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Abstract A complete 3D visualization method for virtual

liver lesion model was proposed by taking patients’ abdo-

men CT slices as data source. Firstly, Gradient Vector Flow-

Snake algorithm that combines with region force was

adopted to fast and accurately extract the contour points in

patients’ CT slices. Then 3D cloud data of these contour

points was simplified uniformly, and a distance-field-based

method of distribution field fitting for B-spline surface was

presented to fast establish the lesion model roughly. Then,

an interactive node fine tuning method Interactive Marching

Nodes was proposed, so the model can be optimized

according to requirements of users. Finally, realistic lesion

model was generated through texture mapping. Experiments

suggest that this approach is suitable for various kinds of

lesions with the whole process taking only a few minutes,

and the generated model has high precision, which is of

some significance in the study of virtual surgeries.

Keywords CT image processing � Virtual surgery � GVF-

snake model � Tensor product B-spline approximation

1 Introduction

In modern clinical medicine, the diagnosis of liver diseases

remains in the stage of observing 2D CT images layer by

layer. This method becomes increasingly important in

disease diagnosis by virtue of its convenient acquisition of

source data and high resolution ratio. The manual image

processing method, with low efficiency, requires a heavy

workload, and the accuracy would be affected in the pro-

cess. In 1987, Kass et al. proposed the active contour model

Snake [1], taking a key step for medical image processing.

However, the trapping force of traditional snake model is

so small that the model cannot fulfill the convergence at the

edge of depressed lesions. In 1998, Xu et al. [2] then

proposed the GVF-Snake model, whose traditional form

enhances the trapping force. But this model needs multiple

iterations to realize convergence, which is time consuming,

thus it cannot meet virtual surgeries’ requirement for

timeliness.

Currently, due to the limitations of 2D medical images,

scientists often use 3D visualization by computer graphics

and virtual reality technology and do interactive processing

depending on the requirement, which helps the diseased

tissue analysis, clinical treatment formulation in our liver

virtual surgery, and provides doctors with some intuitive

and reliable references. Traditional surface reconstruction

technology is limited by the volume resolution, and it

should maintain the topological consistency. In recent

years, with the development of graphics hardware and

software platform, volume visualization technology is

moving on to the stage of points. However, because the

coordinate information of surface point sets has noise and

the resolution between layers and images is different, so

the density of surface data is heterogeneous. In conclusion,

to find a precise and efficient method suitable for medical

images has currently become a research hotspot in the field

of 3D reconstruction. There are many different surface

reconstruction methods based on point cloud data, which

can be divided into the explicit one and the implicit one in

general. The explicit method gives precise surface location
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directly, which pays more attention to solving triangle

patch by Delaunay Triangle and Voronoi-Diagram. Seo

et al. [3] made outstanding contribution to that and pro-

posed the b-shape algorithm. But the detail information is

sometimes lost locally. Cazals et al. [4] presented the

Power Crust algorithm to reconstruct model through sign-

ing a Delaunay tetrahedron. However, it is not suitable for

the noise. The implicit method, formed by combinations of

basis functions, is applicable to the complex model but

time consuming. Vaněček [5] compressed the mass point

cloud data by the combination of RBF and greedy algo-

rithm. Wang et al. [6] made quadratic approximation on

local surface by PHT-spline method and realized the

adaptive reconstruction for the mass point cloud. However,

the precision needs to be improved.

Our main contribution is proposing a new method for

lesion volume visualization based on CT images. Figure 1

shows the whole process in brief. First of all, this paper puts

forward an improved GVF-Snake algorithm based on region

force to extract lesion contours in batches. Then, a tensor

product B-spline surface reconstruction method [7] with

IMN optimization is proposed for obtaining a high-quality

lesion model. In general, our method has two advantages.

The first one is that extraction process is well suitable for the

complex lesion area and the large number of CT images.

Secondly, the process is simple and interactive with high

precision, which meets the requirements of virtual surgery.

2 Methods

2.1 Batch Extraction of Contour

2.1.1 Setting the Initial Contour

The first step of GVF-Snake model extraction is to deter-

mine the initial contour. In clinical medical diagnosis, most

of the CT lesion is massive shadow for small area, and the

gray level of edge is very similar within the neighbors. All

these make it difficult to determine it automatically. In

consequence, we choose a human interaction technology in

this paper, like a part of experiment we researched before

[8], and do some improvements. As shown in the top of

Fig. 1, firstly we probably need a doctor to click on about

ten lesion contour points on each of the CT images through

the mouse, then conduct a Bézier curve fitting for these

points. After this, the system will map each contour curve

to the next CT image according to the position coordinates

of points. So we will get lesion contours accurately only by

correcting the contour according to the difference of

regions, as described in the next paragraph. Moreover, the

number of lesion CT images is probably twenty.

Here, we firstly need to contrast two contour areas

before and after mapping, and define the same parts as the

‘‘public’’ area, the different one as the ‘‘particular’’. And

then calculate grayscale average a, a0 of the public areas

and particular areas, respectively, using the digital picture

processing technique. We have known that the gray level

of segmentation area X1 and background area X2 is -1 and

-2 respectively. If a mild lesion area meet the conditions

of a� a0j j � k, where we set k ¼ Argmax X1X2

.�

X1 þ X2ð Þ2Þ through the experiments, and its gray level is

-, so -1 � - � -2. This moment we should adopt object

filling method to convert -1 to -2, which can help us

prevent from missing segmentation. Likewise, we can

adopt the method of filling the background area that con-

verts -2 to the average gray of the area for the condition of

segmenting some background areas.

2.1.2 GVF-Snake Model with Region Force

It’s very common that the shadow block of non-target

lesions has a pseudo boundary effect on patients’
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Fig. 1 The whole framework of

this paper
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abdominal CT images, but as we all know, traditional GVF

model cannot reduce this effect [9]. Xu [10] et al. proposed

an automatic medical image segmentation technique with

the concept of region force in 2012, which could improve

accuracy and sensitivity of active contour model. In this

paper, in order to make our model be more adaptive to the

complex region like lesion, we simplify Xu’s method and

add it to our algorithm to improve the traditional GVF-

Snake model. Set R as a lesion area on one CT image

I x; yð Þ, so we can define its gray information as:

SR x; yð Þ ¼ I x; yð Þ; x; yð Þ 2 R

0 x; yð Þ 62 R
ð1Þ

If the contour and energy of R area is denoted by C sð Þ
and ER respectively, and C is the weighted value, so the

energy function of model can be written as:

E ¼
Z 1

0

E C sð Þð Þds + CER ð2Þ

Set H SR x; yð Þð Þ as the conversion factor between image

grayscale and active contour fitting, so according to the

positional relations between R area and the initial contour,

we can use Green’s identities derived by the divergence

theorem to implement a conversion between the region

field and the boundary field:

ER ¼
ZZ

R

H SR x; yð Þð Þdxdy

¼ 1

2

I
PR x; yð Þdxþ QR x; yð Þdy

¼ 1

2

I
�
Z y

0

H SR x; zð Þð Þdz
� �

dx

þ
Z x

0

H SR z; yð Þð Þdz
� �

dy

ð3Þ

Here we define the region force as follow, which may

contribute to fitting to the deep concave area of lesion:

FR ¼ C PR x; yð Þ þ QR x; yð Þð Þ ð4Þ

The energy becomes minimum when the contour is in a

state of balance, which means that Fint þ FGVF þ FR ¼ 0.

Here Fint is internal force of the contour and FGVF ¼
Fext ¼ u x; yð Þ; v x; yð Þ½ � is external force generated by the

gradient vector field.

2.2 Preprocessing of Point Cloud Data

The scanning of CT images for each layer is at the same

slice thickness. As a result, we can get thickness infor-

mation of each slice according to the actual performance

parameters of medical equipment. Then we will acquire 3D

information of point set from 2D. Because the sampling

resolution of each CT image is larger than that of inter-

layer, we need to homogenize point cloud data to meet the

requirement of building distance vector field subsequently.

Here we firstly adopt the points interpolation method pro-

vided in PCL (Point Cloud Library) [11], its core idea is:

calculating MLS (Moving Least Squares) surface and the

Voronoi diagram according to point cloud, so the new

sampling point is the farthest vertex.

The spatial distribution of enormous data after interpo-

lation is fairly dense, if we apply it directly to the following

work will cause a lot of time and memory. So we should

simplify the data on the premise of keeping the geometry

features of model to improve the operation efficiency. In

this paper, we divide and merge the spatial point cloud data

according to the category based on BIRCH algorithm

framework [12], so as to realize the adaptive simplification

of point cloud. The basic idea of algorithm is regarding the

point cloud space as a class, and making a splitting pro-

cessing continuously through the calculation of covariance.

Finally we choose the representative points which satisfy-

ing the MCD (Minimum Covariance Matrix) as results.

2.3 Establish the Distance Vector Field

2.3.1 Estimation and Orientation of the Normal Vector

As there is no connection information among spatial points,

the normal vector of points can be only estimated by using

k-Nearest Neighbors algorithm, namely, the normal vector

is represented by the eigenvector corresponding to mini-

mum Eigen value of its covariance matrix.

It is then required to determine the direction of normal

vector and set up consistent interior and exterior orienta-

tions. An improved redirection algorithm based on local

surface fitting is applied in our proposed method. As shown

in Fig. 2, first, the point with the largest component of

Fig. 2 An diagram of the normal vector establishment
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x coordinate is selected from sampling points as the initial

point. Its normal vector is forced to point toward the pos-

itive direction of x axis. The direction of the normal vector

is then diffused. Tangent constraint criterion is adopted to

define its direction of diffusion. Based on normal vector

similarity of adjacent points, the normal vector that is most

similar to the current normal vector is searched to correct

directions. If inner product of the two normal vectors is

negative, the most similar normal vector shall be defined

inversely. Otherwise, no additional definition is required.

2.3.2 Calculate the Distance Value for Grid

Given that space grid density is directly related to graphic

accuracy and calculation, users shall first specify grid

density interactively and divide spatial domains roughly

into several small voxels according to the complexity of

lesion shape before the space is subdivided. Distance value

is then allocated to grid points of all subdivided voxels.

The value is defined as the shortest distance dmin between

grid points and the model. In order to improve the effi-

ciency of algorithm without compromising the basic

structure of model, the approximate algorithm of distance

field is used for calculation, i.e. as shown in Fig. 3, the

nearest points Pi xi; yi; zið Þ to the grid point G x0; y0; z0ð Þ is

chosen from point set and their Euclidean distance is used

to approximately replace dmin:

dmin � q G;Pið Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � x0ð Þ2þ yi � y0ð Þ2þ zi � z0ð Þ2

q ð5Þ

2.4 Tensor Product B-Spline Surface

Reconstruction

2.4.1 Basic Theory

A tensor product B-spline surface f ðu; vÞ is expressed by

the form of B-spline basis functions [13] and defined by:

f ðu; vÞ ¼
X
l

X
r

ClrLðuÞRðvÞ ð6Þ

where the Clr are a series of fitting factors, and

l ¼ 1; 2; . . .; q, r ¼ 1; 2; . . .; h, the LðuÞ and RðvÞ are B-

spline basis functions, which are corresponding with B-

spline functions of model’s isometric node orders ulf g and

1rf g, respectively. Given H as the closed region of distance

field, the fitting surface, denoted by zero-set of f ðu; vÞ, is

given by f ðu; vÞ ¼ 0 ðu; vÞ 2 Hjf g.

2.4.2 Step-by-Step Dis-Field-Based Algorithm for Surface

Fitting

Pi;j ¼ xi;j; yi;j; zi;j
� �

i 2 1;Ni½ �j ; j 2 1;Nj

� 	
 �

Let be point sets from space division of distance field,

and then we use the B-spline surface mentioned above to fit

these points, which is expressed as:

Pi;j ¼
Xq

l¼1

Xh
r¼1

ClrLðuiÞRðvjÞ ð7Þ

In order to obtain this fitting surface, we should find the

relation between each point and the undetermined coef-

ficients. In the space of distance field, let dðui; vjÞ be a

distance value distributed to grid point Gðui; vjÞ, x be the

smoothing factor of model and Es be the surface energy,

so the error function between tensor product B-spline

function and point cloud is denoted as the following

expression:

ERF ¼
XNi

i¼1

XNj

j¼1

Pi;j � dðui; vjÞ
� �2 þ xEs ð8Þ

Our target is to balance the fitting surface by minimizing

this error function. Firstly we rewrite the tensor product

B-spline surface function as:

f ðu; vÞ ¼
Xq

l¼1
LðuÞ

Xh

r¼1
ClrRðvÞ

� �

¼
Xq

l¼1
ClLðuÞ

ð9Þ

�hi vð Þ ¼
Xh

r¼1
liRðvÞ

Known from the above formula, we can ignore the

factor x and calculate the tensor product B-spline surface

by two steps. Firstly, a set of grid points which have the

same u component are fitted by the B-spline function and

li 2 1; h½ �. After that we obtain:

U lið Þ ¼
XNj

j¼1
�hi vj
� �

� dðui; vjÞ
� 	2

¼
XNj

j¼1

Xh

r¼1
liRðvjÞ � dðui; vjÞ

h i2 ð10Þ

kj uð Þ ¼
Xq

l¼1
sjLðuÞ; sj 2 1; q½ �

Fig. 3 Calculation of the distance value
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Then fit the factor li by function and get:

W sj
� �

¼
XNi

i¼1
kj uið Þ � lij
� 	2

¼
XNi

i¼1

Xq

l¼1
sjLðuiÞ � lij

h i2 ð11Þ

oU lið Þ
oli

¼ 0
W sj
� �
osj

¼ 0

As a result, we must decide parameters of each fitting

point by making a solution of two linear equations and of

order h and q respectively. That way we will reduce the

order and the amount of calculation must be saved greatly.

2.5 Model Optimization and Rendering

In the actual process of modeling, the smoothing coefficient x
of reconstructive surface is an important parameter [14] and it

can reflect smoothness of the model. However, the smoothness

and accuracy are often contradictory. If x is too large, some

details of the model will be ignored. But if x is too small, the

model will seem to be very rough and have obvious seams

effect. Therefore, in virtual surgery, we need to optimize the

model interactively according to actual conditions, and put in

some realistic texture effect to strengthen the visual perception,

which can meet the needs of medical diagnosis.

2.5.1 Basic Idea

np ¼ ðnx; ny; nzÞ P� ¼ Pþ dnp. Assuming that

Pi i ¼ 1; 2; . . .;Njf g is point cloud on the tensor product B-

spline surface. Let P�
i i ¼ 1; 2; . . .;Nj


 �
be the point cloud

after IMN optimization. So, where d is the points’ relative

distance before and after optimization, is a marching

direction of nodes.

W ¼
XN

i¼1
xixi;

XN

i¼1
xiyi;

XN

i¼1
xizi

� �
d np
� �

¼ q � np
.

np
 2

q ¼ q1; q2; q3ð Þ ¼ W
.XN

i¼1
xi � P np

If we assume that d is a function about, and. So we can

get, where is the weight vector.

2.5.2 Realization of IMN Algorithm

d np
� �

. In order to simplify calculation, we need to convert

the optimizing progress to a solving procedure for the

minimum of. For this, we can firstly solve the follow

equation by Lagrange multiplier method:

od np
� �
onp

¼ 0 ð12Þ

np
 2�1 ¼ 0

By setting k as a Lagrange multiplier, we obtain the

following equation under the constraint condition that :

L ¼ d np
� �

þ k np
 2�1
h i

¼ q � npþk np
 2�1
h i

ð13Þ

By solving partial derivative of L for nx, ny, nz and k
components, we obtain

np ¼ � q1

2k
;� q2

2k
;� q3

2k

� �
ð14Þ

According to the actual conditions, we choose that:

xi ¼
1

Pi � Pk k4þ1
2 0; 1ð � ð15Þ

QP ¼
Xn

i¼1
ZiQi

� �. Xn

i¼1
Zi

� �

If, here, Zi is the area of the ith patch, Qi is its normal

vector. Thus the optimal marching direction for nodes

is:

np optð Þ ¼
QP

QPk k : ð16Þ

2.5.3 Texture Mapping

Texture is mostly in the form of two-dimension in com-

puter graphics, which reflects the detail information about

the structure of surface. In this part, we mainly use the idea

of ‘‘lapped textures’’ [15], which is proposed by Praun

et al. in 2000, so we only provide a brief introduction as

follows. By observing some instances, we find that the

texture of liver lesion model is an unstructured homoge-

neous texture. Therefore, we assume that the shape of

texture can be pre-computed, and then we distribute these

created texture blocks to Alpha mask for eliminating the

seams effect [16].

Next, we need to assign tangential field on model

surface to determine the size and direction of textures.

Because of homogeneousness of the lesion texture, we

only need to specify global scale field of space grid

interactively. Users can freely control the scope of space

to achieve the purpose of efficient mapping. In the pro-

gress of texture mapping, we firstly need to determine

the transformation relation between each vertex of model

and the texture space, which means a section mapping

relation from 3D to 2D. Then the texture will spread over

the whole model through adding patches. We should use

the matching between the surface vector field and texture

coordinates to make the model covered with texture in

the end.
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3 Results

In order to prove the feasibility presented above, we have

applied this algorithm to some examples of liver complaint. The

algorithm is implemented in VC??6.0 and OpenGL4.1.0. The

CPU is Core i7-4700 HQ 2.4 GHz processor with 4G RAM.

The graphics card is NVIDIA GeForce GT 745 M.

3.1 Contour Extraction Module

4Firstly, we need to number slices according to the scan-

ning order of original CT images and store them in the

same folder. Users need to read the first slice when pro-

gram is running. And then they should click on the contour

of lesion interactively, about a few key points, to be the

control points of Bézier curve. Results show that choosing

8–10 points in the first slice can achieve to a better fitting

effect. After mapping the first fitting curve to the second

slice, do a region filling and correction. If the difference of

fitting area exceeds threshold, system will prompt users to

choose some control points again. In this way we can

determine each preliminary initial contour. At last, using

the improved GVF-Snake algorithm and the accurate fitting

results are shown in Fig. 4. The left one is a liver tumor,

and the right one is a liver cystic lesion.

Here, we use CvPoint, which is basic data types of

OpenCV, to represent point’s coordinate as an 2D integer.

Its constructed function is: inline CvPoint cvPoint(int x, int

y). ‘‘Vector’’ is a dynamic array in std(standard library) of

C ??, which can store and operate a variety of data types,

and we can define a ‘‘vector’’ template class to store these

extracted contour points as std::vector\CvPoint[Coun-

terPoints. Table 1 shows some extreme values of these

points’ 3D coordinates.

3.2 Surface Reconstruction Module

PCL (Point Cloud Library) is a specialized library

for processing point cloud data, and the web site of the

PCL library is http://pointclouds.org/about/indicated. As

shown in Fig. 5, we have created a PointCloud class to

convert point cloud format to.PCD as: pcl::Point-

Cloud\ pcl::PointXYZ[ cloud. And then we take the

algorithm proposed in the second and third section for

simulation through OpenGL technology. In terms of tex-

ture mapping, thanks to our medical image library for

providing some precious material, we synthesis 2D tex-

ture based on some realistic texture samples of the liver

lesion surface. Finally we obtain the high-quality lesion

model as shown in Fig. 6. Drag the left mouse, and we

will observe the spatial structure in every direction.

Fig. 4 Lesion contour in one liver tumor CT image

Table 1 The extreme value information of point cloud coordinates

X y z

Liver tumor Fig. 5a

Min -27.234591 -46.291348 -61.853020

Max 50.708458 38.685719 46.187515

Liver cystic lesion Fig. 5b

Min 61.113152 -32.761583 -23.675243

Max 96.251297 4.837264 18.436517

Fig. 5 The surface point cloud distribution map of liver tumor and

liver cystic lesion respectively
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4 Discussion

Sminif g Firstly, we need to verify the accuracy of algorithm

by calculating average error between reconstructive model

and the original point cloud. Traverse all the points in point

cloud space. When one point is not on model surface, we

call it ‘‘offset point’’. Map this point to the surface and we

will obtain one ‘‘mapping point’’. Then, search its nearest

point on the surface, and we need to use orthogonally

approximation technology to gradually make the ‘‘nearest

point’’ close to the ‘‘mapping point’’. Finally, we get a set

of minimum distances called, which is between the model

and point cloud. So the average error can be written as:

r ¼ 1

M

XM

i¼1

Smini � 100% ð17Þ

where M is the sum of points. We have compared the basic

situation before and after the optimization, as shown in

Table 2, and made a comparison with standard MC

(marching cubes). We see from the table that the MC

algorithm takes a tremendous amount of time and is very

susceptive to the complexity of lesion models. Our

Fig. 6 Liver lesion models

diagram from different angles.

a Front view, back view and top

view of the liver tumor. b Front

view, back view and top view of

the liver cystic lesion

Table 2 Model information

before and after IMN

optimization compared with

MC algorithm

# Of nodes # Of triangles Average error (%) Total time (s)

Liver tumor

MC algorithm 62,948 31,474 5.32 27.62

Our proposed algorithm

Before 23,433 11,716 1.58 4.12

After 51,664 25,832 0.20 4.16

Liver cystic lesion

MC algorithm 20,583 10,292 3.29 9.97

Our proposed algorithm

Before 6289 3144 1.23 1.78

After 14,754 7376 0.15 1.80
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algorithm takes only a few seconds to get the high-accu-

racy model, where the optimization process has a satis-

factory result within less than 0.05 s. Model’s average error

basically has a percentage-point decrease, which improves

model’s precision.

In terms of efficiency, we have compared our algorithm with

previous work of CT visualization based on points [17–19] on

the basis of model’s average error less than 0.20%, as shown in

Table 3, where refs [17]. shows a rapid algorithm of point

clouds reconstruction, refs [18]. presents a tomographic surface

reconstruction algorithm from point clouds, and refs [19].

proposes a method to efficiently and accurately reconstruct

continuous surfaces from point clouds. It’s not hard to see that

our proposed method will greatly reduce the calculating time in

surface reconstruction of medical images and will provide a

solid foundation for real-time modeling of lesions.

5 Conclusion

In this paper, a complete visualization method for lesion

organization was proposed aimed at improving the sense of

reality and efficiency of virtual surgery. Our main process

include CT image preprocessing, point cloud processing,

surface model reconstruction and texturing. Experiment

shows that our method can perform efficiently and interac-

tively in our reconstruction work. Moreover, it can maintain

good accuracy for some complex structures. Our algorithm

also has some limitations. For example, there are still a few

visual deviations between built model and the actual one,

which is due to the low resolution of texture samples and we

ignore the light factor. In addition, we can see in Table 3 that

it still takes too much time to render, because in our method

we should repeatedly render for completely covering. So

how to improve the efficiency of model rendering will be the

problem we need to study in the next stage.
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