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Abstract Congestive heart failure (CHF) is a common

chronic condition which affects several millions of people

around the world. Heart rate data which are crucial infor-

mation needed for diagnosis and classification of CHF are

similar to several physiological signals that exhibit an

extraordinary range of patterns and behaviors. In this study,

the spectral exponents of RR interval data of two groups of

subjects, i.e., subjects with CHF and subjects with normal

sinus rhythm, obtained using a wavelet-based approach are

examined where the second order Daubechies wavelets are

used. The spectral exponent of RR interval data is deter-

mined from a slope of logarithm of variance of wavelet

coefficients (log2var(dm,n)) versus levels of wavelet-based

decomposition (m) graph. In particular, the spectral expo-

nent is estimated from the levels of wavelet-based

decomposition ranges between m = 1 and m = 3 corre-

sponding to finer-scale components of RR interval data.

The minimum of spectral exponents of epochs of RR

interval data is proposed as a quantitative feature for dis-

criminating a subject with CHF. The computational results

show that the subjects with CHF can be perfectly dis-

criminated from the subjects with normal sinus rhythm

using the spectral exponent-based feature. Furthermore, the

perfect CHF discrimination can be achieved using the RR

interval data with epoch size as short as 128 beats (ap-

proximately 2 min).
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1 Introduction

Heart failure (HF), also called congestive heart failure, is a

chronic and progressive condition in which the heart can-

not pump enough blood through to meet the body’s needs

for blood and oxygen [1–3]. A complex clinical syndrome

of heart failure results from any structural or functional

impairment of ventricular filling or ejection of blood [4].

Heart failure is a common but serious condition. In the

United States, there are about 5.1 million people who have

heart failure [5]. In 2009, heart failure is a contributing

cause of one in nine death in the United States [5].

Symptoms of heart failure may include shortness of breath;

rapid or irregular heartbeat; fatigue and weakness; swelling

in your legs, ankles and feet; persistent cough or wheezing

[6]. Common causes of heart failure are coronary artery

disease, high blood pressure, and diabetes [3].

To diagnose heart failure, medical history and symp-

toms are reviewed and the physical examination is per-

formed. One or more diagnostic tests such as blood tests,

chest X-ray, electrocardiogram (ECG), echocardiogram,

radionuclide ventriculography may be ordered for further

diagnosis. There is no single diagnostic test for heart fail-

ure [4]. The ACCF/AHA Stages of Heart Failure [7] and

the New York Heart Association (NYHA) Functional

Classification [7, 8] are commonly used heart failure

classification systems that provide complementary infor-

mation about the presence and severity of heart failure [4].

The ACCF/AHA Stages of Heart Failure categorize

patients into four stages, i.e., A–D [7], emphasizing the
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development and progression of disease [4]. The NYHA

Functional Classification categorize patients into four

classes, i.e., I–IV [8], focusing on exercise capacity and the

symptomatic status of the disease [4]. Four NHYA classes

indicate the severity of symptoms.

ECG which records the electrical activity of the heart is

one of the most common diagnostic tests. ECG helps in

diagnosis of heart rhythm and also heart damage. Heart rate

variability (HRV) analysis is one of conventional and

fundamental methods used for assessing heart’s health and

diagnosing heart diseases. HRV may be evaluated using a

number of methods [9] including time domain methods,

statistical methods, geometric methods, frequency domain

methods, and nonlinear methods. HRV has also been

applied for diagnosing and classifying congestive heart

failure. Measures obtained from various HRV analysis

techniques were investigated. Several measures (for

example, [10–16]) showed their potentials for application

on congestive heart failure classification. Even though

intriguing results obtained in these studies, multiple fea-

tures were used and complicated classifiers were applied.

In the past few decades, concepts and computational

tools derived from the study of complex systems including

chaos theory, nonlinear dynamics and fractals have gained

increasing interests and been widely applied to various

applications in biology and medicine. One of the main

reasons is that physiological signals and systems can

exhibit an extraordinary range of patterns and behaviors

[17] that may defy concepts and properties of linear sys-

tems such as superposition theorem. In particular, nonlin-

ear phenomena are certainly involved in the underlying

mechanism of heartbeat and its variability [9]. Underlying

dynamics of heartbeat is determined by complex interac-

tions of hemodynamic, electrophysiological, and humoral

variables as well as by the autonomic and central nervous

regulations [9]. Complex systems analysis and concepts

have therefore played a remarkable role in cardiology. A

number of measures that have been applied to examine

characteristics of HRV include spectral exponent, scaling

exponent, correlation dimension, and Lyapunov exponent

[9].

Fractals is one of several complex systems concepts that

have been used to characterize heart’s underlying dynamics

and behaviors. Typically, the mathematical concept of

fractals is associated with irregular objects that manifest a

geometric property called scale-invariance or self-similar-

ity [17, 18]. Fractal forms are composed of subunits

resembling the structure of the macroscopic object [17]

which in nature can emerge from statistical scaling

behavior in the underlying physical phenomena [19]. The

His-Purkinje conduction system is a complex anatomic

structure exhibiting fractal like geometry [17, 20]. There

have been evidences that biological and physiological

systems exhibit scale-invariant or scale-free behaviors.

Fractal properties of biological and physiological systems

can be strikingly different in their nature, origin, and

appearance [21]. Such scale-invariant or scale-free behav-

ior is a tendency of a complex system to develop long-

range correlations in time and space [22–24].

A spectral exponent c is a measure that characterizes the

power law behavior of 1/f processes. The 1/f processes is an

important class of statistical scale-invariant or self-similar

random processes [19, 25, 26]. The spectral exponent

specifies the distribution of power in 1/f processes from

low to high frequencies. The wavelet transform is a natural

tool for characterizing self-similar or scale-invariant sig-

nals and plays a significant role in the study of self-similar

signals and systems [19, 25, 26], in particular 1/f processes

[19, 25, 26]. In addition to the power spectral density tra-

ditionally used, the spectral exponent can be determined

using a wavelet-based approach [19, 25, 26] whereas the

wavelet-based approach can be used to estimate the power

spectral density [27]. From the wavelet-based representa-

tions for 1/f processes [19, 25, 26], it was proved that the

spectral exponent of a nearly-1/f signal is characterized by

a linear relationship between logarithm of variance of

wavelet coefficients and scale (or level of wavelet

decomposition). The wavelet-based approach was shown to

allow an unbiased estimate of the spectral exponent [27].

The spectral exponent is directly related to the self-

similarity parameter, i.e., Hurst exponent H [19, 25, 26].

The spectral exponent is also related to the scaling expo-

nent a [28] which characterizes the long-range correlation

of a signal. It was computationally shown that the rela-

tionship between the spectral exponent and the scaling

exponent is a = (c ? 1)/2 [29]. Furthermore, it was shown

that the spectral exponent obtained using the wavelet-based

approach provides the better performance on long-range

correlation characterization than the scaling exponent

obtained using the detrended fluctuation analysis (DFA)

method [29]. The main advantage of the DFA method is

that it can detect long-range correlations in non-stationary

signal [30]. Investigations of cardio-pulmonary system

including congestive heart failure and HRV are one of

earliest applications of the DFA method. In [30, 31], the

DFA method was applied to examine the long-range cor-

relation behaviors of heart rate time series of subjects with

normal sinus rhythm and those of subjects with congestive

heart failure. From both studies, it was found that the

scaling exponents of heart rate time series of both subjects

were different. Furthermore, the crossover phenomena was

observed [30].

The wavelet-based approach for spectral exponent esti-

mation has been applied to a number of electrophysiolog-

ical signals associated with various physiological and

pathological states such as epileptic intracranial EEG (or
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electrocorticogram) signals [32] and sleep EEG signals

[33]. In addition to the spectral exponents of signals that

are typically determined from a wide range of scales, a

variety of quantitative features have been extracted from

slopes of the logarithm of variance of wavelet coefficients

versus scale graph over specific ranges of scales for clas-

sification and detection purposes [34]. In this study, a

single quantitative feature extracted from the spectral

exponent obtained using a wavelet-based approach is

applied for congestive heart failure classification. A mini-

mum of spectral exponents is the feature based on spectral

exponent examined. Since a single quantitative feature is

used, a simple logical comparison, i.e., a thresholding

technique, is applied for discriminating a subject with

congestive heart failure.

2 Materials and Methods

2.1 Data and Subjects

Two sets of RR interval data are examined in this study.

The first set belongs to the RR interval data of subjects with

normal sinus rhythm (NSR group) that were obtained from

the MIT-BIH Normal Sinus Rhythm Database (NSRDB)

available online at http://physionet.org/physiobank/data

base/nsrdb/ [35]. Another set belongs to the RR interval

data of subjects with congestive heart failure (CHF group)

that were obtained from the BIDMC Congestive Heart

Failure Database (CHFDB) available online at http://phy

sionet.org/physiobank/database/chfdb/ [35].

The MIT-BIH Normal Sinus Rhythm Database includes

18 long-term ECG recordings of subjects referred to the

Arrhythmia Laboratory at Boston’s Beth Israel Hospital

(now the Beth Israel Deaconess Medical Center). The

subjects included 5 men (aged from 26 to 45 years) and 13

women (aged from 20 to 50). All subjects included in this

database were found to have had no significant

arrhythmias.

The BIDMC Congestive Heart Failure Database

includes 15 long-term ECG recordings of subjects with

severe congestive heart failure (NYHA class 3–4). The

subjects included 11 men (aged from 22 to 71 years) and 4

women (aged from 54 to 63 years). This group of subjects

was part of a larger study group receiving conventional

medical therapy prior to receiving the oral inotropic agent,

milrinone [35].

The original ECG recordings of subjects in the MIT-

BIH Normal Sinus Rhythm Database were digitized at 128

samples per second while the original ECG recordings of

subjects in the BIDMC Congestive Heart Failure Database

were digitized at 250 samples per second. Each ECG

recording is approximately 20 h in duration. The beat

annotations in both databases were obtained by automated

analysis.

2.2 A Wavelet-Based Approach and a Spectral

Exponent-Based Feature

A quantitative feature of RR interval data used in this study

is obtained from the derivation of the wavelet-based rep-

resentations for 1/f processes [19, 25, 26]. Typically,

models of 1/f processes are represented using a frequency

domain characterization. The dynamics of 1/f processes

exhibit the power-law behavior [36] and can be charac-

terized in the form of [25, 26]

Sx xð Þ� r2x
xj jc ð1Þ

over several decades of frequency x, where Sx(x) is the

Fourier transform of the signal x(t) and c is the spectral

exponent. In [19, 25, 26], it was proved that the spectral

exponent of 1/f processes can be determined from the

corresponding wavelet coefficients.

The steps for computing the spectral exponent of RR

interval data are as follows:

1. Decompose RR interval data into M levels using the

wavelet-basis expansions to obtain the wavelet coef-

ficients dm,n where m denotes a level, i.e., m = 1, 2,…,

M;

2. Compute the variance of wavelet coefficients dm,n

corresponding to each level m;

3. Take the logarithm to base 2 of the corresponding

variances of wavelet coefficients;

4. Determine the spectral exponent c by estimating the

slope of a log2var(dm,n)-m graph over a specified range

of levels m.

The minimum of spectral exponents of RR interval data is

proposed as the quantitative feature for discriminating a

subject with congestive heart failure.

2.3 Data Analysis and Classification

The RR interval data of subjects from both NSR and CHF

groups are partitioned into four different sizes of epochs:

64 (26), 128 (27), 4096 (212), and 8192 (213) beats or

samples. These epoch sizes are equivalent to approximately

1, 2, 56, and 114 min long of RR interval data, respec-

tively. In the computational analysis, the RR interval data

are partitioned without overlap at the epoch sizes of 64 and

128 while at the epoch sizes of 4096 and 8192, the RR

interval data are partitioned with 50% overlap. Remark that

the total number of epochs of RR interval data of each

subject is varied corresponding to its length of RR interval

data originally obtained from the NSRDB and CHFDB
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databases. In general, the RR interval data span approxi-

mately 12 h (or a half day).

The wavelet-based approach is applied to epochs of RR

interval data using the second order Daubechies wavelets.

The Daubechies wavelet family is one of the most com-

monly used wavelet families and has several great char-

acteristics including orthogonality and finite compact

support. The number of vanishing moments for wavelet

function of the second order Daubechies is 2. The epochs

of RR interval data are decomposed into the highest levels

corresponding to their epoch sizes. The corresponding

levels of wavelet-based decomposition of RR interval data

M are 4, 5, 10, and 11 for the epoch sizes of 64, 128, 4096,

and 8192, respectively. However, the level of wavelet-

based decomposition used in the spectral exponent esti-

mation ranges between m = 1 and m = 3. Here, the cor-

responding spectral exponent is denoted by c(1,3). This

range of levels of wavelet-based decomposition is chosen

because it provides the best discrimination results. A linear

least-squares regression technique is used for estimating

the spectral exponent c, i.e., the slope of a log2var(dm,n)-

m graph.

To evaluate the performance of the proposed feature, a

simple binary classification is performed. By aiming to

obtain a perfect classification of CHF subjects, the highest

value of proposed features of the CHF subjects is used as a

threshold. The classification performance is evaluated

using the following three measures: accuracy (Ac), sensi-

tivity (Se), and specificity (Sp) that are, respectively, given

by

Ac ¼ TPþ TNð Þ= TPþ TNþ FPþ FNð Þ; ð2Þ
Se ¼ TP= TPþ FNð Þ; ð3Þ
Sp ¼ TN= TNþ FPð Þ ð4Þ

where TP, TN, FP, and FN denote a number of true posi-

tives, a number of true negatives, a number of false posi-

tives, and a number of false negatives. A receiver operating

characteristic (ROC) curve, that is a two-dimensional graph

in which the true positive rate (sensitivity) is plotted on the

X-axis and the false positive rate (1-specificity) is plotted

on the Y-axis [37], is also used to evaluate the classification

performance. Since the number of subjects is small, the

leave-one-out cross validation is further applied to validate

the classification performance.

In addition, the performance of the proposed feature is

compared to another two nonlinear features, the approxi-

mate entropy ApEn and the sample entropy SampEn, and

their sum referred to as SUM_IE [10]. The feature SUM_IE

is the best individual quantitative feature among the other

two features SUM_TD, a combination of time-domain

features, and SUM_FD, a combination of frequency-do-

main features, examined in Ref. [10]. All computational

experiments are performed using MATLAB�

(MathWorks�, Natick, Massachusetts, USA) running on a

Mac OS X notebook computer with 2.6 GHz Intel Core i5

CPU and 8 GB (1600 MHz, DDR3) memory.

3 Results

3.1 Characteristics of log2var(dm,n)-m Graphs of RR

Interval Data

Plots of average log2var(dm,n) of 128-beat epochs of RR

interval data corresponding to each subject from the NSR

group are shown in Fig. 1a while those corresponding to

Fig. 1 Plots of average log2var(dm,n) of 128-beat epochs of RR

interval data. a Subjects with normal sinus rhythm. b Subjects with

congestive heart failure
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each subject from the CHF group are shown in Fig. 1b. A

distinguishing characteristic of 128-beat epochs of RR

interval data differentiating between the NSR and CHF

group is observed. The value of log2var(dm,n) of 128-beat

epochs of RR interval data of the NSR subjects tends to

increase as the level m increases. On the contrary, the plot

of log2var(dm,n) of 128-beat epochs of RR interval data of

the CHF subjects generally tends to lie flat.

Figure 2 shows plots of average log2var(dm,n) of

4096-beat epochs of RR interval data corresponding to

each subject from the NSR group and those corresponding

to each subject from the CHF group. With the wider range

of levels of wavelet-based decomposition, a further

intriguing characteristic of 4096-beat epochs of RR interval

data is revealed. The plot of log2var(dm,n) of 4096-beat

epochs of RR interval data of the NSR subjects tends to be

straight or its slope tends to slightly change. The slope of

log2var(dm,n)-m graphs of 4096-beat epochs of RR interval

data of the CHF subjects however substantially varies, in

particular compared between those corresponding to

smaller and larger levels of wavelet-based decomposition.

Furthermore, the distribution of log2var(dm,n) of

128-beat epochs of RR interval data of all NSR and CHF

subjects are shown in Fig. 3. Also, the box plots shown in

Fig. 4 show the distribution of log2var(dm,n) of 4096-beat

epochs of RR interval data of all NSR and CHF subjects,

respectively. The trends of log2var(dm,n)-m graphs of RR

interval data of subjects from both NSR and CHF groups

are evidenced. Tables 1 and 2 summarize the means and

the standard deviations of log2var(dm,n) of 128-beat epochs

Fig. 2 Plots of average log2var(dm,n) of 4096-beat epochs of RR

interval data. a Subjects with normal sinus rhythm. b Subjects with

congestive heart failure

Fig. 3 Distribution of log2var(dm,n) of 128-beat epochs of RR

interval data. a Subjects with normal sinus rhythm. b Subjects with

congestive heart failure
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of RR interval data of NSR and CHF subjects and those of

4096-beat epochs of RR interval data of subjects from NSR

and CHF subjects, respectively.

3.2 Discrimination of Congestive Heart Failure

Patients

The spectral exponents c(1,3) of epochs of RR interval data

of the NSR and CHF subjects at the epoch sizes of 64, 128,

4096, and 8192 beats are compared in the box plots shown

in Figs. 5a, b, c and d, respectively. The spectral exponents

c(1,3) of epochs of RR interval data of subject numbers 1

through 18 on the left-hand side of the vertical dotted line

are belonged to the NSR subjects while the spectral

exponents c(1,3) of epochs of RR interval data of subject

numbers 1–15 on the right-hand side of the vertical dotted

line are belonged to the CHF subjects. As evidenced from

the plots of log2var(dm,n), the spectral exponents c(1,3) of
epochs of RR interval data of the CHF subjects tend to be

less than those of epochs of RR interval data of the NSR

subjects.

The box plots shown in Figs. 6a, b, c, d, respectively,

compare between the spectral exponent-based features, i.e.,

the minimums of spectral exponents c(1,3), of epochs of RR
interval data of corresponding NSR subjects and the

spectral exponent-based features of epochs of RR interval

data of corresponding CHF subjects at the epoch sizes of

64, 128, 4096, and 8192 beats. At the epoch sizes of both

128 and 4096 beats, the spectral exponent-based features of

epochs of RR interval data of the NSR and CHF subjects

are completely separated. On the other hand, such char-

acteristic does not hold at the other two epoch sizes. The

means, minimums, and maximums of the spectral expo-

nent-based features of epochs of RR interval data of the

NSR and CHF subjects at all epoch sizes are shown in

Table 3. At the thresholds of -2.1199, -1.7954, -0.2795,

and 0.5306, the corresponding classification results and

also the performance of congestive heart failure classifi-

cation are summarized in Table 4. Furthermore, the results

Fig. 4 Distribution of log2var(dm,n) of 4096-beat epochs of RR

interval data. a Subjects with normal sinus rhythm. b Subjects with

congestive heart failure

Table 1 The statistical values (mean ± SD) of log2var(dm,n) of

128-beat epochs of RR interval data

Level m Subject group

NSR CHF

1 -11.3007 ± 1.6831 -11.4150 ± 3.4308

2 -10.1249 ± 1.8257 -11.8220 ± 2.9184

3 -8.7636 ± 1.7090 -12.1238 ± 2.6711

4 -7.6503 ± 1.6448 -11.7084 ± 2.5401

5 -7.0356 ± 1.9289 -10.6717 ± 2.7109

Table 2 The statistical values (mean ± SD) of log2var(dm,n) of

4096-beat epochs of RR interval data

Level m Subject group

NSR CHF

1 -11.0810 ± 1.4629 -10.3232 ± 3.1946

2 -9.7728 ± 1.5125 -10.8161 ± 3.0295

3 -8.2449 ± 1.1623 -11.1230 ± 2.7658

4 -7.0858 ± 0.9785 -10.8236 ± 2.6168

5 -6.2300 ± 1.1012 -9.7712 ± 2.5648

6 -5.4623 ± 1.1903 -8.4622 ± 2.5385

7 -4.5854 ± 1.2567 -7.8088 ± 2.4032

8 -3.6345 ± 1.4119 -6.9810 ± 2.4576

9 -2.7463 ± 1.5912 -5.8914 ± 2.5480

10 -1.8033 ± 1.8129 -4.5737 ± 2.6548
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Fig. 5 Comparison of the

spectral exponents of RR

interval data of all subjects

corresponding to various epoch

sizes. a Epoch size of 64 beats.

b Epoch size of 128 beats.

c Epoch size of 4096 beats.

d Epoch size of 8192 beats

Fig. 6 Comparison of the

corresponding minimum

spectral exponents of RR

interval data of each subject

group corresponding to various

epoch sizes. a Epoch size of 64

beats. b Epoch size of 128 beats.

c Epoch size of 4096 beats.

d Epoch size of 8192 beats
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of leave-one-out cross validation are summarized in

Table 5. The one observation of CHF subjects left out in

the cross validation leads to a decrease in accuracy and

sensitivity while the specificity remains the same.

Figure 7a–d shows the ROC curves of congestive heart

failure classification using the spectral exponent-based

features of epochs of RR interval data with the size of 64,

128, 4096, and 8192 beats, respectively. The ROC curves

of congestive heart failure classification using the features

of epochs of RR interval data with the size of 64, 128,

4096, and 8192 beats based on the ApEn (plotted in blue),

the SampEn (plotted in black) and the SUM_IE are,

respectively, shown in Fig. 8a–d. The corresponding areas

under ROC curves shown in Figs. 7a–d and 8a–d are

compared in Table 6. Also, the average computational

times of spectral exponents, ApEn and SampEn of epochs

of RR interval data with epoch sizes of 64, 128, 4096, and

8192 beats are summarized in Table 6. As expected, the

areas under ROC curves of congestive heart failure clas-

sification using the spectral exponent-based features of

epochs of RR interval data with the size of 128 and 4096

beats are 1.0. The best area under ROC curve of congestive

heart failure classification among three nonlinear features,

i.e., ApEn, SampEn, and SUM_IE, is 0.9370 achieved using

the feature based on sample entropy SampEn of epochs of

RR interval data with the size of 128 beats.

4 Discussion

From the computational results, at the larger size of epochs,

i.e., 4096 beats, it is observed that the epochs of RR

interval data of subjects with congestive heart failure have

a shorter-range correlation compared to those of RR

interval data of subjects with normal sinus rhythm in which

their corresponding plots of log2var(dm,n) tend to be

straight. The so-called crossover phenomena, the phe-

nomena that a slope of corresponding plot changes, is also

observed in the plots of log2var(dm,n) of epochs of RR

interval data. This is consistent with the previous findings

that can be evidenced in the power spectrum [31] and also

the plots of the DFA [30]. The crossover points are about at

the levels of wavelet-based decomposition m = 3 and

m = 4.

The spectral exponents of epochs of RR interval data of

subjects with congestive heart failure determined from the

range of lower levels of wavelet-based decomposition, i.e.,

between m = 1 and m = 3, are significantly lower than

those of epochs of RR interval data of subjects with normal

sinus rhythm with p � 0.0001. In fact, there is only the

12th subject with congestive heart failure whose spectral

exponents c(1,3) are not separable from those of epochs of

RR interval data of subjects with normal sinus rhythm. The

level of wavelet-based decomposition ranging from m = 1

and m = 3 corresponds to finer-scale (high-frequency)

components of underlying dynamics of heartbeat. The

spectral exponents of epochs of RR interval data of sub-

jects with congestive heart failure and those of subjects

with normal sinus rhythm determined from the range of

higher levels of wavelet-based decomposition, i.e.,

between m = 4 and m = 10, corresponding to large-scale

(low-frequency) components of underlying dynamics of

heartbeat are approximately identical.

Furthermore, analogous to the power spectral density,

the plots of log2var(dm,n) of epochs of RR interval data of

subjects with normal sinus rhythm indicates that the cor-

responding power of epochs of RR interval data constantly

Table 3 Statistical values of

the spectral exponent-based

features of epochs of RR

interval data

Epoch size Mean Min Max

NSR CHF NSR CHF NSR CHF

64 -1.3674 -3.2139 -2.9171 -4.7305 -0.4693 -2.1199

128 -0.7635 -2.6977 -1.6023 -4.3561 -0.0463 -1.7954

4096 0.6852 -1.1785 0.0998 -2.4830 1.3683 -0.2795

8192 0.8543 -0.9542 0.1808 -2.3941 1.7025 0.5306

Table 4 Performance of the congestive heart failure classification

using the spectral exponent-based features

Epoch size TP TN FP FN Ac Se Sp

64 15 16 2 0 0.9394 1.0 0.8889

128 15 18 0 0 1.0 1.0 1.0

4096 15 18 0 0 1.0 1.0 1.0

8192 15 14 4 0 0.8788 1.0 0.7778

Table 5 Results of leave-one-out cross validation of the congestive

heart failure classification using spectral exponent-based features

Epoch Size TP TN FP FN Ac Se Sp

64 14 16 2 1 0.9091 0.9333 0.8889

128 14 18 0 1 0.9697 0.9333 1.0

4096 14 18 0 1 0.9697 0.9333 1.0

8192 14 14 4 1 0.8485 0.9333 0.7778
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increases as the scale becomes larger or the frequency

decreases. Similarly, from the plots of log2var(dm,n) of

epochs of RR interval data at the larger scales, i.e., between

the levels m = 4 and m = 10, it is shown that the power of

epochs of RR interval data of subjects with congestive

heart failure increases as the scale becomes larger. At the

lower scales, i.e., between m = 1 and m = 4, the power of

epochs of RR interval data of subjects with congestive

heart failure however generally remains the same or

slightly decreases as the scale becomes larger. In particular,

the spectral exponents c(1,3) of epochs of RR interval data

of subjects with congestive heart failure are mostly nega-

tive. This suggests that the power of epochs of RR interval

data of subjects with congestive heart failure decreases as

the frequency decreases. It is also observed that the spectral

exponent of RR interval data of both subjects with con-

gestive heart failure and subjects with normal sinus rhythm

increases as the epoch size increases. This implies that as

the time window becomes longer there is a greater increase

in larger-scale (lower-frequency) components of underly-

ing dynamics of heartbeat compared to the finer-scale

(higher-frequency) components of underlying dynamics of

heartbeat.

The computational results show that the feature of

spectral exponents of RR interval data can be used to

discriminate subjects with congestive heart failure

excellently. The epoch size used in RR interval data seg-

mentation has however an influence on the discrimination

result. The segmentation of RR interval data into epochs

with size ranging between 128 (27) and 4096 (212) beats

results in the perfect discrimination of subjects with con-

gestive heart failure. This is because the underlying

dynamics of heartbeat associated with congestive heart

failure does not manifest in too short epochs of RR interval

data, i.e., epoch size of 64 beats (approximately 1 min). On

the other hand, too long epochs of RR interval data taint the

distinct underlying dynamics of heartbeat associated with

congestive heart failure.

In Ref. [10], the perfect CHF classification was obtained

with the accuracy, the sensitivity, and the specificity of

100.0, 100.0, and 100.0%, respectively, using three short-

term HRV features including a combination of time-do-

main features SUM_TD, a combination of frequency-do-

main features SUM_FD, and a combination of nonlinear

features SUM_IE. The three features were however based

on nine measures while an SVM classifier with polynomial

kernel function was used [10]. The approach proposed in

Ref. [10] was compared and shown to be superior to a

number of methods including [14–16]. The genetic algo-

rithm and the k-nearest neighbor classifier was applied in

Ref. [14] and the best performance with the sensitivity and

the specificity of 100.0 and 94.74%, respectively. A

Fig. 7 ROC curves of

congestive heart failure

classification using the spectral

exponents corresponding to

various epoch sizes. a Epoch

size of 64 beats. b Epoch size of

128 beats. c Epoch size of 4096

beats. d Epoch size of 8192

beats

284 S. Janjarasjitt

123



combination of conventional HRV and wavelet entropy

measures is used and classified using the genetic algorithm

and the k-nearest neighbor classifier [14]. A classifier based

on classification and regression tree method was developed

and applied for congestive heart failure classification in

Refs. [15, 16]. The sensitivity of 100.0% and the specificity

of 89.74% were achieved.

However, when the nonlinear feature SUM_IE and its

two components, i.e., ApEn and SampEn, are separately

applied for the congestive heart failure classification, the

corresponding classification performances are reduced.

Furthermore, the computational times of three nonlinear

features, i.e., ApEn, SampEn, and SUM_IE, are substan-

tially higher than the computational times of the spectral

exponents-based features. The computational times of

spectral exponents of epochs of RR interval data with

epoch size of 128 and 4096 beats providing the perfect

classification performance are only 1.9 and 2.2 ms. The

computational results thus suggest that the wavelet-based

approach can be applied to a time series of RR intervals for

an instant processing and also the spectral exponent-based

features are an excellent quantitative feature for CHF

classification.

5 Conclusions

In this study, the spectral exponent of RR interval data

obtained using the wavelet-based approach is demonstrated

to be, in general, an excellent measure used for

Fig. 8 ROC curves of

congestive heart failure

classification using the ApEn

(plotted in blue), SampEn

(plotted in black) and SUM_IE

(plotted in red) corresponding to

various epoch sizes. a Epoch

size of 64 beats, b Epoch size of

128 beats, c Epoch size of 4096

beats, and d Epoch size of 8192

beats

Table 6 Comparison of

performance of the congestive

heart failure classification

Epoch Size Area under curve Computational time (ms)

c ApEn SampEn SUM_IE c ApEn SampEn

64 0.9815 0.9259 0.9222 0.9296 1.8 11.9 8.9

128 1.0 0.9222 0.9370 0.9296 1.9 46.1 32.6

4096 1.0 0.8815 0.8667 0.8852 2.2 55,916.4 41,993.2

8192 0.9852 0.8185 0.7778 0.7926 2.4 254,830.9 202,822.9
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discriminating patients with congestive heart failure. Fur-

ther, the minimum spectral exponent of RR interval data is

shown to be a quantitative feature of spectral exponents of

RR interval data that results in the perfect discrimination of

congestive heart failure patients. The subjects with con-

gestive heart failure can be perfectly discriminated from

the subjects with normal sinus rhythm using a simple

binary classification scheme with the single feature, i.e., the

minimum spectral exponent of epochs of RR interval data.

The epoch size of RR interval data can be as short as 128

beats or approximately 2 min. This therefore suggests that

the diagnosis of congestive heart failure can be success-

fully achieved instantly using such feature.

The promising computational results obtained in this

study can be further examined and applied to advance this

field and also applications in medicine including cardiol-

ogy. Even though the excellent computational results are

obtained in this study, it will be applied to larger sets of RR

interval data associated with larger groups of subjects in

the future work. In particular, groups of subjects need to

include all classes of congestive heart failure. Studies in the

future work can examine various aspects of congestive

heart failure. It will be examined to verify if features of

spectral exponents can be used to specify a class of con-

gestive heart failure or severity of congestive heart failure

symptoms. Effects of physiological states on features of

spectral exponents will also be examined. RR interval data

recorded from a specific physiological state may lead to a

better congestive heart failure discrimination. In addition,

this may lead to a reduction of length of RR interval data

needed for the congestive heart failure discrimination.
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