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Abstract Epilepsy is a well known neurological disorder

characterized by the presence of recurrent seizures. Elec-

troencephalograms (EEGs) record electrical activity in the

brain and are used to detect epilepsy. Traditional EEG

analysis methods for epileptic seizure detection are time-

consuming, which has led to the recent proposal of several

automated seizure detection frameworks. Feature extrac-

tion and classification are two important steps in this pro-

cedure. Feature extraction focuses on finding the

informative features that could be used in the classification

step for correct decision making; therefore, proposing some

effective feature extraction techniques for seizure detection

is of great significance. This paper introduces two novel

feature extraction techniques: local centroid pattern (LCP)

and one-dimensional local ternary pattern (1D-LTP) for

seizure detection in EEG signal. Both the techniques are

computationally simple and easy to implement. In both the

techniques, the histograms are formed in the first step using

the transformation code and then these histogram-based

feature vectors are fed into a classifier in the second step.

The performance of the proposed techniques was evaluated

through 10-fold cross-validation tested on the benchmark

dataset. Different machine learning classifiers were used

for the classification. The experimental results show that

LCP and 1D-LTP achieved the highest accuracy of 100%

for the classification between normal and seizure EEG

signals with the artificial neural network classifier. Nine

different experimental cases have been tested. The results

achieved for different experimental cases were higher than

the results of some existing techniques in the literature. The

experimental results indicate that LCP and 1D-LTP could

be effective feature extraction techniques for seizure

detection.

Keywords Electroencephalogram (EEG) signals � Local
centroid pattern (LCP) � One-dimensional local ternary

pattern (1D-LTP) � Feature extraction � Classification

1 Introduction

Epilepsy is a central nervous system disorder caused by

abnormal changes in the neural activity inside the brain.

According to the World Health Organization (WHO),

epilepsy affects 45–55 million people all around the world

[1]. Electroencephalography (EEG) captures the brain’s

electrical activity and it is considered as a tool in clinical

application for epileptic seizure detection [2, 3]. Tradi-

tional methods for seizure detection usually required a long

EEG recording of several hours. Seizure detection in EEG

signals by visual examination not only requires high

expertise, but it is also an expensive process in terms of

time and it is prone to error. With the development of

technology building an automated seizure detection

framework is of great interest now a days. Epileptic seizure

detection in EEG signal could be treated as a classification

problem where the task is to classify an EEG signal to

either as a seizure or as a non-seizure signal. It should be

noted that feature extraction and classification are two

important steps in this phenomenon. This combination

enables an automated system to run faster. A number of

methods have been proposed in the literature for epileptic

seizure detection in EEG signals.
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In recent years, feature extraction techniques based on

time series signal analysis with linear prediction error

energy [4], correlation [5], fractional linear prediction [6],

frequency domain signal analysis with fast Fourier trans-

form [7], time–frequency domain signal analysis tech-

niques based on short-time Fourier transform [8], and

wavelets [9–17] have been proposed for seizure detection.

Feature extraction based on different entropy schemes

has shown effectiveness for seizure detection in EEG sig-

nals [18–20]. Dimensionality reduction techniques like

PCA, ICA, and LDA have been successfully applied for

epileptic EEG signal classification with a high accuracy

[21]. The combination PCA and wavelet has been reported

for automated classification of epileptic activity with a

higher accuracy [22]. Techniques like recurrence quantifi-

cation analysis [23, 24], higher order spectra features [25],

Continuous wavelet transform [26], high order cumulants

features [27], empirical mode decomposition [28–31], and

Hilbert–Huang transformation [32, 33] are well known in

the field of epileptic seizure detection.

As mentioned earlier the efficiency of a feature extrac-

tion technique not only depends on the extracted infor-

mative features, but it also depends on the computation

complexity involved in the extraction process. The feature

extraction technique should be computationally efficient.

Local binary pattern (LBP) has gained popularity in the

field of face recognition [34]. LBP focuses on preserving

the structural property of the pattern. Because of the

effectiveness of the LBP technique for different pattern

recognition applications, a one-dimensional LBP (1D-

LBP) scheme was proposed for signal processing [35].

Recently, the 1D-LBP technique has been used for

epileptic EEG signal classification [36, 37]. 1D-LBP

focuses on the local pattern of a signal to extract quanti-

tative features for classification. However, 1D-LBP is

sensitive to local variation. Local variation refers to any

structural change in the local pattern of a signal.

In this study, we propose two effective feature extrac-

tion techniques, namely, local centroid pattern (LCP) and

One-dimensional local ternary pattern (1D-LTP) for clas-

sification of epileptic EEG signals. Both the techniques are

computationally simple, easy to implement and insensitive

to local and global variations. These insensitiveness prop-

erties of LCP and 1D-LTP overcome the limitation of 1D-

LBP. Both techniques (LCP and 1D-LTP) work in two

phases. In the first phase, the local patterns are transformed

to form the histogram. The histogram contains the struc-

tural description of the signal and represents the feature

vector of the corresponding EEG signal. Histogram clas-

sification is completed in the second phase. The classifi-

cation has been carried out with four different machine-

learning classifiers. The classification performance is

evaluated with 10-fold cross validation considering the

sensitivity, specificity and accuracy.

The remaining content of this paper is organized as

follows: Methodology and materials used are discussed in

Sect. 2. Experimental results are shown in Sect. 3 and

discussed in Sect. 4. Finally, Sect. 5 concludes the article

with future direction.

2 Methodology and Materials

In this section, a brief discussion about LBP, 1D-LBP,

LCP, 1D-LTP feature extraction techniques, dataset and

the classifiers used has been done.

2.1 Local Binary Pattern (LBP)

LBP is a well known technique used for face recognition

and two dimensional (2D) image processing [35]. For each

pixel in an image it produces a binary code by comparing

the pixel with the surrounding pixels or neighbor pixels

(3 9 3 neighborhood). Each binary code captures the

structural distribution of a small section of the image. This

binary code is converted into its decimal equivalent (LBP

code) to uniquely represent the pattern structure. Once the

computation of all the LBP code is finished, the histogram

is formed using these codes. A histogram graphically

summarizes the structural distribution of patterns across the

image and consists of two axes. The horizontal axis con-

tains the LBP code in increasing order and the vertical axis

represents the frequency (number of occurrences) of each

LBP code. Usually, in images, for each pixel 8 surrounding

pixels are considered while computing the LBP code. The

LBP code of a pixel Sc from its m surrounding pixels, Pi

(i = 0…m - 1), is computed as given below:

SLBPc ¼
Xm�1

i¼0

sðPi � ScÞ2i ð1Þ

where,

sðxÞ ¼ 1; if x� 0

0; otherwise

�

One example of the LBP code is shown in Fig. 1.

2.2 One-Dimensional Local Binary Pattern

(1D-LBP)

1D-LBP is a variant of LBP and it was introduced for

signal processing [35]. The working principle 1D-LBP is

similar to LBP, but it is used for one dimensional signal. In

case of 1D-LBP, the transformation code for the signal
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point Sc considering m number of surrounding points (Pi,

i = 0…m - 1) is computed as:

S1D�LBP
c ¼

Xm�1

i¼0

sðPi � ScÞ2i ð2Þ

where,

sðxÞ ¼ 1; if x� 0

0; otherwise

�

In the above technique, different weights (2i,

i = 0…m - 1) are assigned to different points in order to

convert the binary code into a unique 1D-LBP code [35].

The 1D-LBP code of a signal point Sc is shown in Fig. 2.

2.3 Proposed Techniques Based on Local

Transformed Features

As mentioned before, in 1D-LBP, each point in the raw

signal is compared with its neighbor points and extract

features from the signal by focusing on local patten.

Recently, 1D-LBP has gained popularity in the field of

EEG signal classification [36, 37]. Usually, while recording

an EEG signal, each action or abnormality possesses some

unique local patterns and 1D-LBP can detect these patterns.

However, 1D-LBP is sensitive to noise and hence the

capability of detecting the hidden patterns is limited. In

order to overcome this limitation, LCP and 1D-LTP tech-

niques have been proposed. The LCP technique deals with

the computation of centroid or mean value of the neigh-

boring points and the comparison is carried out between the

neighboring points and the centroid value. The binary code

obtained after the comparison is converted into the trans-

formation code. Centroid or mean is less sensitive to noise

and it represents the local pattern structure as well. 1D-LTP

is a generalization of 1D-LBP. It operates upon a user

defined threshold value and can detect unique patterns.

While in 1D-LBP and LCP, each comparison results in a

binary value (0 or 1), the 1D-LTP produces a ternary code

(?1, 0, or -1) for each comparison depending upon the

threshold limit. Once the comparison finished between the

center point and its neighboring points, the transformation

code is computed from the ternary code. As compared to

1D-LBP, the 1D-LTP is more descriptive in nature. In this

section, LCP and 1D-LTP feature extraction techniques are

discussed one by one in detail. Figure 3 depicts the

flowchart of the proposed methods.

2.3.1 Local Centroid Pattern (LCP)

LCP is a novel feature extraction technique based on the

centroid of the surrounding points. Centroid or mean often

captures the structure of a pattern. The various steps of the

LCP feature extraction technique are as follows:

1. Set the number of neighboring points m.

2. For each signal point Sc, select m/2 number of neighbor

points in forward and backward directions.

Fig. 1 The LBP code for image processing

Fig. 2 The 1D-LBP code for

signal processing
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3. Compute the centroid (c) of the neighboring points

(c ¼ 1
m

Pm�1
i¼0 pi).

4. Compute the difference between the neighboring

points and the centroid as follows:

di ¼ pi � c; for i ¼ 0. . .m� 1:

5. Compute the LCP code.

SLCPc ¼
Xm�1

i¼0

sðdiÞ2i: ð3Þ

where,

sðxÞ ¼ 1; if x� 0

0; otherwise

�

The various steps involved in the LCP are shown

in Fig. 4.

2.3.2 One-Dimensional Local Ternary Pattern (1D-LTP)

Like LBP, the LTP feature extraction technique was pro-

posed for face recognition for two dimensional (2D) face

images [34, 38]. Recently, LTP gained popularity in dif-

ferent pattern recognition applications [39, 40]. Even

though the 1D-LBP feature extraction technique has been

proposed for signal processing [35] and successfully

applied for epileptic EEG signal classification [36, 37], the

LTP based technique is yet to be proposed for the same. In

this section, 1D-LTP based feature extraction technique has

been introduced for epileptic EEG signal classification. The

1D-LTP technique works in the similar way to 1D-LBP,

but it produces a ternary code. Like 1D-LBP, the difference

is computed between the neighbor points and the center

point. However, a user define threshold (t) is set in order to

avoid the variations. The various steps of the proposed 1D-

LTP feature extraction techniques are as follows:

1. Set the number of neighboring pointsm and a threshold t.

2. For each signal point Sc, select m/2 number of neighbor

points in forward and backward directions.

3. Compute the difference between the center point Sc
and the neighboring point pi. The difference is

computed as:

di ¼ Pi � Sc; for i ¼ 0. . .m� 1:

4. Compute the LTP code.

SLTPc ¼
Xm�1

i¼0

sðdiÞ3i ð4Þ

where,

sðxÞ ¼
1; if x� t

0; �t\x\t

�1; x� � t

0
@ :

In order to reduce the LTP code range, the technique

suggested in [35] is followed, where the ternary pattern is

partitioned into positive (LTPpos) and negative (LTPneg)

binary patterns and then concatenated as given below.

LTP ¼ fLTPpos; LTPnegg

where,

LTPpos ¼
Xm�1

i¼0

sposðdiÞ2i ð5Þ

sposðxÞ ¼ 1; if x� t

0; otherwise

�

and

LTPneg ¼
Xm�1

i¼0

snegðdiÞ2i ð6Þ

snegðxÞ ¼ 1; if x� � t

0; otherwise

�

One LTP pattern along with the positive and negative parts

is shown in Fig. 5.

Once the computation of transformation codes (1D-

LBP, LCP or 1D-LTP) for all the signal points is over, the

histogram of these codes forms the feature vector of the

EEG signal and is then fed to the classifier to carry-out the

classification. In all the above three methods, the trans-

formation code lies between 0 to 2m-1 (inclusive).

Fig. 3 Flowchart of proposed methods
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2.4 Time Complexity of LCP and 1D-LTP

Let XN9d represent the set containing N number of signals

and d is the number of points present in each signal. In both

the techniques, if m (m\ d) number of neighboring points

are considered for computation of transformation codes,

then the time complexity (Tc) of both the techniques (LCP

and 1D-LTP) for processing each signal is O(md). Since

the set X contains N number of signals, the time complexity

of both techniques for processing X is O[N.(md)].

TcðLCPÞ ¼ O½N:ðmdÞ�
Tcð1D� LTPÞ ¼ O½N:ðmdÞ�:

For the same set XN9d, the time complexity of some well

known techniques like PCA, LDA, Discrete Fourier

Transform (DFT), fFT, WT are as follows.

TcðPCAÞ ¼ OðN:d2 þ d3Þ

TcðLDAÞ ¼ OðN:d:t þ t3Þ

where t = min(N, d)

TcðDFTÞ ¼ OðN:d2Þ
TcðfFTÞ ¼ OðN:dlogdÞ
TcðWTÞ ¼ OðN:dÞ:

It could be observed that the time complexity of the

proposed techniques is less as compared to some of the

existing techniques (PCA, LDA, DFT).

2.5 1D-LBP, LCP, and 1D-LTP in Case of Noise

Tolerance to noise is one of the important properties of a

feature extraction technique. Noise may cause a local

variation or a global variation. These variations can affect

the pattern structure of a signal. Since all these cases

belong to the same pattern, the transformation technique

should produce the same transformation code for all the

above cases. 1D-LBP generates the transformation code by

comparing the center point with its surrounding points

directly. In 1D-LBP, a small variation in the pattern

structure can affect the transformation code. As a result of

Fig. 4 LCP code for the point Sc

Fig. 5 1D-LTP code for the point Sc

226 A. K. Jaiswal, H. Banka

123



which the transformation codes are different for the origi-

nal pattern and the noisy pattern. Hence, 1D-LBP is sen-

sitive to noise. On the other hand, in the LCP technique the

transformation code is generated by computing the mean of

the surrounding points, followed by the comparison of

mean with each of the surrounding points. If the subpart of

a pattern sequence is affected by noise, the variation of

mean with respect to the surrounding points considering

the pattern structure is small for noisy pattern and this

property makes LCP insensitive towards the noise by

producing the same transformation code for both the

original and noisy patterns. Similarly, the code computa-

tion in 1D-LTP not only depends on the center point and

surrounding points, but also depends on the user defined

threshold limit. This threshold limit is set in order to avoid

the variation caused by noise and produces the same

transformation code. The behavior of 1D-LBP, LCP, and

1D-LTP (with threshold t = 10 lV) techniques in case of

local and global variations for different patterns are shown

in Fig. 6. It should be noted that Fig. 6 is only an example.

In case of noise free signals, patterns with similar

structures should be represented by the same transforma-

tion code. It can be seen in Fig. 6 that LCP and 1D-LTP

assigns the same transformation code in case of local and

global variations, whereas, 1D-LBP is sensitive to local

variation. The insensitiveness property of LCP and 1D-

LTP overcome the limitation of 1D-LBP.

2.6 Classification

Nearest neighbor (NN), decision tree (DT), support vector

machine (SVM) and artificial neural network (ANN) are

some of the well known classifiers of machine learning and

data mining [41]. In this study, all the above four classifiers

have been used and the classification results are shown.

2.7 Cross Validation

10-fold cross validation has been used to evaluate the

performance of the proposed techniques. In 10-fold cross

validation the data set is divided into ten parts. Out of these

ten parts, nine parts are used as training sets and the

remaining part is used as a testing set. This process is

repeated ten times with different training and testing sets.

Usually, the mean accuracy of all the iterations represents

the final accuracy [42].

2.8 Statistical Parameters

The statistical parameters used for evaluating the perfor-

mance of the proposed method are sensitivity (Sen),

specificity (Spe), and accuracy (Acc). These are calculated

as follows:

Senð%Þ ¼ Tp

Tpþ Fn
� 100 ð7Þ

Speð%Þ ¼ Tn

Tnþ Fp
� 100 ð8Þ

Accð%Þ ¼ Tpþ Tn

Tpþ Tnþ Fpþ Fn
� 100 ð9Þ

where, true positive (Tp): correctly identified seizure sig-

nals, true negative (Tn): correctly identified non-seizure

signals, false positive (Fp): incorrectly marked as seizure

signals, and false negative (Fn): incorrectly marked as non-

seizure signals.

2.9 Dataset

In this research, the publicly available benchmark epilepsy

EEG dataset provided by University of Bonn,1 Germany, is

used [43]. The dataset consists of five subsets (A, B, C, D,

E). The standard 10–20 system electrode placement was

followed for signal capturing. Each subset contains 100

single-channel EEG segments of 23.6 s duration with 4097

data points. A 128-channel amplifier system was used for

the recording of these EEG signals using common average

reference and the sampling rate was 173.61 Hz. The sub-

sets A and B contain the EEG recordings of five healthy

volunteers while their eyes were opened and closed,

respectively. The signals in subsets C and D were recorded

on patients before epileptic attack at hemisphere hip-

pocampal formation and from the epileptogenic zone

respectively. The EEG signals within subset E were

recorded from patients during the seizure activity. The

description of the dataset is provided in Table 1.

In this study, in order to verify the effectiveness of the

proposed approaches all the five subsets have been used

and different experimental cases have been tested. The

EEG signal of each subset is shown in Fig. 7.

3 Results

All the five subsets (A, B, C, D, E) have been used in this

study. In both the techniques, the first step is the compu-

tation of the transformation code for each signal point.

Once the code computation for all the signal points is over,

these codes are arranged in the form of a histogram. The

histogram represents the feature vector of the correspond-

ing EEG signal and is subsequently used for the classifi-

cation using different machine learning classifiers.

1 EEG time series dataset http://epileptologie-bonn.de/cms/front_

content.php?idcat=193lang=3changelang=3.
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The length of the feature vector (l) depends on the

number of neighboring points (m) considered in evaluating

the transformation code.

For the LCP feature extraction technique, the length of

the feature vector is computed as follows:

lLCP ¼ 2m: ð10Þ

For the 1D-LTP feature extraction technique, the length

of the feature vector is computed as follows:

l1D�LTP ¼ 2mþ1: ð11Þ

The small segments of histogram based feature vector

(with m = 8) obtained with LCP and 1D-LTP techniques

for different subsets are shown in Fig. 8.

The four different machine learning classifiers used in

this study are NN, SVM, ANN, and DT. In case of the

NN classifier the built-in MATLAB functions Classifi-

cationKNN.fit() and predict() have been used for training

Fig. 6 a 1D-LBP, b LCP, and c 1D-LTP in case of local and global variations

Table 1 Dataset

Dataset Subset A Subset B Subset C Subset D Subset E

Number of subjects 5 5 5 5 5

Subjects state Healthy Healthy Epilepsy Epilepsy Epilepsy

Signal recording Eye open Eye close Seizure free epileptic hemisphere Seizure free opposite hemisphere Seizure

Recording duration 23.6 s 23.6 s 23.6 s 23.6 s 23.6 s

Number of signals 100 100 100 100 100
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and testing the feature vectors respectively. The svm-

train() and svmclassify() functions have been used for

training and classifying the feature vectors with a linear

kernel based SVM classifier. The kernel parameter was

set to 1. For DT and ANN classifiers the fitctree() and

patternnet() functions have been used. This multilayer

perceptron neural network consists of three layers. The

three layers are the input layer, a hidden layer, and the

output layer. The input layer nodes represent the

extracted features of a signal. After several experiments

it is found that the highest accuracy was achieved when

the cardinality of neurons in the hidden layer was set

between 30 and 70. The maximum number of iterations

and the minimum gradient were set to 1000 and 10-6

respectively. We have used the scaled conjugate gradient

method with the hyperbolic tangent sigmoid transfer

function. The cvpartition() function was used for random

partitions of input dataset into training and testing sets.

Fig. 7 EEG epilepsy data set

Fig. 8 Small segments of histogram based feature vector
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The various experimental cases considered in this

research are shown in Table 2.

A number of experiments have been carried out con-

sidering the different lengths of neighboring points (m).

The best results were obtained when the number of

neighboring points was set to 8. With the number of

neighboring points m = 8, the mean classification accu-

racy (ACC) obtained after 10-fold cross validation for

different experimental cases by applying LCP and 1D-LTP

feature extraction techniques with different machine

learning classifiers are shown in Tables 3 and 4 respec-

tively. In case of 1D-LTP technique the threshold (t) was

set to 10 lV empirically.

Among the four machine learning classifiers used in this

research, it is found that ANN achieved the highest clas-

sification accuracy. The sensitivity, specificity, and classi-

fication accuracy achieved for some experimental cases by

both the techniques (LCP and 1D-LTP) with ANN classi-

fier have been shown in Tables 5 and 6 respectively.

The classification accuracy achieved by 1D-LBP, LCP,

and 1D-LTP feature extraction techniques with different

classifiers is shown in Fig. 9.

4 Discussion

The benchmark dataset has been used to carry out a fair

comparison between the proposed techniques and different

methods in the literature. After conducting several exper-

iments, it is found that, LCP and 1D-LTP feature extraction

techniques achieved a high classification accuracy with

ANN classifier (Tables 5, 6). The experimental results of

the proposed techniques and different methods reported in

the literature is presented in Table 7.

For case 1 (A–E), Srinivasan et al. [45] reported a 100%

classification accuracy with entropy and neural network. In

the same way, Kumar et al. [50] achieved the highest

classification accuracy with approximate entropy and

SVM. Recently, Lee et al. [52] and Tawfik et al. [55]

reported the classification accuracy of 98.17 and 99.5%

respectively. In this study, both the proposed techniques

(LCP and 1D-LTP) achieved 100% classification accuracy

with ANN classifier.

The classification accuracy achieved by LCP with ANN

classifier for cases 2–4 is 99.00, 97.50, and 99.00%

Table 2 Experimental cases considered in this research

Case Subsets Description

1 A–E Healthy eye open–Ictal

2 B–E Healthy eye close–Ictal

3 C–E InterIctal–Ictal

4 D–E InterIctal–Ictal

5 A–D Healthy–InterIctal

6 AB–E Healthy–Ictal

7 CD–E InterIctal–Ictal

8 ABCD–E Nonseizure–Seizure

9 A–D–E Healthy–InterIctal–Ictal

Table 3 Mean classification accuracy (%) of LCP with different

classifiers after 10-fold cross validation

Case LCP ? classifier

NN SVM ANN DT

A–E 99.00 99.00 100 95.00

B–E 96.00 98.50 99.00 94.50

C–E 96.00 97.00 97.50 97.00

D–E 95.00 97.00 99.00 97.00

A–D 98.50 99.50 99.50 97.00

AB–E 97.67 98.00 99.33 94.67

CD–E 94.67 97.33 98.67 93.33

ABCD–E 96.40 97.40 98.60 94.60

A–D–E 91.33 94.00 98.00 92.33

Table 4 Mean classification accuracy (%) of 1D-LTP with different

classifiers after 10-fold cross validation

Case 1D-LTP ? classifier

NN SVM ANN DT

A–E 99.00 100 100 96.00

B–E 97.00 98.50 99.50 91.50

C–E 96.00 97.00 99.50 99.00

D–E 94.50 97.00 98.00 93.00

A–D 100 99.00 100 93.00

AB–E 96.67 98.33 99.00 97.00

CD–E 95.67 97.33 99.00 94.67

ABCD–E 97.00 97.20 98.20 96.00

A–D–E 90.67 97.33 98.33 94.00

Table 5 Mean sensitivity (%), specificity (%), and accuracy (%) of

LCP with ANN

Case LCP ? ANN

Sen (%) Spe (%) Acc (%)

A–E 100 100 100

B–E 99.00 99.00 99.00

C–E 97.00 98.00 97.50

D–E 99.00 99.00 99.00

A–D 99.00 100 99.50

AB–E 100 99.00 99.33

CD–E 98.00 99.00 98.67

ABCD–E 97.00 99.00 98.60
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respectively. Similarly, 1D-LTP with ANN achieved the

classification accuracy of 99.50, 99.50, and 98.00% for

these cases. Nicolaou and Georgiou [47] reported the

classification accuracy of 82.88, 88.00, and 78.98 for these

experimental cases with the combination of permutation

entropy and SVM. Recently, Kumar et al. [50] conducted a

number of experiments and achieved a maximum classifi-

cation accuracy (%) of 100, 99.60, and 95.85 for these

experimental cases respectively.

For cases 5–7, LCP and 1D-LTP achieved the classifi-

cation accuracy (%) of 99.50, 99.33, 98.67 and 100, 99.00,

99.00 respectively. Recently, Pachori and Patidar [53]

reported a classification accuracy of 97.67 for case 7 (CD–

E) with the combination of intrinsic mode function and

ANN classifier. For the same case, Kumar et al. [37]

reported a classification accuracy of 98.33% with the

application of Gabor filter, LBP and NN classifier. The

classification accuracy achieved by LCP and 1D-LTP for

case 8 (ABCD–E) is 98.60 and 98.20 respectively. For case

8 (ABCD–E), Kumar et al. [50] achieved the accuracy of

97.38% with the application of approximate entropy and

SVM. Recently, for cases 6–8, Tiwari et al. [56] reported a

high classification accuracy of 100, 99.45 and 99.31%

Table 6 Mean sensitivity (%), specificity (%), and accuracy (%) of

1D-LTP with ANN

Case 1D-LTP ? ANN

Sen (%) Spe (%) Acc (%)

A–E 100 100 100

B–E 99.00 100 99.50

C–E 99.00 100 99.50

D–E 97.00 99.00 98.00

A–D 100 100 100

AB–E 99.00 99.00 99.00

CD–E 99.00 99.00 99.00

ABCD–E 99.00 98.00 98.20

Fig. 9 Mean classification accuracy (%) of 1D-LBP, LCP, and 1D-LTP for different experimental cases after 10-fold cross validation. Different

experimental cases: Case 1 (A–E), Case 2 (B–E), Case 3 (C–E), Case 4 (D–E), Case 5 (A–D), Case 6 (AB–E), Case 7 (CD–E), Case 8 (ABCD–

E), and Case 9 (A–D–E)
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Table 7 Authors, year, methods and classification accuracy obtained for some cases in the literature

Authors Year Methods Cases Accuracy (%)

[44] 2004 Neural network A–E 97.50

[45] 2007 Approximate entropy and ANN A–E 100

[5 2009 Cross correlation and SVM A–E 95.50

[14] 2009 Discrete wavelet transform and approximate entropy A–E 96.00

[19] 2010 Approximate entropy and ANN A–E 99.85

ABCD–E 98.27

[46] 2011 K-mean and ANN A–E 100

A–D–E 96.67

[47] 2012 Permutation entropy and SVM A–E 93.55

B–E 82.88

C–E 88.00

D–E 79.94

[22] 2012 PCA ? WT ? GMM A–D–E 99.00

[48] 2012 Wavelet transform, ANN A–E 96.00

[49] 2014 HVG and K-NN A–E 100

D–E 93.00

ABCD–E 95.40

[50] 2014 Fuzzy approximate entropy and SVM A–E 100

B–E 100

C–E 99.60

D–E 95.85

ABCD–E 97.38

[51] 2014 Fractional linear prediction CD–E 95.33

[36] 2014 1D-LBP ? functional tree A–E 99.50

1D-LBP ? BayesNet A–D 99.50

1D-LBP ? BayesNet D–E 95.50

1D-LBP ? BayesNet CD–E 97.00

1D-LBP ? BayesNet A–D–E 95.67

[37] 2014 Gabor Filter ? 1D-LBP ? NN CD–E 98.33

[52] 2014 Wavelet transform, phase-space reconstruction with Euclidean distance A–E 98.17

[53] 2014 IMF and ANN CD–E 97.67

[54] 2015 IMFs and LS-SVM classifier CD–E 98.67

[55] 2015 Permutation entropy and SVM A–E 99.50

B–E 85.00

C–E 92.00

D–E 96.50

[16] 2016 DWT ? PSR ? SVM A–E 100

[17] 2016 DWT ? ABC ? ANN A–E 72.6

D–E 98.0

[56] 2016 Key point based LBP ? SVM AB–E 100

CD–E 99.45

ABCD–E 99.31

Proposed approaches LCP ? ANN A–E 100

B–E 99.00

C–E 97.50

D–E 99.00

A–D 99.50

AB–E 99.33
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respectively with the combination of key point based LBP

and SVM. For case 9 (A–D–E), the classification accuracy

achieved by LCP and 1D-LTP is 98.00 and 98.33%

respectively. For case 9, Acharya et al. [22] reported a

classification accuracy of 99.00% with the combination of

PCA and GMM model, Kaya et al. [36] reported a classi-

fication accuracy of 95.67% with 1D-LBP, and Orhan et al.

[46] reported the classification accuracy of 96.67% with

k-mean clustering and ANN classifier.

These results show that both LCP and 1D-LTP have

been able to achieve a better classification accuracy than

some of the existing techniques proposed in the literature

(Table 7). In addition, the proposed techniques are com-

putationally simple and easy to implement. Like 1D-LBP

[35], both the techniques can be used for processing other

one-dimensional signals. The time complexity of the pro-

posed techniques is less as compared to some of the well

known techniques like PCA, LDA, and DFT. Both the

techniques also extract features directly from the raw EEG

signal.

5 Conclusions

A number of feature extraction techniques have been pro-

posed in the past for epileptic EEG signal classification.

Recently, 1D-LBP has gained popularity in this field.

However, 1D-LBP is sensitive to local variation. In order

to overcome this issue, we have proposed two effective

feature extraction techniques called LCP and 1D-LTP.

Nine different experimental cases have been tested to

validate the effectiveness of the proposed approaches. The

highest classification accuracy (%) achieved with LCP and

1D-LTP for different experimental cases, such as A–E, B–

E, C–E, D–E, A–D, AB–E, CD–E, ABCD–E, A–D–E are

100, 99.50, 97.50, 99.00, 99.50, 99.33, 98.67, 98.60, 98.00

and 100, 99.50, 99.50, 98.00, 100, 99.00, 99.00, 98.20,

98.33 respectively. With the promising performance on the

benchmark dataset, it could be concluded that LCP and 1D-

LTP are effective feature extraction techniques for EEG

signal processing. The proposed techniques are easy to

implement and computationally simple. The time com-

plexity of the proposed techniques is less as compared to

some of the well known techniques. This research

strengthens the direction of developing local transformed

feature based techniques for epileptic EEG signal classifi-

cation. In future, the effectiveness of these feature extrac-

tion techniques may also be verified with a larger dataset. It

is also observed that the length of the histogram based

feature vector is large. In future, different feature reduction

techniques could be applied in order to reduce the length of

the histogram based feature vectors. The future direction of

research also includes the processing of other biomedical

signals like electrocardiogram (ECG) and electromyogram

(EMG) for classification of normal and abnormal states

using local transformed features.
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