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Abstract This paper introduces an algorithm for ECG beat

detection for portable monitoring systems using the con-

tinuous wavelet transform technique. It uses the Mexican-

Hat wavelet as an analyzing wavelet. The central frequency

of the corresponding band-pass filter frequency response is

chosen to be 32 Hz after performing scale analysis. It relies

on the adaptive threshold technique to minimize the

number of false positive beats and therefore guarantee

robustness against high motion artifact noise levels, it also

relies on search back to avoid missing real heart beats and

hence obtain a high sensitivity. The algorithm was imple-

mented using MATLAB and has a sensitivity Se = 99.37%

and a positive predictivity P? = 99.83% with the MIT-

BIH arrhythmia database. Furthermore, in order to test the

performance of the algorithm against motion artifact noise,

a noise stress test was performed by adding motion artifact

noise to the ECG records of the same database at various

signal to noise ratio values. The results of the noise stress

test were benchmarked against some existing algorithms in

the literature such as Pan and Tompkins and Romero.

Keywords ECG � R peak detection � Motion artifacts �
Continuous wavelet transform � Adaptive threshold

1 Introduction

Interest in mobile health care has been rising in recent

years due to the increase in people’s health awareness.

Specifically, the need for electrocardiogram (ECG)

portable monitoring system has risen as it has an important

role in supervising the patient’s heart and predicting car-

diac arrhythmias. A portable cardiac monitoring system,

i.e. Holter system, is an electronic system that records the

ECG signal continuously in ambulatory conditions via

electrodes attached to the skin of the patient. Such a Holter

system has the ability to detect heart beats via an embedded

signal processor using digital signal processing techniques

in order to compute heart rate variability (HRV) and sup-

port doctors in their decision to give medication for

patients in case of cardiac malfunctioning [1, 2]. In

ambulatory conditions, the Holter system should meet

several requirements in order to efficiently perform its task,

namely ultra-low energy operation for long battery life-

time, accuracy of heart beat detection, small size for

wearability, and low weight of the electronic device [3, 4].

In order to obtain accurate heartbeat detection, the algo-

rithm should be able to deal with several types of noise

aggressors added to the ECG signal. These signals are

mainly the Electromyography signal (EMG), baseline

wander, 50/60 Hz power-line frequency components, and

especially electrode motion artifact noise [5–7]. The

motion artifact is a noise introduced to the ECG as a result

of the variation of the electrode skin impedance due to

movement of the patient. In fact, electrode movement

causes skin deformations around the electrode site which in
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turn cause changes in the electrical characteristics of the

skin around the electrode. This noise signal results in poor

ECG signal quality and as a result, a possibly erroneous

clinical diagnosis, since the shape of such noise mimics

that of the normal QRS complex and its frequency spec-

trum overlaps with that of the ECG [3, 8, 9]. The beat

detection issue in the ECG signal with motion artifact was

addressed in several ways in the literature. Many approa-

ches adopted motion artifact reduction using adaptive fil-

tering [10–12], blind source separation (BSS) [13, 14] or

the discrete wavelet transform [9] in order to remove

motion artifacts, obtain a clean ECG signal and facilitate

heart beat detection. These techniques are complex and

consume much power for portable device applications [15].

In addition, there are several technical difficulties that

prevent these techniques from obtaining good results

especially when the level of noise is high. This paper

introduces a beat detection algorithm developed to perform

in ambulatory conditions and to have a high robustness

against high levels of motion artifact noise. It is based on

the adaptive threshold continuous wavelet transform tech-

nique with the Mexican-Hat wavelet.

2 Literature Review

Motion artifact removal is the step preceding beat detec-

tion. It consists of de-noising the signal by subtracting

motion artifacts to allow improved beat detection perfor-

mance. Both adaptive filtering and Blind Source Separation

are techniques used for this task; a reference signal corre-

lated with motion artifact is often needed for this operation.

2.1 Motion Artifacts Reduction

The adaptive filtering technique has been used in the lit-

erature as a method to remove motion artifacts [10–12, 16],

specifically Least mean square (LMS) and Recursive Least

Square (RLS) techniques were adopted to subtract such a

motion artifact from the bio-potential signal and make the

beat detection operation easier. The LMS uses gradients of

the mean square error to update coefficients in real time.

The RLS technique recursively updates coefficients of the

filter to minimize a cost function. Both of these techniques

need a time varying reference signal having a good cor-

relation with the motion artifacts in order to update the

parameters of the adaptive filter online. This reference

signal can be obtained by measuring the skin-electrode

impedance (SEI) [17] or the skin stretching via

accelerometers [18] or by capacitive ECG sensing [19].

However these attempts had limited results, especially for

higher noise levels, since the measured reference signal did

not have good correlation with noise [19].

The blind source separation technique consists of sepa-

rating two uncorrelated signals (ECG and motion artifacts)

by the means of linearly independent multi-lead ECG

recording. Principal Component Analysis (PCA) and

Independent Component Analysis (ICA) were used in the

literature [13, 14]. Both techniques attempt to determine

independent vectors onto which the input signal is pro-

jected in order to separate the motion artifact from the ECG

signal. These techniques are known to achieve good results

but they require a large processing budget and a large

memory space because of their high algorithmic com-

plexity [15].

2.2 Heart Beat Detection Algorithms

Heart beat detection algorithms aim to accurately detect

QRS complexes without missing any beat or wrongly

detect extra beats, even if the beats show up before

expected (tachycardia) or after expected (bradycardia) or of

an unexpected shape (Premature Ventricular Contraction,

atrial fibrillation). In the literature, the QRS detection

algorithms adopted several steps including linear filtering,

nonlinear filtering, moving average and thresholding. In

particular, band-pass filtering and thresholding are com-

mon steps of all algorithms because of the role of the band-

pass filtering in amplifying the QRS sequence and mini-

mizing the noise and the role of thresholding for decision

making [20].

One of the most basic algorithms for ECG beat detection

that was developed in 1985 is Pan and Tompkins algorithm

[21]. It estimated that the power spectral density of the

QRS complex is contained within the frequency band of

5–12 Hz. Therefore it used cascaded low-pass and high-

pass filters to select that frequency band, followed by signal

differentiation and a nonlinear operation that squares the

resulting signal and finally a moving average filter.

Moreover this approach sets two thresholds: one of the

noise level estimation and another for the QRS level esti-

mation. The most important feature of this algorithm is the

search back property that sets a time interval, based on the

previous RR intervals, if no heart beat was detected within

this interval (for example because it has an amplitude

below the threshold) then the highest peak within that

interval is likely to be considered as a heartbeat. However,

this algorithm is not suitable for portable applications since

it is not adapted to deal with motion artifact noise.

The discrete wavelet transform technique has been used

for heart beat detection since it is considered to have a

good time-frequency resolution [22]. It consists of

decomposing the signal spectrum into several sub-bands

depending on the chosen mother wavelet, allowing the

representation of the ECG signal temporal features at dif-

ferent resolutions. This transform is performed using
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cascaded wavelets that have characteristics of low-pass and

high-pass filters followed by down-sampling as shown in

Fig. 1. The decision is made after computing a signal by a

General Likelihood Ratio Test (GLRT) formula. If the

signal exceeds a threshold, then it is considered as a real

heartbeat. This technique gave a high detection perfor-

mance with the MIT database [23, 24], and is also con-

sidered to be of low power consumption. However, its

performance in portable applications with high motion

artifact noise levels is not reported in the literature.

In order to perform the beat detection task, Romero et al.

[25] used the CWT technique and precisely the Mexican-Hat

wavelet, the selected band-pass filter has a central frequency

of 18 Hz. The algorithm takes three-second length data

segments to be convolved with the wavelet. Heart beat

detection is performed in the CWT domain when the corre-

sponding Modulus Maxima is higher than a threshold. In

order to make the algorithm less sensitive to peaks that occur

due to high levels of noise, the threshold varies adaptively

across time by using a weighted sum of the previous

threshold (thold) and the newly calculated threshold (thcur-

rent). However, this algorithm did not yield good results

when performing the noise stress test with MIT database

records as the P? decreases to 80% for an SNR equal to 0 dB.

This degradation is due to the fact that the selected frequency

band does not decrease the effect of motion artifacts and

therefore a lot of false positive beats were detected.

3 Methods

The wavelet transform is a technique that, by a linear

transformation, converts a signal into another form that

makes certain aspects of the original signal more amenable

to study and some features easier to spot. The wavelet

transform expression of a continuous signal x tð Þ is given by:

T a; bð Þ ¼ 1
� ffiffiffi

a
p

Z1

�1

x tð Þw� t � b

a

� �
dt ð1Þ

where w� is the complex conjugate of the chosen wavelet, a

is the scale of

the wavelet or the dilation parameter and b is the loca-

tion parameter of the wavelet. The wavelet function must

satisfy these mathematical criteria:

1. A wavelet must have a finite energy, that is:

E ¼
Zþ1

�1

w tð Þj j2dt\1 ð2Þ

2. If bw fð Þ is the Fourier Transform of w tð Þ that is:

bw fð Þ ¼
Z1

�1

w tð Þe�j2pftdt ð3Þ

then the following condition must hold:

Cg ¼
Z1

0

bw fð Þ
���

���
2

f
df\1 ð4Þ

This means that the wavelet has no zero frequency

component i.e. bw 0ð Þ ¼ 0 or the wavelet w tð Þ has a zero

mean. This implies also that the wavelet’s frequency

response is a band-pass filter.

3.1 Wavelet Selection

The Mexican hat wavelet is selected as an analyzing

wavelet for several reasons:

• Its impulse response (see Fig. 2) resembles the shape of

the QRS complex and therefore it is likely to output a

high peak when convoluted with a real heartbeat.

• Its frequency response (see Fig. 3) is a band-pass filter,

which reduces the low frequency noise such as the

baseline wander as well as the high frequency noise

namely the electromyography.

• Ease of variation of the scale a and therefore the

variation of central frequency and cutoff frequencies of

the band-pass filter.

The equation of the Mexican hat wavelet is:

w tð Þ ¼ 1� t2
� �

� e�t2

2 ð5Þ

The corresponding frequency characteristic of that

wavelet is represented in Fig. 3.

The relation between central frequency fc and scale a is:

fc ¼

ffiffi
5
2

q

2pa
ð6Þ

The wavelet convoluted with the ECG signal outputs a

signal with singularities (peaks) that correspond to the

position of the QRS complex. These singularities are calledFig. 1 Discrete wavelet transform functional diagram [22]
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Modulus Maxima (MM) (see Fig. 5a) and are defined as

follows [26]:

d T a; bð Þj jð Þ2

db
¼ 0 ð7Þ

3.2 Scale Selection

All heart beat detection algorithms adopt band-pass filtering

to get rid of undesired high frequencies as the electromyo-

graphy and low frequencies of baseline wandering [27]. But

the frequency range suited to the application differs from

one algorithm to another. In order to determine the best scale

of the Mexican- hat wavelet i.e. the best frequency band, a

set of clean ECG signals from the MIT database was

selected, to which motion artifact noise was added with a

signal to noise ratio (SNR) equal to 6 dB (see Fig. 5) using

the noise stress test function (NST) of the WFDB toolbox

available on the physionet website [28]. All these signals

were convolved with wavelets of frequency response that

have central frequencies ranging from 10 Hz to 40 Hz as

shown in Fig. 4. For each scale, the average Modulus

Maxima value of all real heartbeats was computed using the

beat annotation of MIT database records. Besides, peaks that

do not correspond to real heart beats (potential false positive

beats) with a Modulus Maxima value greater than half of the

average value previously computed are counted for each

scale. This operation was performed for the records 100,

103, 107, 112, 113, 115, 117, 118 and 119.

Figure 4 shows that the number of Modulus Maxima

that correspond to motion artifact noise decreases gradually

for all the ECG records starting from 10 Hz till reaching

around 30 Hz. It stabilizes for some records and starts to

increase again for others starting from 32 Hz. This means

that for all the records, the number of Modulus Maxima

that are likely to be considered as false positive beats is

minimal for a scale corresponding to the central frequency

32 Hz. For this reason, and so as to avoid the high fre-

quencies of electromyography noise (having a frequency

range of 35–40 Hz) the wavelet whose central frequency of

the corresponding band-pass filter frequency characteristic

is 32 Hz (i.e. scale a = 0.0079) has been chosen as an

analyzing wavelet for this algorithm. This scale reduces

most the effect of motion artifacts by reducing the value of

the corresponding Modulus Maxima.

3.3 Adaptive Threshold

After computing the CWT signal for the chosen scale, a

threshold value is set depending on the Modulus Maxima

value. The value of the threshold adaptively varies across

time, after a new peak is detected, following this

equation:

New th

¼ Old Thþ
P

Modulus Maxima of 2 previous peaks

4

ð8Þ

Fig. 2 Impulse response of the Mexican-Hat wavelet (scale a = 1)

Fig. 3 Frequency response of Mexican-Hat wavelet

Fig. 4 Number of peaks having a Modulus Maxima greater than half

of the average Modulus Maxima of real beats for several MIT

database ECG records
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As a result the threshold adapts to the variations of the

Modulus maxima values (Fig. 5)

3.4 Search Back Property

As in Pan and Tompkins’ algorithm [21], the search-back

property is adopted for this algorithm. In fact, if there is no

peak detected with MM greater than the current threshold

within a time period of 1.66 9 (previous RR interval), then

the threshold value is divided by 2 and search-back oper-

ation is performed for another peak value. This technique

enables to avoid missing beats with low modulus Maxima

especially with the high adaptive threshold value that has

been adopted.

4 Results and Discussion

To compare the results achieved by our developed algo-

rithm to other algorithms in the literature the standard MIT

database [29] was chosen as a reference database. The MIT

database contains 48 half-hour ambulatory ECG record-

ings, obtained from 47 subjects studied by the BIH

Arrhythmia Laboratory between 1975 and 1979. It is the

most commonly used database in the literature. To evaluate

the performance of the algorithm, Sensitivity Se and pos-

itive predictivity P? are computed using (9) and (10),

respectively:

Se ¼
TP

TPþ FN
% ð9Þ

Fig. 5 a portion of record 100

of the MIT-database without

any added motion artifact noise.

b Same portion with motion

artifact added with SNR=6 dB.

c CWT of the portion (b) with
the adaptive threshold
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Pþ ¼ TP

TPþ FP
% ð10Þ

Here, TP (true positive), FN (false negative) and FP

(false positive) represent the number of correctly detected

QRS complexes, the number of missed detections and the

number of extra-detections, respectively.

As a first step, the algorithm was tested across the 48

records without motion artifact noise being added and the

results are shown in Table 1 and its performance was

benchmarked with state of the art algorithms Table 2

As a second step and in order to test the performance of

the algorithm against various levels of motion artifact, and

benchmark it with the state of the art algorithms, the same

clean ECG records of the MIT database selected in Fig. 4

were used. Using the NST function, motion artifact noise

was added to each of these records by an SNR respectively

of 24, 18, 12, 06 and 0 dB. Figure 5 shows a portion of

clean ECG signal of record 100 and the same portion when

motion artifact of SNR 6 dB was added. The results of the

noise stress test for record 100 are plotted in Fig. 6. It can

be seen that this algorithm performs better than the other

algorithms both in sensitivity and positive predictivity. In

fact the sensitivity remains close to 100% even for SNR=

0 dB. As for the positive predictivity it is clear that the

performance decreases slowly as the noise level increases

from 24 to 6 dB and then decreases drastically beyond this

value to reach 90% for SNR = 0 dB, but it still performs

much better than Romero’s and Pan and Tompkins’s

algorithms that reach 80 and 75% respectively for the same

SNR value.

The results of the noise stress test for the records 123,

202, 212, 213, 219, 220, 221,230,231,232 and 234 are

presented in Table 3.

Table 1 Performance of the algorithm against MIT database

FN FP Sensitivity (%) Positive

predictivity (%)

100 0 0 100 100

101 1 4 99.95 99.79

102 0 0 100 100

103 0 0 100 100

104 0 32 100 98.59

105 0 25 100 99.04

106 16 2 99.21 99.85

107 4 0 99.81 100

108 18 19 98.98 98.92

109 5 0 99.8 100

111 1 1 99.95 99.95

112 0 0 100 100

113 0 0 100 100

114 0 3 100 99.84

115 0 0 100 100

116 25 2 98.96 99.92

117 0 0 100 100

118 0 0 100 100

119 0 0 100 100

121 2 0 99.89 100

122 0 0 100 100

123 3 0 99.8 100

124 4 0 99.75 100

200 2 7 99.92 99.73

201 59 0 97 100

202 7 0 99.67 100

203 65 24 97.82 99.18

205 10 0 99.62 100

207 269 15 88.52 99.28

208 143 4 95.16 99.16

209 0 0 100 100

210 58 4 97.81 99.84

212 0 0 100 100

213 7 0 99.79 100

214 5 4 99.82 99.83

215 6 0 99.88 100

217 5 0 99.77 100

219 5 0 99.95 100

220 1 0 99.99 100

221 19 0 99.21 100

222 0 1 100 99.96

223 2 0 99.99 100

228 7 19 99.8 99.08

230 0 0 100 100

231 0 0 100 100

232 0 2 100 99.99

233 4 0 99.98 100

Table 1 continued

FN FP Sensitivity (%) Positive

predictivity (%)

234 3 0 99.99 100

Total 756 168 99.37 99.83

Table 2 Benchmarking the results of the algorithm with state of the

art algorithms on the MIT database

Reference works Se (%) P? (%)

Discrete wavelet transform [22] 99.9 99.91

Continuous wavelet transform [25] 99.56 99.79

This work 99.37 99.83

Pan and Tompkins [21] 95.36 99.36
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5 Conclusion

We developed a single scale Continuous Wavelet Trans-

form based algorithm, designed to adapt to ECG beat

detection in portable conditions where the motion artifacts

dominates. Such a choice was made to achieve the best

compromise between low power consumption for long

battery lifetime and high accuracy for the reliability of the

portable system. It gave reasonable results when being

tested at reasonable SNR levels (24, 18 and 12 dB).

However, when the noise level is excessively high (0 dB)

the results are not reliable and another solution should be

sought.

Furthermore, as a future step, this algorithm should be

implemented in a DSP in order to measure its power

consumption and benchmark it with existing devices.
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