, c denoised bio-image using the median 

filter, d denoised bio-image using the DWM filter, e denoised bio-
image using the MDBUTM filter, f denoised bio-image using the pro-
posed method
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significantly outperform the other methods in heavy noise 
corruption conditions.

By observing Eqs. (11–14), the proposed method can 
be regarded as the combination method of the DWM and 

MDBUTM filters. Thus the proposed method is a median-
based/mean-based filter. However, the performance is not 
satisfactory. Herein we further employ two confidence 
measures to determine the process order of noise-corrupted 

Fig. 4  Restored X-ray bio-images of compared approaches for the 
Chest1 bio-image with 90% noise density. a Noise-free bio-image, b 
noise-corrupted bio-image, c denoised bio-image using the median 

filter, d denoised bio-image using the DWM filter, e denoised bio-
image using the MDBUTM filter, f denoised bio-image using the pro-
posed method
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pixels, resulting in the quality of the denoised image being 
much improved. In addition, the majority property of 
extreme pixels is also utilized to determine the gray level 
of the center pixel when all pixels are extreme in a local 
window. This property is particularly beneficial to process 

a bio-X-ray image. Therefore, the original noise-free pixels 
with black or white regions, where the pixel values are all 
extreme, are free from the grayed effect. The quality of the 
denoised image can be further improved. Moreover, the pro-
posed confidence measures and the majority property can 

Fig. 5  Restored X-ray bio-images of compared approaches for the 
Chest2 bio-image with 50% noise density. a Noise-free bio-image, b 
noise-corrupted bio-image, c denoised bio-image using the median 

filter, d denoised bio-image using the DWM filter, e denoised bio-
image using the MDBUTM filter, f denoised bio-image using the pro-
posed method
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be embedded to state-of-the-art image denoising algorithms 
[1–3, 6, 7, 10–12], enabling further improvement of the res-
toration performance.

4  Conclusions

This paper presents a modified switching median filter 
with further consideration on the direction confidence 
and clean-pixel confidence to define the process order on 

Fig. 6  Restored X-ray bio-images of compared approaches for the 
Chest2 bio-image with 90% noise density. a Noise-free bio-image, b 
noise-corrupted bio-image, c denoised bio-image using the median 

filter, d denoised bio-image using the DWM filter, e denoised bio-
image using the MDBUTM filter, f denoised bio-image using the pro-
posed method
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noise-corrupted pixels. An analysis window both with a 
greater quantity of noise-free pixels and with consistent 
pixel change direction is defined as a high confidence region. 
The pixels at high confidence regions are restored prior to 
that with lower confidence, enabling the subsequent pixels 
to suffer less deterioration by the prior restored pixels. A 
pixel with low confidence does not affect the restoration of 
noise-corrupted pixels with high confidence. The experi-
mental results show that the proposed method can effectively 
improve the performance of using the sliding window from 
the top-left to the bottom-right for denoising.
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