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Abstract The needs for light-weight and soft smart

clothing in homecare have been rising since the past dec-

ade. Many smart textile sensors have been developed and

applied to automatic physiological and user-centered

environmental status recognition. In the present study, we

propose wearable multi-sensor smart clothing for homecare

monitoring based on an economic fabric electrode with

high elasticity and low resistance. The wearable smart

clothing integrated with heterogeneous sensors is capable

to measure multiple human biosignals (ECG and respira-

tion), acceleration, and gyro information. Five independent

respiratory signals (electric impedance plethysmography,

respiratory induced frequency variation, respiratory

induced amplitude variation, respiratory induced intensity

variation, and respiratory induced movement variation) are

obtained. The smart clothing can provide accurate respi-

ratory rate estimation by using three different techniques

(Naı̈ve Bayes inference, static Kalman filter, and dynamic

Kalman filter). During the static sitting experiments, res-

piratory induced frequency variation has the best perfor-

mance; whereas during the running experiments,

respiratory induced amplitude variation has the best per-

formance. The Naı̈ve Bayes inference and dynamic Kal-

man filter have shown good results. The novel smart

clothing is soft, elastic, and washable and it is suitable for

long-term monitoring in homecare medical service and

healthcare industry.

Keywords Textile electrode � Multiple sensors � Smart

clothing � Respiration rate

Abbreviations

ECG Electrocardiogram

EDR ECG derived respiration

EIP Electric impedance plethysmography

EMG Electromyography

PAT Peripheral arterial tonometry

PPG Photoplethysmogram

RIAV Respiratory induced amplitude variation

RIFV Respiratory induced frequency variation

RIIV Respiratory induced intensity variation

RIMV Respiratory induced movement variation

RIP Respiratory inductive plethysmography

TPM Twists per meter

TPU Thermoplastic polyurethane

1 Introduction

Over the last decade, the call for light-weight, soft, wear-

able devices have gradually increased. Many smart textile

sensors have been developed and applied to automatic

physiological and user-centered environmental status

recognition: for example, T-shirt with sensors integrated

for wearable cardiopulmonary monitoring [1], wearable

electrocardiogram (ECG) Recorder with acceleration sen-

sors [2], real-time cardiac monitoring on smartphone [3],

the conductive yarn for ECG sensing [4–6], the piezore-

sistive yarn for motion sensing [4, 5], the flexible circuit
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board for the connection between chip and sensor network

in clothing [4, 5], the wearable antenna for wireless data

transmission [4], the magnetic inductive textile coil for

standing, sitting, slow walking fast walking, and jogging

detection [7], and the bendable and wearable textile sensors

of magnetic induction for cardiorespiratory monitoring

[8, 9]. Most of these sensors are designed to detect only a

specific signal. However, for many applications, multiple

sensors measurement and comprehensive sensory integra-

tion are needed. Scalisi et al. used inkjet printed flexible

electrodes to measure multiple surface electromyography

(sEMG) signals [10]. Or in homecare field, fallen alert,

health monitoring, and exercise management require not

only the measurement of movement, but also that of ECG,

heart rate, temperature, and respiration. Therefore, clothing

with integrated sensory network becomes important. In this

work, we approach this problem by studying the estimation

of respiratory rate. Because the respiration signal manifests

in miscellaneous wearables sensors, it is an illustrative

scenario to demonstrate how smart clothing can take

advantage of these diverse sensors for better homecare and

health monitoring.

Many respiration detecting methods have been investi-

gated for smart clothing and bands, such as magnetic

induction monitoring [7–9, 11], photoplethysmogram (PPG)

[11–14], peripheral arterial tonometry (PAT) [15, 16],

electric impedance plethysmography (EIP) [15, 17–20],

respiratory inductive plethysmography (RIP) [20–22],

piezoresistive sensors [23], accelerometer [22, 24–30], and

ECG derived respiration (EDR) [15, 22, 30]. However,

estimating respiratory rate remains difficult. Because of the

non-stationary nature of respiration signals and the over-

lapped frequency band of the movement artifact, baseline

drifting, ECG, and respiratory signal, each of the sensing

methods described above has its own preferable working

domain. Respiratory rate estimations using PPG, ECG, and

EIP work only in static situation, because movements during

dynamic activities induce slipping between electrodes and

device and therefore influence the signal quality. Though the

usage of accelerometer allows minor movement artifacts

during measurement, it is still hard to extract small respi-

rations signal from large movements. On the other hand,

both RIP and piezoresistive sensors suffer from large base-

line drifting, if the sensor does not contact the skin well;

even though tight wearable bands tend to perform well, the

users would more easily feel uncomfortable.

Algorithmshave beendeveloped tomergemultiple sensors

for more accurate, and stable respiration estimation, such as

respiratory rate and heart rate estimation by the adaptive

Kalman filter from three magnetic induction sensors [31], the

data fusion to enhance bio-signal by bendable noncontact

magnetic inductive sensors and PPG [11], the data fusion for

EDR and PAT [15], the probabilistic inference using baseline

drifting, the amplitude modulation and frequency modulation

of PPG [12, 32], and the sensor fusion of accelerometer and

gyro-sensor [25]. In [11], they pointed out that the fusion of

bendable noncontact magnetic inductive sensors and PPG at

the same measurement location could allow the possibility of

motion artifact cancellation. In [31], the worst case obtained

mean errors of-0.2 rcpmby using adaptive Kalman filter and

three magnetic induction sensors and they point out that

adaptiveKalmanfilter can continuously improve the ability to

separate the desired signals from the raw sensor data. In [15],

the amplitude modulation, frequency modulation, and pulse

amplitude of PAT are extracted and combined by Kalman

filter, in which the measurement noise covariance is updated

according to signal quality metrics. They achieve average

root-mean-squared (RMS) error over 30 subjects of 2.7 res-

piratory cycles perminute (rcpm). In [32], respiratory induced

frequency variation (RIFV), respiratory induced amplitude

variation (RIAV), and respiratory induced intensity variation

(RIIV) are extracted from PPG sensor and the respiratory rate

is calculated as their mean value after the removal of outliers.

The result has average RMS error of 3 rcpm. In [12], the

baseline drifting, amplitude modulation, and frequency

modulation of PPG are extracted and Gaussian process

regression is used to offline infer a probabilistic model for

respiratory rate estimation. The data fusion is achieved by

interpolating the mean estimates according to the prediction

variance of the threeGaussian process regressionmodels. The

average of mean respiratory absolute error in [12] is about 2.7

rcpm. In [25], accelerometer and gyro sensor are used to

extract the Euler angles of respiratory movement. Then, with

the Euler angles expressed in quaternions, a Kalman filter is

used to fuse the quaternions from acceleration and angular

velocity. Finally, the merged quaternions are transferred back

to the Euler angles, which are considered as the respiratory

signal. The error rates they achieve are 4.6 and 9.54% in the

treadmill and leg press exercises, respectively. As shown in

Table 1, the fusion of respiration data can lead to more

accurate and stable respiratory rate estimation.

In the present study, we propose multi-sensor smart

clothing for homecare monitoring based on our novel CB/

PBT/PET-wrapped1 AGposs yarn,2 an economic fabric

electrode with high elasticity and low resistance. The smart

clothing embeds the sensing of ECG, respiration, acceler-

ation, and gyro information, which intrinsically provides

respiration estimations in form of EIP, RIFV, RIAV, RIIV,

and respiratory induced movement variation (RIMV). We

analyze these five components and combine them by three

data fusion techniques (Naı̈ve Bayes inference, static

1 Carbon Black/polybutylene terephthalate/polyethylene yarn, CB/

PBT/PET yarn, 70 denier 24 filaments, TTRI, Taiwan.
2 AGposs is with a core of Nylon and silver-plated yarn; AGposs,

74 denier 34 filaments, Mitsufuji Textile Ind. Co., Ltd, Japan.
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Kalman filter, and dynamic Kalman filter) for robust and

accurate estimations. The experimental result shows that

the Naı̈ve Bayes inference and the dynamic Kalman filter

have the good results.

2 Materials and Methods

2.1 Multi-sensor Smart Clothing

The wearable multi-sensor system is designed as a light-

weighted and long-term monitoring device. It can be

installed on the front chest of the smart clothing, and the

user can connect it with cloth by buttons. In addition,

through its associated smart phone application, the user can

read the ECG, the respiration signal, the activity level, and

the temperature in real time.

2.1.1 Architecture of Multi-sensor System

The device integrates 24-bit ADC ADS1292R (TI, Dallas,

TX, USA), gyroscope & accelerometer MPU-6050 (In-

venSense Inc., Sunnyvale, CA, USA), and temperature

sensor LMT87D1 (TI, Dallas, TX, USA). The 24-bit ADC

ADS1292R is connected to a set of textile electrodes to

sense the ECG and respiration signals. The 16-bit gyro-

scope & accelerometer MPU-6050 can detect 3-axial

acceleration and 3-axial angular velocity in movement and

respiration, and the temperature sensor LMT87D1 mea-

sures the temperature between the smart clothing and coat.

The control module also includes a low energy Bluetooth

module for wireless transmission and the control module is

driven by a small 2032 button battery.

2.1.2 Fabric Electrodes

Fabric electrodes are sensing elements fabricated by knit-

ting or weaving processes. Because of its soft and com-

pliant characteristics, they become promising candidates

for smart textiles. The traditional textile yarns plated with

silver, despite with great conductivity, are known to pos-

sess bio-toxic Ag nanoparticles. In [11], they solved this

problem by avoiding direct skin contact and they create the

non-contact sensors for long-term monitoring. In [33], they

stressed the importance of electrodes being skin-friendly

for long-time ECG monitoring and developed an embroi-

dered textile electrode by Ag/Ti-coated PET yarn for silver

passivation. For the same purpose, Taiwan Textile

Research Institute (TTRI) developed non-toxic CB/PBT/

PET fibers by conjugate spinning process [34], with a core

of polyethylene terephthalate (PET) polymer and a sheath

of Carbon Black/polybutylene terephthalate (CB/PBT)

polymer. However, CB/PBT/PET yarn has worse electric

conductivity than textile yarns plated with silver.

To reduce bio-toxicity and maintain the same grade of

electric performance, a new fabric electrode is designed by

wrapping the non-toxic CB/PBT/PET yarns around

AGposs yarn, the textile yarns plated with silver. We call

this new fabric CB/PBT/PET-wrapped AGposs yarn.

Because it contacts skins with CB/PBT/PET yarns, it has

reduced bio-toxicity and conductivity similar to AGposs

yarn.

In order to determine the ideal combination of CB/PBT/

PET and AGposs yarns for ECG and respiration measure-

ment, three types of fabric electrodes are experimented:

Type 1 electrode of AGposs yarn, Type 2 electrode of CB/

PBT/PET-wrapped AGposs yarn (Z twist and 300 turns per

meter (TPM)), and Type 3 electrode of CB/PBT/PET-

doubly-wrapped AGposs yarn (Z twist and 300 TPM).

These electrodes were made by circular knitting machine,

Fiber Analysis Knitter-Sampler, Lawson Hemphill Inc., in

which the cylinder size is 220 and the needles per inch is

20.

The resistance of a 10-cm fabric electrode was measured

under three different conditions:

(1) Direct measurement of the resistance without any

pre-processing.

Table 1 The comparison of different respiratory estimations

References Merge methods Signals Results

[32] Adaptive Kalman Filter Three magnetic induction sensors Mean error: -0.2 rcpm

[15] Kalman filter AM, FM, and pulse amplitude of PAT RMS error: 2.7 rcpm

[33] Average RIFV, RIAV, RIIV of PPG RMS error: 3 rcpm

[12] Gaussian process regression Baseline, AM, FM of PPG Absolute error: 2.7 rcpm

[26] Kalman filter Accelerometer and gyro Error rate in treadmill task: 4.6%

In leg press task: 9.54%

AM amplitude modulation; FM frequency modulation; PAT peripheral arterial tonometry; rcpm respiratory cycles per minute; RIFV respiratory

induced frequency variation; RIAV respiratory induced amplitude variation; RIIV respiratory induced intensity variation; PPG photoplethys-

mogram; RMS root mean square
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(2) Measurement of the resistance after soaking the

fabric electrode into acid liquid for 24 h and drying

it in shadow.

(3) Measurement of the resistance after soaking the

fabric electrode into alkali liquid for 24 h and drying

it in shadow.

According to ISO105-E04, the acid and alkaline solutions

were prepared as below:

1. Acid solution, freshly prepared, using grade 3 water

complying with ISO 3696, containing, per liter:

– 0.5 g of L-histidine monohydrochloride monohy-

drate (C6H9O2N3�HCl�H2O);

5 g of sodium chloride (NaCl);

2.2 g of sodium dihydrogen orthophosphate dihy-

drate (NaH2PO4�2H2O);

The solution was brought to pH 5.5 (±0.2) with

0.1 mol/L sodium hydroxide solution.

2. Alkaline solution, freshly prepared, using grade 3

water complying with ISO 3696, containing, per liter:

– 0.5 g of L-histidine monohydrochloride monohy-

drate (C6H9O2N3�HCl�H2O);

5 g of sodium chloride (NaCl);

The solution was brought to pH 8 (±0.2) with 0.1 mol/

L sodium hydroxide solution.

2.1.3 User Interface of Smart Clothing

The designed placement of electrodes is shown in Fig. 1a.

The fabric electrodes around the chest consist of right leg

driven (RLD) electrode, electrode I, and electrode II. The

implementation of RLD loop can improve the common-

mode rejection (CMR) in ECG measurement and the

electrode I and electrode II are used to measure the ECG

and respiratory impedance signal.

The assembly of the textile electrodes is illustrated in

Fig. 1b. To avoid potential short circuit between buttons due

to sweat, the area between the buttons of electrode 1 and

electrode 2 are covered by two paired thermoplastic poly-

urethane (TPU). To improve the CMR, the RLD electrode is

normally placed distant from the other two electrodes and is

connected to RLD button by CB/PBT/PET-wrapped AGposs

textile. To avoid the short circuit between textile connector

and electrode I, an additional paired TPU is used to cover

the connector and the RLD button.

The implemented smart cloth is shown in Fig. 1c. For the

elasticity of cloth, the sport cloth is made by knitting struc-

ture, and the sport cloth, middle cover, inner cover, and the

textile electrodes are combined by zig-zag sewing. The

sealing of the paired TPU is made by the 130 �C heated

plates. Figure 1d shows the overall of the smart clothing and

user interface. The electric signals are transmitted from the

fabric-based sensor to the Bluetooth controller through

metallic buttons. The smart clothing is soft, elastic, and fitted.

The ECG, the respiration, the motion signal, the temperature,

and the activity level can be displayed on the screen of a

smart phone through Bluetooth wireless transmission.

The electrode’s electric performance was validated by ana-

lyzing the signal quality of the fabric electrodes within 0.1–

10,000 Hz, where the frequency response is calculated by

Eq. (1). The measurement device was NI-USB6218 and we

simply test the electric performance by two electrodes without

theRLDelectrode.The testsweredonebyputting the smart cloth

on a static mannequin to simulate the body wearing situation.

H sð Þ ¼ Vout sð Þ
Vin sð Þ ð1Þ

2.2 Respiratory Rate Estimation

The EIP, ECG, acceleration, and angular velocity are col-

lected to compute the five respiratory signals EIP, RIFV,

RIAV, RIIV, and RIMV. These signals are processed by

peak detection to provide estimates of respiratory rate, and

data fusion algorithms are applied to combine them to

achieve better estimation.

2.2.1 Respiration Signal from EIP

A 0.1–0.8 Hz 2nd-order bandpass Butterworth is applied to

extract clean EIP signals for respiratory estimation,

because the impedance measurement is affected by ECG,

EMG signals and motion artifacts.

2.2.2 Respiration Signal from RIFV by Heart Rate

Variance

The RIFV signal is extracted using the following three

steps:

(1) The raw ECG measurement is passed through a

60 Hz 2nd-order band-stop Butterworth filter and a

0.1–55 Hz 2nd-order bandpass filter.

(2) The heart rate is calculated by peak detection.

(3) A zero-order hold and a 0.1–0.8 Hz 2nd-order

bandpass Butterworth filter are applied to smooth

the signal of heart rate variation and the RIFV signal

is extracted finally for respiratory rate estimation.

2.2.3 Respiration Signal from RIAV by Baseline Removal

and Kurtosis

In [35], the feature of RIAV is extracted by kurtosis, and

the accuracy is above 93.48%. Here, we modify the
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kurtosis methods as described below. Firstly, the baseline-

free ECG signal is extracted from the raw ECG measure-

ment by a 60 Hz 2nd-order band-stop Butterworth filter

and a 10–55 Hz 2nd-order bandpass Butterworth filter.

Secondly, R peak detection is applied to extract the data

between two R peaks. Thirdly, these data between two R

peaks is used to calculate the kurtosis as Eq. (2) and the

normalized kurtosis as Eq. (3) is calculated by the mean of

kurtosis and standard deviation of kurtosis rK.

Kurtosis: K ið Þ

¼ E x nð Þ4
n o

ni � n\niþ1

�3 E x nð Þ2
n o

ni � n\niþ1

� �2 ð2Þ

Normalized Kurtosis: Knormalized ið Þ ¼ K ið Þ � E Kf g½ �
rK

ð3Þ

where i denotes the ith R–R interval, K(i) denotes the ith

kurtosis. The time of K(i) is defined as the middle of the

time of the nith and the ni?1th R peaks. After the kurtosis

calculation, linear interpolation is applied to smooth the

result and a 0.1–0.8 Hz 2nd-order bandpass Butterworth

filter is used to generate respiratory signal from RIAV.

2.2.4 Respiration Signal from RIIV by ECG Signal

Removal

The baseline signal in raw ECG is extracted as the RIIV

signal. In processing, a 60 Hz 2nd-order band-stop But-

terworth filter is used to remove the 60 Hz noise and a

0.1–0.8 Hz 2nd-order bandpass Butterworth filter is

applied to extract the respiratory rate estimate from the

ECG signal.

2.2.5 Respiration Signal from Euler Angle by Fusing

Accelerometer and Gyroscope

For RIMV, the 3-axial acceleration and the 3-axial angular

velocity are merged to calculate the quaternion by Kalman

filter [25, 36], as shown in Fig. 2a. We define the accel-

eration and angular velocity in the body coordination sys-

tem shown in Fig. 2, in which the x-axis is defined to be

aligned with the gravity force and z-axis is chosen to be

pointing forward. The Euler angles are defined as a set of

three rotation angles w; h;/ð Þ about x-, y’-, z’’-axes.

Because respiration causes mostly the change in h about y-

axis in the body coordination, the variation of h is used as

RIMV signal, which can be derived as follows. For a fixed

gravity vector, the rotation of body coordination about x-,

y-, z-axes with respect to body coordination can be derived

as

Rx wð Þ ¼
1 0 0

0 cosw sinw
0 � sinw cosw

2
4

3
5 ð4Þ

Ry hð Þ ¼
cos h 0 � sin h
0 1 0

sin h 0 cos h

2
4

3
5 ð5Þ

(a)

(b)

(c)

(d)

Inner cover

Electrode II Electrode I

RLD electrode

Middle cover

TPU

TPU

RLD electrode
Electrode II Electrode I

Inner cover

TPU

TPU

Mother bu�on

Mother bu�on

Sport Cloth

Middle cover

Outside & Forward Inside & BackwardInside & Forward

RLD
Electrode

Electrode II Electrode IController

10cm 10cm 10cm

Bluetooth
Wireless

Transmission

Controller

Fig. 1 Configuration of the fabric electrodes and the human inter-

face: a inside view of the designed placement of electrodes.

b Exploded view of the designed placement of electrodes. c The

smart clothing. d User interface for monitoring ECG, respiration,

acceleration, temperature, and activity level
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Rz /ð Þ ¼
cos/ sin/ 0

� sin/ cos/ 0

0 0 1

2
4

3
5 ð6Þ

Therefore the rotation matrix with respect to body

coordination following the xyz rotation sequence is.

If the movement is slow, then the accelerometer mea-

surement in body coordination can be approximated as

ax

ay

az

2
4

3
5 ffi Rxyz �

g
0

0

2
4

3
5 ¼ �

cos h cos/ � g
cos h sin/ � g

sin h � g

2
4

3
5 ð8Þ

The Euler angle h and / could be derived by Eqs. (9) and

(10) through accelerometer measurement ax; ay; az

� �
.

Because the respiration movement is mainly due to change

in h, w is not needed. On the other hand, w cannot be

calculated with the gravity vector; therefore, w is set as

zero here. In some applications, the three Euler angles may

be needed. In this situation, a magnetometer should be

included to derive the three Euler angles:

h ¼ sin�1 az

g

� �
ð9Þ

/ ¼ tan�1 �ay

ax

� �
¼ sin�1 �ay

gcosh

� �
ð10Þ

The Euler angle estimation using accelerometer is noisy;

to increase the accuracy, we also use the angular velocity

derived from gyroscope. We use Kalman filter based on

quaternions to merge these two estimates. Note that we

Rxyz ¼ Rz /ð Þ � Ry hð Þ � Rx wð Þ ¼
cos h cos/ sinw sin h cos/þ cosw sin/ � cosw sin h cos/þ sinw sin/

� cos h sin/ � sinw sin h sin/þ cosw cos/ cosw sin h sin/þ sinw cos/

sin h � sinw cos h cosw cos h

2
64

3
75

ð7Þ

(a)

(b) (c)

(d) (e)

Quaternion Kalman
Filter RIMV

Accelerometer

Gyroscope

Euler
Angle Merged

Quaternion
Merged

Euler Angle

2nd Order BandPass
Butterworth Filter

0.1~0.8 Hz

x

y
z

x

y

z z
x

y

z’

,x’

y’
−

z’

x’

y’, y”

z” x”
−

cos

sin

−

z”, z”’ x”

y”
= cos ∙ cos

= sin

x”

y”

= − cos ∙ sin

Fig. 2 a The signal processing of RIMV. b The coordination of body frame. c The rotation of x-axis in body coordination. d The rotation of y’-
axis in body coordination. e The rotation of z00-axis in body coordination
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formulate the system equations in quaternions, so the sin-

gularity issue in Euler angle representation can be avoided.

The Kalman filter algorithm for quaternions is summa-

rized as below.

Time Update

x̂�q;k ¼ Ax̂q;k�1 ð11Þ

P�
q;k ¼ Pq;k�1 þ Qq ð12Þ

A ¼ I þ 1

2
� Dt

�

0 xx;k�1 xy;k�1 xz;k�1

�xx;k�1 0 �xz;k�1 xy;k�1

�xy;k�1 xz;k�1 0 �xx;k�1

�xz;k�1 �xy;k�1 xx;k�1 0

2
664

3
775 ð13Þ

Qq ¼ 10�4 � I4;P�
q;0 ¼ I4; x̂q;0 ¼ zq;0 ð14Þ

Here, xx;k�1;xy;k�1; and xz;k�1 are the angular velocities

of x-, y-, z-axes of the body coordination at the time tk-1. The

gyroscopemeasures the angular velocity in body coordinate;

therefore, the angular velocities of a fixed gravity vector with

respect to body coordination are �xx;k�1;�xy;k�1; and

�xz;k�1 and the state update matrix is described bymatrix A.

x̂�q;k�1 2 <4 is the prior state estimate of quaternions and

P�
q;k�1 2 <4�4 is the prior error covariance matrix at time tk.

x̂�q;k�1 2 <4 is the posterior state estimate of quaternions and

Pq;k�1 2 <4�4 is the posterior error covariancematrix at time

tk-1 given measurement zq;k�1 2 <4

Measurement Update

Kq;k ¼ P�
q;kHT

q HqP�
q;kHT

q þ Rq

� ��1

ð15Þ

x̂q;k ¼ x̂�q;k þ Kq;k zq;k � Hqx̂�q;k

� �
ð16Þ

Pq;k ¼ P�
q;k � Kq;kHqP�

q;k ð17Þ

zq;k ¼

q0

q1

q2

q3

2
664

3
775 ¼

cos
w
2
cos

h
2
cos

/
2
� sin

w
2
sin

h
2
sin

/
2

� sin
w
2
sin

h
2
cos

/
2
� cos

w
2
cos

h
2
sin

/
2

� cos
w
2
sin

h
2
cos

/
2
þ sin

w
2
cos

h
2
sin

/
2

� sin
w
2
cos

h
2
cos

/
2
� cos

w
2
sin

h
2
sin

/
2

2
66666666664

3
77777777775

ð18Þ

The matrix Hq ¼ I4 24�4 relates the state x̂q;k to the

measurement quaternions zq,k. The Kq;k 2 <4�4 is the

Kalman gain to minimize the posteriori error covariance

matrix Pq,k.

After the Kalman filter, the merged quaternions are

translated back into the Euler angles by Eq. (19) and the

Euler angle h is set as the motion signal induced by

respiration.

w
h
/

2
4

3
5 ¼

arctan
�2 q0q1 þ q2q3ð Þ
1� 2 q2

1 þ q2
2

� �
arcsin 2 q1q3 � q0q2ð Þð Þ
arctan

�2 q0q3 þ q1q2ð Þ
1� 2 q2

2 þ q2
3

� �

2
66664

3
77775

ð19Þ

Finally, through a 2nd-order bandpass Butterworth fil-

ter, the smooth motion signal is treated as the RIMV

estimate.

2.3 Data Fusion for Respiratory Rate Estimation

There are two hypotheses assumed in three data fusion

methods:

(1) The respiratory rate changes slowly in normal

respiration.

(2) The more accurate a respiration estimation method

is, the smaller variance in respiration estimation it

has.

2.3.1 Fusion Method 1: Naı̈ve Bayes Inference

In order to merge the five respiratory rate estimates, we

firstly adopt Naı̈ve Bayes inference. In this methods, the

less reliable estimates will have larger variances ri,k
2 and

small weights 1/ri,k
2 . The fusion equation is shown in

Eq. (20), in which zi,k are the five respiratory rate estimates

at time instance tk, the variances ri,k
2 are calculated by the

measuring the respiratory rate in the window of past 30 s,

and the lk is the estimated respiratory rate by Naı̈ve Bayes

inference.

lk ¼

P5
i¼1

zi;k

r2
i;kP5

i¼1
1
r2

i;k

ð20Þ

2.3.2 Fusion Method 2: Static Kalman Filter Data Fusion

Because the respiratory rate does not change rapidly, the

state-space model for respiratory rate can be approximated

as Eq. (21) and Eq. (22). xk is the estimate of the respira-

tory rate and wk is the process noise.Zk 2 <5 is the mea-

sured respiratory rate and Vk 2 <5 is the measurement

noise in EIP(z1), RIFV(z2), RIAV(z3), RIIV(z4), and

RIMV(z5).
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xk ¼ xk�1 þ wk ð21Þ
Zk ¼ Hxk þ Vk ð22Þ

Zk ¼ z1z2z3z4z5½ �T ;H ¼ I5�1 2 <5�1 ð23Þ

Here, wk and Vk are assumed to be white, independent and

have normal probability distribution.

p wkð Þ�N 0;Qð Þ ð24Þ
p Vkð Þ�N 0;Rð Þ ð25Þ

Q 2 <1 is the process noise covariance and R 2 <5�5 is the

measurement noise covariance matrix. Though they might

change with time, here Q = 1 is set as constant value and

the noise covariance matrix R is empirically set as

Rs 2 <5�5, where

R ¼ Rs ¼ 100 � I5 ð26Þ

The procedure for Kalman filter of respiratory rate

estimation is to first predict the state variable under the last

state estimation in the time-update cycle and adjust the

state variable according the five measured respiratory rates

in the measurement-update cycle.

Time Update

x̂�k ¼ x̂k�1 ð27Þ

p�
k ¼ pk�1 þ q ð28Þ

Measurement Update

Kk ¼ P�
k HT HP�

k HT þ R
� ��1 ð29Þ

x̂k ¼ x̂�k þ Kk Zk � Hx̂�k
� �

ð30Þ

pk ¼ p�
k � KkHp�

k ð31Þ

Here, x̂�k 2 <1 is the prior state estimate of respiratory

rate at time point tk and x̂k is the posterior state estimate of

respiratory rate at time point tk given measurement respi-

ratory rate Zk 2 <5. p�
k 2 <1 is the prior error variance and

pk 2 <1 is the posteriori error variance. The matrix Kk is

the Kalman gain to minimize the posterior error variance

pk. The initial parameter is set as x̂0 ¼ 0; p0 ¼ 1.

2.3.3 Fusion Method 3: Dynamic Kalman Filter Data

Fusion

Here dynamic measurement noise covariance matrix Rd 2
<5�5 in Eq. (32) is used. The varianceri,k

2 is calculated by the

measured respiratory rate in the window of the past 30 s.

Through the dynamic change of the measurement noise

covariance matrix, the dynamic Kalman filter will fuse the

data adaptively according the recently observations.

R ¼ Rd ¼

r21;k 0 0 0 0

0 r22;k 0 0 0

0 0 r23;k 0 0

0 0 0 r24;k 0

0 0 0 0 r25;k

2
666664

3
777775

ð32Þ

2.4 Experiments

The experimental procedure for static sitting is composed

of six tests of respiratory rates 8, 25, 10, 20, 12, 15 rcpm.

Fifteen subjects participated and were instructed to sit and

follow the metronome to breath. Between the tests, the

subjects had 30 s to move their body and relax. Signals

from EIP, accelerometer, gyroscope, and ECG were

acquired in 250 Hz sample rate.

For the dynamic running experiment, the running speed

first increases from 3 km/h to 9 km/h and decreases from

9 km/h back to 3 km/h. The fifteen subjects were

instructed to run while wearing the nose tube and the

respiration signal was measured by capnography (MD-

800, COMDEK Industrial Corp). Signals from EIP,

accelerometer, gyro, and ECG were acquired in 250 Hz

and the capnography was sampled in 50 Hz. The

capnography was used to generate the standard respiratory

rate as the ground truth to evaluate the estimated respi-

ratory rate in the running task.

3 Results and Discussion

3.1 Results of Electrodes Resistance

Table 2 summarizes the experimental results of resistance

tests. The resistance of Type 2 electrode (CB/PBT/PET-

wrapped AGposs yarn) is better than Type 3 electrode (CB/

PBT/PET-doubly- wrapped AGposs yarn), and similar to

Type 1 electrode (AGposs yarn). Therefore, Type 2 fabric

electrode is chosen for the smart clothing.

3.2 Results of Electrodes Impedance

Figure 3 shows the experimental result. Type 1 and Type 2

electrodes can pass signals in the range of 0.01–10,000 Hz,

and both of them have similar bandwidth. Though the

phase delay becomes significant for signals over 1000 Hz,

the proposed fabric electrodes are still adequate for ECG

sensing, because the bandwidth of ECG signal is only

about 0.1–55 Hz.
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3.3 Examples of Respiratory Waveform

For illustration, this section shows the five respiratory

signals extracted from the EIP, RIFV, RIAV, RIIV, and

RIMV in the 12-rcpm testing of subject 12 (s12).

3.3.1 Respiration Signal from EIP

The raw signal of EIP is shown in Fig. 4a and the filtered

EIP signal is shown in Fig. 4b. After the signal processing,

the EIP signal is smooth and near zero mean. The time

interval between two peaks is used to calculate the respi-

ratory rate.

3.3.2 Respiration Signal from RIFV by Heart Rate

Variance

The ECG is shown in Fig. 5a and the heart rate signal is

calculated by R-peak detection, as shown in Fig. 5b.

Through the zero-order hold and filtering, the smooth RIFV

signal shown in Fig. 5c is clear for respiratory rate

calculation.

3.3.3 Respiration Signal from RIAV by Baseline Removal

and Kurtosis

The baseline free ECG signal is shown in Fig. 6a and the

kurtosis between R-peak is shown in Fig. 6b. Through the

linear interpolation, the smoothed kurtosis signal is shown

in Fig. 6c. Finally, the RIAV signal generated by filtering

is shown in Fig. 6d.

3.3.4 Respiration Signal from RIIV by ECG Signal

Removal

After removing the ECG signal, the baseline signal (RIIV)

is shown in Fig. 7. The respiratory signal from RIIV is not

clear for subject 12.

3.3.5 Respiration Signal from Motion by Fusing

Accelerometer and Gyroscope

The three accelerations and angular velocities are shown in

Fig. 8a and Fig. 8b. The calculated Euler angle h is shown

in Fig. 8c and the filtered respiratory signal from RIMV is

Table 2 The resistance of electrodes made of three types of conductive fabric under three conditions

Fabric type Type 1 Type 2 Type 3

Wrapped yarn

CB/PBT/PET yarn 70/24f Double CB/PBT/PET yarn 70/24f

Components of wrapped yarn AGposs 70d/34f AGposs 70d/34f; 300TPM/Z Twist AGposs 70d/34f; 300TPM/Z Twist

Textile electrode

Fabric without any process 1.2 ± 0.1 X 2.3 ± 0.2 X 8.3 ± 1.2 X

Acid liquid 14.7 ± 2.1 X 9.9 ± 2.1 X 14.7 ± 2.1 X

Alkali liquid 6.5 ± 0.8 X 5.8 ± 0.1 X 6.5 ± 0.8 X

Type 1 electrode made of AGposs yarn

Type 2 electrode made of CB/PBT/PET-wrapped AGposs yarn

Type 3 electrode made of CB/PBT/PET-doubly-wrapped AGposs yarn
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shown in Fig. 8d. The respiratory signal here is clear

enough to estimate the respiratory rate.

3.4 Respiratory Rate Estimation

After the respiratory signals are generated, peak detection

is applied to calculate the respiratory rate. The estimated

respiratory rates of the eight methods are shown in Fig. 9.
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Here, Fusion 1 is Naı̈ve Bayes inference, Fusion 2 is static

Kalman filter, and Fusion 3 is dynamic Kalman filter. We

observe that the estimated respiratory rates are distributed

close to the target respiratory rate but with different vari-

ance in the static experiment. Although the respiratory

rates are inaccurate in some cases, especially in RIIV,

Fusion 1 and Fusion 3, which merges the respiratory rates

from EIP, RIFV, RIAV, RIIV, and RIMV, have consis-

tently high accuracy in respiratory rate estimation across all

six tests.

3.5 The Accuracy of Respiratory Rate Estimation

in Static Sitting

The mean and the standard deviation of absolute respira-

tory rate error are shown in Table 3. For the best result

(s12), the minimum mean of absolute error in Fusion 1 is

0.3 rcpm. The worst result is 7.9 rcpm in RIIV of s11, of

which the mean of absolute error in Fusion 1 is 0.6 rcpm

and the mean of absolute error in Fusion 3 is 0.8 rcpm. For

all subjects, Fusion 1 and Fusion 3 have the lowest mean of

absolute error and similar performance. But it also reveals

that the means by fusing a very good signal RIMV (mean

of absolute error: 0.6 rcpm) with the other four signals, the

fusion may yield worse results (mean of absolute error in

Fusion 1: 0.7 rcpm) than utilizing the single best sensor

alone, such as s8. As for the five respiratory signals, RIFV

has the best performance (mean of all subjects: 1.4 rcpm),

the second is RIMV (mean of all subjects: 1.8 rcpm), the

third is RIAV (mean of all subjects: 2.3 rcpm), the forth is

EIP (mean of all subjects: 2.9 rcpm), and the fifth is RIIV

(mean of all subjects: 3.9 rcpm).

In order to see if the fusion performance is better in

some specific respiratory rates, the box plot for three fusion

algorithms in static task over all subjects are applied, as

shown in Fig. 10a–c. The X-axis is the controlled respi-

ratory rate and the Y-axis is the respiratory rate errors

between the controlled respiratory rate and the fusion

method. Comparisons of three fusion methods, Fusion 1

and Fusion 3 have better results than Fusion 2. The median

error is near zero and the values of the Q1–1.5 IQR (in-

terquartile range) and the Q1 ? 1.5 IQR are within 3 to -3

rcpm in Fusion 1 or Fusion 3.
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Fig. 8 The signal processing of RIMV of subject 12 in static sitting

cFig. 9 The estimated respiratory rates of subject 12 across six tests in

static sitting. a Respiratory estimation of the three fusion methods.

b Respiratory estimation of EIP. c Respiratory estimation of RIFV.

d Respiratory estimation of RIAV. e Respiratory estimation of RIIV.

f Respiratory estimation of RIMV
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3.6 The Accuracy of Respiratory Rate Estimation

During Running

The mean and the standard deviation of absolute respira-

tory rate error during exercise are shown in Table 4. For

the best result (s7), the minimum absolute mean error in

Fusion 1 is 1.8 rcpm. The worst result is 10.3 rcpm in RIIV

of s3, of which the absolute mean error in Fusion 1 is 4.0

rcpm. The averages of absolute mean errors of all 8 res-

piratory signals are worse in running than in static sitting. It

reveals that dynamic movements affect all the respiratory

signals. But the averages of absolute mean errors in Fusion

1 and Fusion 3 are still within 3 rcpm.

For all subjects, Fusion 1 and Fusion 3 have the lowest

absolute mean error and similar performance. As for the

five respiratory signals, the ranking in terms of absolute

mean error are as follows: RIAV (3.7 rcpm), EIP (4.1

rcpm), RIFV (4.1 rcpm), RIMV (5.1 rcpm), and RIIV (5.3

rcpm). The movement artifacts deteriorate the quality of

respiratory signal estimation using RIMV and RIFV, which

though in static setting are more reliable than EIP, RIAV,

and RIIV.

To compare the respiratory times of three fusion meth-

ods and CO2 concentrations, the Bland–Altman plots for

three fusion algorithms in running task over 15 subjects are

applied, as shown in Fig. 10d–f. The Bland–Altman plots

show the difference between two different methods (In this

case: the respiratory times from CO2 concentration and

fusion method). The cycle-to-cycle interval (respiratory

time) measured was used to compare with the reference.

The X-axis is the mean of the respiratory times of CO2

concentration and fusion method and the Y-axis is the

difference between CO2 concentration and fusion method.

Comparing three fusion methods, Fusion 1 and Fusion 3

have better results than Fusion 2. The confidence limits for

Fusion 2 is from -0.843 to 0.731 s, the confidence limits

for Fusion 1 is from -0.76 to 0.713 s, and the confidence

limits for Fusion 3 is from -0.762 to 0.709 s. Overall, the

density of points from 1.5 to 3-s is similar except the

outliers from 3 to 4-s. These are caused by the larger dif-

ferences between the measured respiratory times and those

of referred CO2 concentrations.

No matter in the sitting or the running experiment,

Naı̈ve Bayes inference (Fusion 1) and the dynamic Kalman

filter (Fusion 3) have similar and better results than static

Kalman filter (Fusion 2). Under the assumption of slow

variation in respiratory signal, dynamic Kalman filter

should have better results than Naı̈ve Bayes inference,

which is only considering the variance of respiratory sig-

nals. The current finding might be due to that the state

space model we chose is too simple to represent the res-

piratory signal or that the coefficient of process noise

covariance is not optimized. Because the RIIV has the

worst result no matter in the static or running task, the extra

investigation which fused only four respiratory signals

without RIIV is done to see how the fusion methods

Table 3 The mean (standard

deviation) of absolute

respiratory rate error over 6 tests

in static sitting

Subject Fusion 1 Fusion 2 Fusion 3 EIP RIFV RIAV RIIV RIMV

s1 0.4 (0.6) 1.8 (1.4) 0.6 (0.7) 1.5 (2.6) 1.1 (1.9) 4.3 (3.5) 0.6 (1.0) 3.1 (4.0)

s2 0.8 (1.6) 1.9 (1.6) 0.9 (1.5) 3.5 (4.8) 0.9 (1.6) 1.7 (2.3) 4.1 (4.0) 1.2 (1.8)

s3 0.4 (0.5) 1.8 (1.4) 0.4 (0.6) 3.7 (4.4) 0.7 (1.0) 4.2 (3.8) 2.0 (2.8) 0.7 (1.2)

s4 0.7 (1.6) 1.8 (1.5) 0.8 (1.5) 1.9 (3.8) 0.8 (1.7) 2.4 (3.3) 3.9 (3.7) 1.1 (2.2)

s5 0.6 (0.9) 1.9 (1.5) 0.6 (0.9) 2.6 (3.9) 1.1 (1.8) 1.5 (2.4) 4.7 (4.2) 1.7 (2.3)

s6 0.4 (0.7) 1.3 (1.2) 0.5 (0.7) 2.3 (2.9) 0.7 (1.4) 2.9 (3.1) 1.3 (2.1) 0.7 (1.2)

s7 1.3 (1.2) 2.2 (1.6) 1.4 (1.2) 3.7 (4.2) 3.1 (3.4) 2.1 (2.2) 3.0 (2.9) 2.2 (2.5)

s8 0.7 (1.1) 2.8 (1.7) 0.9 (1.1) 3.9 (4.6) 1.5 (2.2) 5.2 (3.6) 4.6 (3.6) 0.6 (1.3)

s9 0.7 (1.0) 1.9 (1.6) 0.8 (1.0) 4.6 (5.3) 1.1 (1.8) 1.2 (1.9) 3.0 (3.4) 1.9 (2.5)

s10 0.4 (0.4) 1.5 (1.2) 0.4 (0.4) 3.1 (4.7) 1.1 (1.8) 1.1 (1.8) 3.4 (3.5) 1.0 (2.0)

s11 0.6 (1.2) 3.2 (1.8) 0.8 (1.2) 1.8 (3.5) 3.6 (4.0) 2.1 (3.6) 7.9 (5.2)** 2.8 (3.2)

s12 0.3 (0.3)* 1.6 (1.5) 0.4 (0.4) 1.2 (2.5) 0.5 (1.1) 2.3 (3.9) 3.3 (3.9) 1.5 (2.8)

s13 0.4 (0.6) 2.0 (1.6) 0.6 (0.7) 1.6 (2.2) 0.6 (1.3) 0.5 (1.2) 6.0 (4.9) 2.7 (3.1)

s14 0.9 (1.1) 2.0 (1.4) 1.0 (1.1) 4.5 (4.3) 1.1 (1.5) 1.4 (2.1) 3.5 (3.5) 2.4 (2.4)

s15 1.9 (2.0) 3.5 (2.1) 2.0 (1.9) 4.4 (4.8) 3.0 (3.1) 1.5 (1.7) 6.6 (4.1) 4.1 (3.8)

Mean 0.7 (1.0) 2.1 (1.5) 0.8 (1.0) 2.9 (3.9) 1.4 (2.0) 2.3 (2.7) 3.9 (3.5) 1.8 (2.4)

EIP electric impedance plethysmography; RIAV respiratory induced amplitude variation; RIFV respiratory

induced frequency variation; RIIV respiratory induced intensity variation; RIMV respiratory induced

movement variation

* The best result

** The worst result

Respiratory Rate Estimation in Smart Clothing 839

123



perform. Those results are shown in the Table 5. No matter

in the static or running task, the Fusion 2 without RIIV has

the better result than Fusion 2. It is because the

measurement noise covariance matrix is chosen as Rs and it

assumed the noise variances of each measurement signal

are the same. After the experiments, it can be found the five
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Fig. 10 a–c The box plots for three fusion algorithms over all subjects in controlled respiration. d–f The Bland–Altman plots of respiratory time

for three fusion algorithms over 15 subjects during running

Table 4 The mean (standard

deviation) of absolute

respiratory rate error during

running

Subject Fusion 1 Fusion 2 Fusion 3 EIP RIFV RIAV RIIV RIMV

s1 3.6 (3.4) 3.8 (3.6) 3.6 (3.4) 3.4 (2.7) 4.4 (4.0) 3.9 (3.3) 5.6 (5.0) 7.3 (7.2)

s2 4.0 (3.6) 4.0 (3.1) 4.0 (3.6) 3.7 (2.8) 5.7 (4.2) 5.3 (3.9) 4.6 (3.6) 7.7 (5.5)

s3 4.0 (3.5) 4.9 (4.0) 4.0 (3.5) 4.4 (4.3) 4.5 (4.4) 1.8 (2.0) 10.3 (6.3)** 8.2 (6.6)

s4 3.0 (3.4) 3.9 (3.4) 4.0 (3.4) 4.4 (3.5) 4.7 (3.7) 3.4 (3.1) 4.4 (3.9) 7.3 (5.3)

s5 3.4 (2.7) 4.2 (3.0) 3.4 (2.7) 7.8 (5.1) 4.8 (3.8) 5.7 (3.8) 7.4 (6.3) 3.6 (3.3)

s6 1.9 (2.0) 2.4 (2.0) 2.0 (2.0) 3.0 (2.8) 5.7 (4.3) 4.1 (3.5) 4.3 (3.9) 4.0 (4.8)

s7 1.8 (1.9)* 2.3 (1.8) 1.8 (1.9) 1.6 (1.5) 3.0 (2.9) 2.7 (2.4) 3.3 (3.9) 5.6 (4.5)

s8 3.3 (2.9) 3.5 (2.7) 3.3 (2.8) 4.1 (3.4) 4.2 (3.6) 3.8 (2.9) 4.4 (3.8) 6.1 (5.0)

s9 3.3 (3.1) 4.0 (3.4) 3.3 (3.1) 6.3 (6.2) 4.4 (3.4) 4.8 (3.8) 5.6 (5.9) 2.9 (2.4)

s10 1.9 (1.7) 3.1 (2.0) 1.9 (1.6) 4.5 (3.1) 2.8 (2.3) 3.1 (3.0) 6.2 (4.6) 2.0 (2.5)

s11 3.3 (2.9) 3.6 (3.0) 3.4 (2.8) 3.4 (2.8) 4.8 (4.2) 2.3 (2.3) 5.7(4.8) 7.7 (5.5)

s12 2.7 (1.9) 3.0 (2.1) 2.8 (1.8) 4.0 (3.0) 2.2 (1.8) 4.0 (2.7) 5.9 (5.4) 4.0 (3.5)

s13 3.1 (2.6) 3.2 (2.6) 3.1 (2.6) 4.2 (3.3) 3.4 (3.3) 3.9 (2.9) 5.7 (5.0) 4.4(3.9)

s14 2.2 (1.8) 2.3 (1.9) 2.2 (1.8) 3.2 (2.3) 3.8 (2.8) 3.1 (2.5) 3.5 (3.0) 2.5 (2.1)

s15 2.3 (1.8) 2.3 (1.8) 2.3 (1.8) 4.2 (3.0) 3.8 (2.4) 3.5 (2.7) 3.3 (2.5) 3.8 (3.3)

Mean 3.0 (2.6) 3.4 (2.7) 3.0 (2.6) 4.1 (3.3) 4.1 (3.4) 3.7 (3.0) 5.3 (4.5) 5.1 (4.4)

EIP electric impedance plethysmography; RIAV respiratory induced amplitude variation; RIFV respiratory

induced frequency variation; RIIV respiratory induced intensity variation; RIMV respiratory induced

movement variation

* The best result

** The worst result
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measurement noise variances are totally different. There-

fore, as the RIIV with largest variance was removed in the

Fusion 2, the result is better. In the other hand, Fusion 1

and Fusion 3 updated the measurement noise variances in

each time step by calculating the variances of the mea-

suring respiratory rate in the window of past 30 s, therefore

the current variances of RIIV are considered in Fusion 1

and Fusion3. The results show the mean of absolute error in

Fusion 1 without RIIV is even a little worse than Fusion 1

in the static task. For a better result for static Kalman filter,

the noise covariance matrix should be also tuned by offline

data. We consider these potential improvements as our

future work.

4 Conclusions

In this study, multi-sensor wearable smart clothing is

developed for measuring different human bio-sensors and

sensor fusion is used to achieve better respiratory estima-

tion. It can not only sense ECG, respiration, acceleration,

and gyro, but also makes the respiratory rate estimation

more accurate by data fusion. It is based on our novel

textile electrodes, which have electric properties similar to

the tradition electrodes and silver textile electrodes, but has

reduced usage of silver fiber and therefore lower bio-tox-

icity and cost in manufacturing. In addition, we demon-

strate that the proposed data fusion methods can combine

multiple inferior respiratory sensors to reconstruct respi-

ratory rate signals with lower error on average.

In the future, we plan to research in the adaptive peak

detection for respiratory estimation because the accuracy of

respiratory estimation highly depends on peak detection.

Also, we will investigate in distributed sensor system. The

system architecture in the current study is a central control

system, inwhich amain controller receives data from sensors

and sends command to a smart phone user interface, and

therefore sensors need to be positioned together in the same

controller box. For applications, such as continuous blood

pressure measurement, EMG sensing, and human joint

estimation, the central system will lead to very complicated

connections: for example, the PPG sensor on the arm or

forearm to calculate blood pressure; the EMG electrodes on

eachmuscle belly; the accelerometer on each body segments

to measure joint angles. Using a distributed sensor system

allows sensors positioned anywhere on the body by inte-

grating data directly to the cloud or smart phone.

Our current study provides a framework for sensor

integration in smart clothing. Though the fusion methods in

this study are unsupervised, supervised fusion methods

based on probabilistic graphical model, Gaussian process,

or support vector machine, can be developed for better

respiratory rate estimation. Beyond respiratory rate esti-

mation, this framework can also be applied to estimate

ECG, heart rate, blood pressure, activity level, exercise

performance, and sleep quality. We are interested in further

developing these functions and their integration for daily

life monitoring.
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