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Abstract
Liver cirrhosis is a major cause of liver cancer. Traditionally, the diagnosis of stages of liver cirrhosis depends on doc-
tors’ examination of large numbers of images acquired from clinical specimens, which is a relatively time-consuming and 
labor-intensive task. To avoid this extensive effort and possible error of human judgment, it is necessary to develop an 
automatic system to recognize the liver scar stages based on clinical liver tissue section images. In this study, a tissue sec-
tion image-based liver scar stage (TSILSS) diagnosis system is proposed to detect liver scar stages. In this system, a local 
cross-thresholding method is provided to separate the scar liver tissues from normal liver tissues on a liver tissue section 
image. Moreover, a two-layer recognition algorithm is presented to identify the scar stage of liver tissue. Furthermore, a 
parameter decider genetic algorithm is proposed to determine the most suitable values of the parameters used in the TSILSS 
diagnosis system. The experimental results show that in segmenting scar tissues and normal tissues on liver cirrhosis images, 
the average precision, average recall rate, and average F-measure that the TSILSS diagnosis system obtains are greater than 
94%, and the average accuracy is close to 90%. The TSILSS diagnosis system can help doctors recognize the liver tissue 
scar stage more efficiently.
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1  Introduction

Liver cancer was the second leading cause of cancer-related 
death worldwide in 2012 [1]. Liver cancer is a malignant 
tumor that grows rapidly and commonly occurs after the age 
of 45 [2]. There may be no obvious symptoms in the early 
stage of liver cancer. As advanced cancer grows, symptoms 

may include weight loss, loss of appetite, nausea or vomit-
ing, and yellowing of the skin and eyes [3]. Without early 
diagnosis and proper medical treatment, a patient often 
dies within 6 months after liver cancer has been initially 
diagnosed [2]. The survival rate of liver cancer has gradu-
ally improved in recent decades. For example, in Korea, the 
5-year survival rate of liver cancer has slightly improved 
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from 11.0% in 1993–1997 to 14.7% in 1998–2002 [4]; in a 
study cohort of 1115 liver cancer patients who underwent 
hepatectomy between 1981 and 2008 at five hepatobiliary 
centers in France, China, and the USA, the results showed 
that after major hepatectomy, the 5-year overall survival rate 
was 40%, and the 5-year survival rates were 30, 40, and 51% 
in 1981–1989, 1990–1999, and 2000–2008, respectively [5]. 
The prevention and treatment of liver cancer have become 
important issues.

Liver cirrhosis is one of the major causes of liver can-
cer [6–8]. The cause of liver cirrhosis can be attributed to 
several factors, including alcoholic liver diseases, chronic 
viral hepatitis, obesity, and nonalcoholic fatty liver disease. 
These factors may lead to chronic liver inflammation [6, 
7, 9]. Evidence shows that the inflammatory response of 
liver parenchymal injury leads to hepatic fibrosis [10]. Liver 
inflammation will stimulate the proliferation of fibrous tis-
sue in the liver, and these fibrous tissues then become scar 
tissues. They surround the normal liver cells, transform into 
the fake hepatic lobule, and then lead to liver cirrhosis and 
eventually liver cancer [6, 7]. For example, excess fat accu-
mulation in the liver cells results in a fatty liver. The cells 
of normal liver tissues and tissues around the liver will be 
transformed into fat organizations for storing fat. In these 
circumstances, the liver cells cannot obtain a sufficient blood 
supply, nutrients and oxygen and become prone to inflam-
mation or necrosis [6].

To understand the pathology of liver fibrosis and cirrho-
sis, animal models such as rats, have been introduced to 
examine the pathogenesis of liver cirrhosis and liver can-
cer. Different chemical substances were given to animals 
to induce liver diseases. For example, carbon tetrachloride 
(CCl4) is a common chemical substance used to induce rat 
liver fibrosis, liver cirrhosis, and subsequent liver cancer 
progression. In these experiments, CCl4 was repeatedly 
given to rats by gavage at different time points, and their liv-
ers were then extracted and observed by a microscope. The 
results showed that the area and quantity of the scar tissues 
increased when the treatment time was expanded [11, 12].

Traditionally, judging the phases of liver cirrhosis or liver 
cancer usually takes a considerable amount of time for doc-
tors to observe many medical images. Current technologies, 
such as X-ray and magnetic resonance imaging (MRI), are 
applied to observe the roughness of the liver surface and 
check whether cirrhosis or tumors exist. In some serious 
circumstances, a surgical puncture is used to remove the 
liver slices, and the scar tissues are examined under a micro-
scope [13].

For liver cirrhosis pathology, the areas of scar tissues are 
different in various stages of liver cirrhosis. In a liver cir-
rhosis tissue image, the area of the scar tissues from the first 
to the third stages will become more numerous and larger. 
Figure 1 shows a healthy liver tissue image and a scar liver 

tissue image, on which the blue arrow indicates the healthy 
liver tissue region and the red arrow indicates the liver scar 
tissue region. However, it is difficult for the human eye to 
justify the severity of liver tissue injury from a liver tissue 
section image, especially for a junior physician. Therefore, 
developing an automatic system to identify the scar stages 
of liver tissue is necessary.

In this study, a tissue section image-based liver scar stage 
(TSILSS) diagnosis system was proposed to diagnose the 
liver scar stage from the liver tissue section images. The 
TSILSS diagnosis system automatically segments the scar 
regions on the liver tissue section image, extracts the fea-
tures from the segmented the scar regions, and then identi-
fies the liver scar stage based on the extracted features. The 
TSILSS diagnosis system can reduce the processing time, 
error of human judgment, and human resources. It can also 
efficiently assist a doctor in diagnosing the liver scar stages.

In this study, the rat liver tissue section images were 
used as the test data for investigating the performance of 
the TSILSS diagnosis system. In these experiments, CCl4 
was administered to rats for a period of time. After that, the 
TSILSS diagnosis system was employed to extract the scar 

Fig. 1   Two liver tissue section images. a Healthy rat liver tissue sec-
tion. b Injured rat liver tissue section. The blue arrow indicates the 
healthy liver tissue region and the red arrow indicates the scar liver 
tissue
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tissue regions from a liver tissue section image, compute the 
features of the segmented scar tissues, and then recognize 
the scar stage of the liver based on the extracted features to 
assist the doctor in determining the stage of liver cirrhosis. 
In this study, a genetic-based algorithm is also proposed to 
determine the fittest values of the parameters used in the 
TSILSS diagnosis system.

2 � Methods

2.1 � Animals and Treatment

Male Sprague–Dawley rats were purchased and housed in 
cages under constant conditions of temperature (22 °C) and 
humidity (60%) with light illumination for a 12-h light/dark 
cycle. CCl4 was prepared as a 50% solution by mixing with 
an equal volume of olive oil. All rats were divided into four 
groups (each group has 8 rats). The negative control group 
remained untreated for 20 weeks. Rats 8, 12, and 16 weeks 
of age were treated with 50% CCl4 solution for 12, 8 and 
4 weeks, respectively. Then, 0.2 ml 50% CCl4 solution was 
administered per 100 g rat weight by gavage twice a week. 
After all rats had reached the age of 20 weeks, rats were 
euthanatized by CO2. Adequate size liver samples were fixed 
with 10% buffer-formaldehyde solution and then embedded 
in paraffin blocks. The paraffin-embedded liver samples were 
sectioned and stained with hematoxylin and eosin (H&E) 
and Sirius red following standard procedures. The stages 
of rat liver scars were determined according to the methods 
proposed by Ruwart et al. [14]. All animal experiments were 
carried out following the guidelines of the Laboratory Ani-
mal Center of Taichung Veterans General Hospital, ROC.

2.2 � TSILSS Diagnosis System

The TSILSS diagnosis system contains three approaches, 
respectively to segment the scar liver tissue regions from 
the liver tissue section images, compute the features of the 
extracted scar liver tissue regions, and discriminate the stage 
of liver scars based on the extracted features. This subsection 
will describe these three approaches in detail.

2.2.1 � Liver Scar Tissue Segmentation

2.2.1.1  Pre‑processing  To make scar liver tissue region seg-
mentation easier, the TSILSS diagnosis system transforms 
each color liver tissue section image IRGB into a gray-level 
one. The TSILSS diagnosis system first separates the RGB 
color mode liver tissue section image IRGB into R, G, and 
B color components images R-, G-, and B-images, respec-
tively, composed of the red, green, and blue color compo-
nents of all the pixels in IRGB. It also transforms IRGB into an 

HSV color mode image IHSV, isolates the H, S, and V color 
components from IHSV, and then respectively combines the 
H, S, and B color components into H-, S-, and B-images 
[15, 16]. Figure 2 shows a color liver tissue section image 
and its R-, G-, B-, H-, S-, and B-images.

Obviously one can observe that the difference in the con-
trast of the health and scar liver tissue regions is large in 
the G-image. The difference in the contrast of the health 
and scar liver tissue regions in the H-image is also large, 
but some pixels in the healthy liver tissue region may be 
lost, i.e., the regions indicated by red arrows. To facilitate 
scar liver tissue region segmentation, the TSILSS diagno-
sis system will isolate the scar liver tissue regions from the 
healthy liver tissue regions on the G-image of each color 
liver tissue section image. We can consider the G-image as 
a gray-level image I0.

2.2.1.2  Contrast Enhancement  The TSILSS diagnosis sys-
tem then uses Gamma equalization [17] to enhance the con-
trast of I0 to make the liver tissues clearer. Let I0(x, y) be the 
gray level of the pixel located at the coordinates (x, y) on I0. 
Gamma equalization is then adopted to transfer I0 into Ir by:

where max0 and min0 are the maximal and minimal gray 
levels of all the pixels in I0, and rG is a given constant. Fig-
ure 3b is the image obtained by running the Gamma equali-
zation operation on the image in Fig. 3a.

2.2.1.3  Local Cross Thresholding  Figure 3b shows that the 
healthy liver tissue is brighter than the region of the scar 
liver tissue. The TSILSS diagnosis system intends to use 
bi-level thresholding method to label the scar liver tissue. 
Figure 3d demonstrates the binary image IO obtained by

where TO is the threshold provided by the Otsu thresholding 
method [18, 19] on image Ir.

The areas on the right side and at the bottom left corner 
of the image in Fig. 3d are almost resemble the scar liver 
tissue, which was caused by uneven lighting. Usually, the 
global thresholding method cannot produce a proper result 
for the unevenly lit images [20]. In this study, an adaptive 
thresholding method was hence provided; we call it the local 
cross-thresholding method.

For each pixel Ir(x, y) in Ir, a cross region RC is given, 
where RC consists of all the pixels in 

{
Ir(x + i, y) |−

mc−1

2
≤ i ≤

mc−1

2

}
and

{
Ir(x, y + j) | − mc−1

2
≤ j ≤

mc−1

2

}
. Let 

(1)Ir(x, y) =

(
I0(x, y) − min0

max0 − min0

)rG

× 255,

(2)IO(x, y) =

{
1, if Ir(x, y) > TO,

0, otherwise.
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Fig. 2   An original color liver tissue section image and its derivative images. a Original image. b R-image. c G-image. d B-image. e H-image. f 
S-image. g B-image. The arrow indicates the liver scar tissue
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Meang and Stdg be the mean and standard deviation of the 
gray levels of all the pixels in Ir and Meanl and Stdl be the 
mean and standard deviation of the gray levels of all the pixels 
in RC. If Meanl

Meang
> 1, Ir(x, y) is located at a bright area, and a 

bigger threshold Tb =
Meanl

Std
rb
g

 is given; otherwise, a smaller 

threshold Ts =
Meanl

Std
rs
g

 is specified. The local cross thresholding 

method transfers Ir into a binary image Ib as follows:
If Meanl

Meang
> 1 , then

else

(3)Ib(x, y) =

{
1 if Ir(x, y) > Tb,

0 otherwise;

Figure 3d displays the Ib obtained by the local cross 
thresholding method on Ir, where the white pixels repre-
sent the healthy liver tissue pixels, while the black pixels 
signify the liver scar tissue pixels.

There are tiny scar liver tissue regions with very small 
areas on Ib in Fig. 3d. The tiny regions are considered as 
noise and are removed. The TSILSS diagnosis system uses 
a closing operation to eliminate the noise. It performs the 
dilation operation [21] twice and then the erosion opera-
tion twice on Ib based on the 3 × 3 structure element, 

(4)Ib(x, y) =

{
1, if Ir(x, y) > Ts,

0, otherwise.

Fig. 3   The procedures of the image preprocessing approach. a G-Image, b Image of Ir, c IO, d Ib, and e Ib after removing noise
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including 9 1-bits. Figure 3e illustrates the Ib after remov-
ing noise.

2.2.2 � Feature Extraction

Figure 4 presents the liver scar tissue section images with 
stages I, II, and III, respectively. The G-image of the liver 
tissue sliced from a healthy liver contains a few large uni-
form color regions, while the liver tissue sliced from a scarred 
liver consists of some healthy tissue regions and many small 
scar tissue regions scattered throughout the image, where the 
healthy tissue regions are brighter than the scar tissue regions.

The TSILSS diagnosis system, therefore, adopts five fea-
tures, µG, σG, RA, Dh, and Ds, to characterize a liver tissue sec-
tion image I0 to identify the scar stage of the liver. µG and σG 
are the average and standard deviation of the gray levels of 
the G-image of the liver tissue section image. RA is the ratio 
of the areas of scar tissue regions to the areas of the healthy 
tissue regions.

Let h(xi, yj) be the gray-level of the ith pixel located at coor-
dinates (xi, yj) on all the healthy tissue regions. Additionally, 
let (xh, yh) be the central pixel of all the h(xi, yj)s, which is 
defined as:

where nh is the number of pixels in all of the healthy tissue 
regions. Dh is defined as follows:

Let s(xi, yj) be the gray-level of the ith pixel located at coor-
dinates (xi, yj) on all the scar tissue regions. Additionally, let 
(xs, ys) be the central pixel of all the s(xi, yj)s, which is defined 
as:

where ns is the number of pixels in all of the healthy tissue 
regions. Ds is defined as follows:

(5)

⎧
⎪
⎨
⎪
⎩

xh =
∑nh

i=1
xi

nh
,

yh =
∑nh

i=1
yi

nh
,

(6)Dh =

∑nh
i=1

��
xi − xh

�2
+
�
yi − yh

�2

nh
.

(7)

⎧
⎪
⎨
⎪
⎩

xs =
∑ns

i=1
xi

ns
,

ys =
∑ns

i=1
yi

ns
,

(8)Ds =

∑ns
i=1

��
xi − xs

�2
+
�
yi − ys

�2

ns
.

Fig. 4   The examples of the tissue section images with different liver scar stages. a Scar liver tissue at Stage I. b Scar liver tissue at Stage II. c 
Scar liver tissue at Stage III
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2.2.3 � Liver Tissue Scar Stage Identification

In pattern recognition, a set of historical data is collected 
in advance. Let fcik be the kth feature of the ith datum in 
the cth cluster. Assume that there are NC clusters in the 
set of historical data. The center 

(
f̄c1, f̄c2,… , f̄cK

)
 of the 

cth cluster is often used to represent each datum in the 
cluster, where

and Nc is the number of data in cluster c. Each liver section 
image can be described by five features, µG, σG, RA, Dh, and 
Ds. For the ith liver section image in cluster c, (fci1, fci2, …, 
fci5) maps to the five features (c, µG, σG, RA, Dh, Ds) of the 
image.

When given a liver section image I0 has five features 
(f1, f2, …, f5), the TSILSS diagnosis system computes the 
distance dc between (f1, f2, …, f5) and each cluster center 
as follows:

Here, wk and rk are the given constants. The TSILSS 
diagnosis system then considers I0 to the cluster (stage) 
c′ , while c� = ARG

(
MINC

c=1
dc
)
.

If the data in a cluster are quite different, the cluster 
center cannot precisely depict the data in the cluster. For 
example, there are two clusters C1 and C2. The data in C1 
are very distinct, and the data in C2 are similar. For datum X 
in C1 farther from the cluster center of C1 but closer to that 
of C2, X will be mistakenly regarded as a datum in C2, i.e., 
the datum X in Fig. 5a. When the data in C1 are categorized 
into smaller sub-clusters, X will be specified to one of the 
sub-clusters in C1 as Fig. 5b; then, one can correctly assign 
X to cluster C1. Based on this property, in this paper, a two-
layer recognition algorithm is provided. In the two-layer 
recognition algorithm, the k-means algorithm [22] is used 
to separate the data in each cluster into sub-clusters.

The two-layer recognition algorithm uses the k-means 
algorithm to classify the data in the cth cluster into Ncs 
sub-clusters. When given a liver section image I0 has five 
features (f1, f2, …, f5), the TSILSS diagnosis system com-
putes the distance between (f1, f2, …, f5) and the center of 
each sub-cluster by:

(9)
f ck =

Nc∑
i=1

fcik

Nc

,

(10)dc =

K∑

k=1

wk
||fk − f̄ck

||
rk

(11)dc = MIN
NCS

s=1

∑K

k=1
wk

||fk − f̄csk
||
rk

where f̄csk is the kth feature of the center of the sth sub-
cluster in cluster c. The two-layer recognition algorithm then 
cons iders  I 0  to  one  e lement  o f  c′  ,  where 
c� = ARG

(
MIN

NC

c=1
dc

)
.

2.3 � Parameter Decider Genetic Algorithm (PDGA)

The performance of the TSILSS diagnosis system is deeply 
affected by the parameters rG, mc, rb, rs, r1, w1, r2, w2, …, r5, 
and w5. In this study, a parameter decider genetic algorithm 
(PDGA) is presented to give the fittest values of rG, mc, rb, 
rs, r1, w1, r2, w2, …, r5, and w5.

A genetic algorithm [23–25] is a heuristic optimization 
method where a set of possible solutions represents a popu-
lation of individuals. The fitness of an individual describes 
its degree of adaptation to the environment. A chromosome 
is the coordinate of an individual in the search space. A 
gene, encoding the value of a parameter, is a subsection of a 
chromosome being optimized. When given a certain popu-
lation, only the individuals that adapt well to their environ-
ment can survive and transmit their characteristics to their 
descendants. Generally, a genetic algorithm alternatively and 
repetitively performs three operations, crossover, mutation, 
and selection, to derive the best solution.

In PDGA, each chromosome, represented by a 
binary string concatenated by 15 binary substrings 
sG, sc, sb, ss, sr1 , sw1

, sr2 , sw2
,… , sr5 , sw5

, and sd, con-
sisting of nG, nc, nb, ns, nr1 , nw1

, nr2 , nw2
,… , nr5 , nw5

, 
and nd binary bits, respectively, are designated to describe 
rG, mc, rb, rs, r1, w1, r2, w2,… , r5, w5,  a n d  d u m , 
respectively. Here dum is a dummy value which is not 
a parameter in the TSILSS diagnosis system but will 

Fig. 5   Illustrations of two clusters, C1 and C2, and datum X. a Two 
clusters, C1 and C2. b C1 and C2 are re-clustered into sub-clusters
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be used to determine the values of rG, rb, and rs. Let 
vG, vc, vb, vs, vr1 , vw1

, vr2 , vw2
,… , vr5 , vw5

, and vd be the deci-
mal values that sG, sc, sb, ss, sr1 , sw1

, sr2 , sw2
,… , sr5 , sw5

, 
and sd describe. For each chromosome Ch, a set of 
rG, mc, rb, rs, r1, w1, r2, w2,… , r5, and w5 can be encoded as

Based on the rG,mc, rb, rs, r1,w1, r2,w2,… , r5, and w5, 
the TSILSS diagnosis system can be used to identify the 
liver scar stages and the obtained accurate rate is regarded 
as the fitness of the chromosome. Initially, PDGA ran-
domly creates Nc chromosomes, and we call them initial 
chromosomes. Then, PDGA alternatively and repeatedly 
performs mutation, crossover, and selection operations to 
determine the optimal solution:

(A)	 In mutation operation:

(a)	 For each chromosome Ch in the Nc initial chro-
mosomes, PDGA randomly selects one bit b from 
each substring in Ch.

(b)	 Set each b = b̄ , where b̄ is the logical complement 
of b.

(B)	 In the crossover operation:

(a)	 PDGA randomly selects Nc chromosome pairs 
from the Nc initial chromosomes.

(b)	 A binary str ing SM is given for each 
selected chromosome pair Ch1 and Ch2, and 
|SM| = |Ch1| = |Ch2|, where |SM| is the number of 
bits in SM.

(c)	 |SM|/2 bits in SM are randomly selected.
(d)	 The selected bits in SM are set to 1, while the other 

bits in SM are set to 0.
(e)	 After that, a new chromosome Ch is created by:

(12)rG =
vG

vG + vb + vs
× vd,

(13)mc = 2 × vc + 1,

(14)rb =
vb

vG + vb + vs
× vd,

(15)rs =
vs

vG + vb + vs
× vd,

(16)ri =
vri

vr1 + vr2 +⋯ + vr5

× vd, for i = 1 to 5,

(17)wi =
vwi

vw1
+ vw2

+⋯ + vw5

, for i = 1 to 5.

where ∧ and ∨ are “AND” and “OR” bit-logic 
operators.

(C)	 In the selection operation: a chromosome set S′

c
 with Nc 

chromosomes is created.

(a)	 Eighty percent of the chromosomes in S′
c
 are the 

chromosomes with the highest fitness, selected 
from the Nc initial chromosomes, the Nc chromo-
somes created in the mutation operation, and the 
Nc chromosomes produced in the crossover opera-
tion.

(b)	 Twenty percent of the chromosomes in S′
c
 are 

generated by a random number generator. S′
c
 then 

replaces Sc as the new initial chromosome set.

Furthermore, PDGA alternatively and repeatedly executes 
the mutation, crossover, and selection operations until the 
related fitnesses of the chromosomes in the initial chromo-
some set are very close to one another or until the number 
of iterations is equal to a specified constant.

3 � Results and Discussion

The performances of the TSILSS diagnosis system were 
investigated in these experiments. In total, 108 rat liver tis-
sue section images were used as the test data, provided by 
Laboratory Animal Center of Taichung Veterans General 
Hospital, ROC, in which 36 images were taken from the 
liver tissue sections of the rats in the first stage (GC1), 37 
images from the liver tissue sections of the rats in the second 
stage (GC2), and 35 images from the liver tissue sections of 
the rats in the third stage (GC3).

Three experiments, A, B, and C, are performed by PDGA 
to probe the fittest values of the parameters used in the 
TSILSS diagnosis system. In experiment A, the image set 
SA, including all 108 images, was used as the training data; 
in experiment B, the image set SB, consisting of 18, 19, and 
17 images randomly selected from GC1, GC2, and GC3, 
respectively, was applied as the training data; in experi-
ment C, the image set SC, comprising all the images in SA 
but not in SB, was employed as the training data. Table 1 
demonstrates the fittest values of the parameters used in the 
TSILSS diagnosis system, which were derived by PDGA. In 
this study, the following experiments adopted these obtained 
parameter values.

Precision, recall, F-measure, and accuracy are frequently 
used statistical measures of the performance of a binary clas-
sification test [26, 27]. A true positive (TP) occurs when 
the condition is detected, and the condition is also actually 

(18)Ch =
(
Ch1 ∧ SM

)
∨ (Ch2 ∧ SM),
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present. A true negative (TN occurs when the condition is 
not detected, and the condition is actually absent. A false 
positive (FP) occurs when the condition is detected, but the 
condition is actually absent. A false negative (FN) occurs 
when the condition is not detected, but the condition is actu-
ally present. Precision (P), recall (R), F-measure (F), and 
accuracy (ACC​) can be defined as:

In this study, precision, recall, F-measure, and accuracy 
were used to measure the performances of the TSILSS diag-
nosis system.

Next, three experiments A′ , B′ , and C′ were performed 
to scrutinize the performances of the TSILSS diagnosis 
system. In experiment A′ , the parameters in column Exp. 
A in Table 1 were adopted, and the data in SA were used as 
the testing data. In experiment B′ , the parameters in col-
umn Exp. B in Table 1 were used and the data in SC were 
used as the testing data. In experiment C′ , the parameters 
in column Exp. C in Table 1 were employed and the data 
in SB were used as the testing data. Table 2 shows that 

(19)P = TP∕(TP + FP),

(20)R = TP∕(TP + FN),

(21)F = 2 × P × R∕(P + R), and

(22)Acc = (TP + TN)∕(TP + TN + FP + FN).

all the precision, recall, and F-measures provided by the 
TSILSS diagnosis system were over 92%, and the accuracy 
was over 86%. The Average column in Table 2 displays the 
averages of the precision, recall, F-measure, and accuracy 
obtained by the TSILSS diagnosis system. On average, the 
precision, recall, and F-measure offered by the TSILSS 
diagnosis system were greater than 94.80, and the accu-
racy was close to 90%.

To investigate the performance of the local cross-
thresholding method, in this study, the Otsu thresholding 
method was also used to derive the threshold on image 
Ir to transform Ir into Ib. Column Otsu in Table 2 shows 
that the average results obtained by the method were 
identical to the TSILSS diagnosis system, except that the 
local cross-thresholding method was replaced by the Otsu 
thresholding method.

In this experiment, Ir was partitioned into 5 × 5 regions, 
shown in Fig. 6. For each pixel in R(i, j), the threshold TR 
was set to the average gray-level of all the pixels in all 
the regions R(x + i, y + j), for -1 ≤ i, j ≤ 1. Then, Ir was 
converted into Ib by

We call this method the local region thresholding 
method. The Region column in Table 2 illustrates that the 
experimental results obtained by the method were identi-
cal to the TSILSS diagnosis system, except that the local 
region thresholding method was substituted for the local 
cross-thresholding method. Obviously, one can observe 

(23)Ib(x, y) =

{
1, if Ir(x, y) > TR,

0, otherwise.

Table 1   The fittest parameter values derived by PDGA

Parameters Exp. A Exp. B Exp. C Average

rG 2 2.1 2.1 2.1
rb 0.2 0.25 0.25 0.25
rs 0.15 0.15 0.2 0.175
ms 5 5 5 5
w1 0.45 0.4 0.4 0.4
w2 0.25 0.25 0.2 0.225
w3 0.35 0.35 0.35 0.35
w4 0.4 0.4 0.4 0.4
w5 0.45 0.45 0.4 0.25
r1 0.9 0.8 1 0.9
r2 0.9 0.9 0.9 0.9
r3 0.7 0.7 0.7 0.7
r4 0.7 0.8 0.8 0.8
r5 0.9 1 1.1 1.05

Table 2   The experimental 
results obtained by the TSILSS 
diagnosis system

Exp. A′ Exp. B′ Exp. C′ Average Otsu Region

P (%) 93.48 93.14 98.20 96.49 92.71 94.80 75.93 77.78
R (%) 92.59 92.59 98.15 96.30 92.59 94.44 75.17 77.52
F (%) 93.00 92.74 98.13 96.24 92.61 94.54 74.40 77.34
ACC​ (%) 86.96 86.21 96.36 92.86 86.21 89.72 59.39 63.66

Fig. 6   Partitioning Ir into 5 × 5 regions
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that the local cross-thresholding method can provide much 
better results than the Otsu thresholding method and the 
local region thresholding method.

4 � Conclusions

In this study, the TSILSS diagnosis system was used to iden-
tify the liver scar stage from liver tissue section images. In 
the TSILSS diagnosis system, the local cross-thresholding 
method is proposed to determine the fittest threshold. The 
TSILSS diagnosis system employs five features, µG, σG, RA, 
Dh, and Ds, to characterize a liver scar tissue section image. 
In addition, a two-layer recognition algorithm is proposed to 
distinguish the liver scar stage. A genetic-based algorithm, 
PDGA, is presented to derive the most suitable parameters 
used in the TSILSS diagnosis system as well. The experi-
mental results also show that the TSILSS diagnosis system 
can provide impressive results.

The traditional manual stage detection of liver cirrho-
sis or liver cancer is an expensive, time-consuming, labor-
intensive, and subjective task for doctors to observe a large 
number of medical images. The scar liver tissue areas are 
distinct in different liver cirrhosis stages; nevertheless, for 
the human eye, it is difficult to verify the severity of liver 
tissue injury from a liver tissue section image, especially for 
an inexperienced physician. The TSILSS diagnosis system 
will be of great assistance for doctors if the method is used 
in medical diagnoses. It is also helpful for exploring the 
effects of a new medicine in animals.
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