
ORIGINAL ARTICLE

Multi-Classifier-Based Automatic Polyp Detection in Endoscopic
Images

Yeong-Jun Cho1 • Seung-Hwan Bae2 • Kuk-Jin Yoon1

Received: 29 December 2015 / Accepted: 2 May 2016 / Published online: 28 November 2016

� Taiwanese Society of Biomedical Engineering 2016

Abstract Automatic polyp detection in endoscopy (or

colonoscopy) images is challenging because the types of

polyp and their appearances are diverse, and the colors and

textures of polyps are quite similar to those of normal

tissues in many cases. It is thus often very difficult to

distinguish polyps from normal tissues using conventional

methodology. To effectively resolve these challenges, we

propose a framework based on multi-classifier learning and

a contour intensity difference (CID) measure. To detect

polyps of diverse appearances, we first classify polyps into

K types according to their shape via unsupervised learning.

We then train K classifiers to detect the K types of polyp.

This multi-classifier learning improves the polyp detection

rate. However, false positives also increase because colon

structures look similar to polyps. To reduce false positives

while preserving the high detection rate, we propose a CID

measure. Experimental results using public and our own

datasets show that the proposed methods are promising for

detecting polyps with diverse appearances.
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1 Introduction

Colon cancer is one of the most common types of cancer

and the leading cause of cancer death [1]. One major cause

of colon cancer is precancerous polyps such as adenoma,

which can develop into cancer if they remain untreated. It

is known that the risk of developing colon cancer increases

with the number and size of polyps present. Baxter et al. [2]

showed that detecting early-stage polyps is highly associ-

ated with fewer death from colon cancer; thus, it is very

important to detect early-stage polyps through colon

examination techniques.

In order to detect potentially cancerous polyps, colo-

noscopy inspection is commonly used. However, it shows a

significant miss rate of around 22% even with high-quality

colonoscopes [3]. To improve detection performance,

automatic polyp detection methods using computer vision

and machine learning techniques have received a lot of

research attention. Such methods provide approximate

positions and sizes of polyps to doctors during

colonoscopy.

Although there has been much progress in automatic

polyp detection, it is still a challenging task because of

several issues, as illustrated in Fig. 1: (1) high diversity of

polyp types and their colors, textures, shapes, and sizes

(Fig. 1a); (2) frequent false positives (FPs) due to colon

wrinkles and passages, specular highlights, blood vessels,

and so on (Fig. 1b); (3) frequent occlusions caused by other

colon structures (Fig. 1c); (4) shape variations of polyps

caused by unconstrained endoscope motion and position

(Fig. 1d); (5) textural and color ambiguities between

polyps and normal tissues (Fig. 1e).

In recent years, to handle these difficulties, many studies

have focused on developing feature extraction and classi-

fier learning algorithms, which are core parts of object
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detection schemes. For effectively describing polyps,

color- and texture-based features have been proposed or

used, such as local binary patterns (LBPs) [4, 5], gray-level

co-occurrence matrix (GLCM) [4], and color wavelet

covariance (CWC) [5–7]. To train a polyp classifier,

learning algorithms based support vector machine (SVM)

[4, 8], backpropagation neural networks (BPNNs) [9], and

linear discriminative analysis (LDA) [6] have been pro-

posed. However, such features are not discriminative

enough to differentiate polyps from normal tissues since

their colors and textures are very similar, as illustrated in

Fig. 1e. Moreover, the single-classifier-based approach is

insufficient to handle various appearance changes of

polyps, as shown in Fig. 1a, c, and d. In addition, previous

works did not try to reduce FPs caused by factors shown in

Fig. 1b.

In this paper, we propose a novel framework for auto-

matic polyp detection, which overcomes the limitations of

previous works. The proposed framework consists of fea-

ture extraction, multiple-classifier learning, and FP

removal. We adopt the histogram of oriented gradients

(HOG) [11], which is a shape-based feature extraction

method, as the feature descriptor to deal with textural and

color ambiguities. We experimentally verify the effec-

tiveness of the HOG feature. In addition, we propose a

multi-classifier learning method for building a polyp

detector that can handle diverse appearance variations of

polyps. The multi-classifier learning method consists of

two stages: we first categorize training polyp samples into

K subsets using K-means clustering in the HOG feature

space, and then generate multiple SVM classifiers with

clustered polyp samples and normal tissue samples. When

detecting polyps in a test image, we exploit all outputs of

the trained multi-classifier by aggregating them using the

noisy-OR model [12]. As a result, we can improve the

polyp detection rate under the large variation of polyp

appearances. Furthermore, based on the observation that

FPs are frequently due to colon wrinkles and passages that

have similar shapes to polyps, we propose a contour

intensity difference (CID) measure for effectively remov-

ing FPs while preserving the high detection rate. We

extensively evaluate and compare the performance of the

proposed method with that of other polyp detection meth-

ods using public [13] and our own datasets, which contain

many challenging factors.

2 Literature Review

In general, most previous works on polyp detection have

focused on feature extraction and classifier learning

methods since they significantly affect the performance of

polyp detection. Thus, in this section, we review previous

works by categorizing them into feature extraction methods

and classifier learning methods.

2.1 Feature Extraction Methods for Automatic

Polyp Detection

For extracting features of polyps, several texture- and

color-based feature extraction methods have been pro-

posed. Textural cues have been used as discriminative

Fig. 1 Challenges in polyp

detection a diversity, b false

positives due to several factors

c occlusion, d view variation,

and (Pedestrian detection: A

benchmark) textural and color

ambiguity
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features for polyp detection in many studies. For example,

LBPs and GLCM, which represent texture patterns, have

been used for polyp detection [4]. The extension series of

LBPs, such as curvelet-based LBPs and rotation-invariant

uniform LBPs, have been successfully applied for polyp

detection [7].

Color-based feature extraction methods have been used

for polyp detection as well. Alexandre et al. [8] extracted

low-dimensional but abundant features using RGB values

and pixel positions within each sub-image. Tjoa and

Krishnan [9] designed a color component histogram from

the RGB and HSI channels of endoscopic images. For

enhancing description power, combined features with color

and textural cues have been also presented. Karkanis et al.

[6] proposed the CWC feature, which utilizes the covari-

ance of second-order textural measures calculated over the

wavelet transform of different color bands. The perfor-

mance of various texture and color features has been

compared [5, 7, 9, 14, 15]. It was found that combined

features significantly improve the performance of polyp

detection compared to that obtained using only a color or

texture feature.

In addition, shape-based polyp detection methods based

on sub-region classification have been proposed. In these

methods, image sub-regions are first constructed based on

an image segmentation algorithm (e.g., watershed [16]).

Then, each sub-region is classified as a polyp or non-polyp.

Hwang et al. [17] proposed an elliptical shape fitting and

polyp candidate selection method. Bernal et al. [13] pro-

posed region classification based on the SA-DOVA shape

descriptor. These methods can detect polyps without

training data since region classification does not rely on

trained classifiers. However, these methods can be depen-

dent on the segmentation results; for example, polyps that

are not fully surrounded with strong edges (such as flat

polyps) cannot be segmented properly, which leads to

polyp detection failure.

2.2 Classifier Learning Methods for Automatic

Polyp Detection

In order to train a classifier for polyp detection, SVM has

been widely used in many studies [4, 7, 8, 14, 18]. Since

SVM can produce an optimal margin for separating dif-

ferent class samples, it has been widely applied to many

computer vision applications such as object detection,

tracking, and recognition. Tjoa and Krishnan [9] employed

a BPNN trained by various training algorithms (e.g.,

Marquardt, SCG, RPROP) with different numbers of neu-

rons in the hidden layer for analyzing colon status, and

Karkanis et al. [6] used LDA, which is a simple model

involving a small set of parameters, to train a classifier for

polyp detection.

The aforementioned detection methods [4, 6–9, 18] only

use a single classifier when discriminating between polyps

and normal tissues. However, it is not easy to discriminate

polyps with many different appearances from other tissues

using only one classifier. Dietterich et al. [10] found that

training sub-classifiers for solving sub-problems and voting

them for the final decision is efficient. This is because the

sub-problems are more tractable for training classifiers

with fewer errors and the voting procedure reduces the risk

of choosing wrong classifiers. We therefore train multiple

classifiers by clustering polyps into several clusters and

aggregate all their outputs when detecting polyps.

3 Methods

The overall proposed polyp detection framework is shown

in Fig. 2. In the training stage, we first extract the HOG

features [11] of polyps and categorize the polyps into

K classes by performing K-means clustering in the HOG

feature space. We then generate K multiple SVM classifiers

with the clustered features, as discussed in Sect. 3.1. In the

test stage, we obtain polyp hypotheses for an image by

combining the outputs of the trained classifiers with the

noise-OR model. Among the hypotheses, we remove FPs

using the CID measure, as described in Sect. 3.2.

3.1 Multi-Classifier Learning for Polyp Detection

For training a detector that can detect polyps with a variety

of appearances, we propose a multi-classifier learning

method. The polyp detector is composed of multiple sub-

classifiers, each of which is trained independently to spe-

cialize in detecting a particular group of polyps. In order to

train the sub-classifiers, we first extract the HOG features

[11] of polyp sample images. HOG counts occurrences of

gradient orientation on a densely sampled grid and makes

an orientation histogram. It describes the overall shape of

an object.

After extracting HOG features, we cluster the polyps

according to their HOG features by performing K-means

clustering in the HOG feature space, as shown in Fig. 3. As

a result, we obtain K subsets with different tendencies of

shape (Sets 1 and 2 in Fig. 3) and edge intensities (Sets 2

and 3 in Fig. 3). Subsequently, linear SVM classifiers are

trained using the K subsets (i.e., positive samples) and non-

polyp image patches (i.e., negative samples) randomly

extracted from training images.1 Finally, we have K sub-

classifiers expressed as:

1 We aim to train multiple classifiers that can detect specific shapes

of polyps against the background. Therefore, in this paper, we do not

cluster the negative samples.
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HkðxÞ ¼ WT
k xþ bk; k ¼ 1; . . .;K ð1Þ

where x is an input HOG feature vector, andWk and bk are

the weight and bias of each classifier, respectively.

Using the standard logistic sigmoid function, the prob-

ability of the input x (i.e., HOG feature) being positive can

be defined with the output of a sub-classifier as:

PkðxÞ ¼
1

1þ expð�HkðxÞÞ
ð2Þ

Pk(x) lies in [0, 1]. When aggregating the outputs Pk(x) of

the trained K classifiers, we aim at maximizing the detec-

tion rate rather than reducing the FP rate, since the former

is more important in polyp detection. To achieve this, we

employ the noisy-OR model [12], defined as:

PðxÞ ¼ 1�
Y

k

1� PkðxÞð Þ ð3Þ

As a result, we can classify an input vector as a positive

response (i.e., high detection probability P(x)) when any

output Pk(x) of the classifiers is high. We only classify an

input vector as a negative response when all outputs of the

classifiers are low. P(x) also lies in [0, 1].

Figure 4 illustrates the aggregation process. A true

polyp location is marked with a black dashed circle, and

the probability maps P1(x), P2(x), and P3(x) of the three

classifiers H1(x), H2(x), and H3(x), respectively, are drawn,

where x = {x1, x2, …xN} and N is the total number of

HOG features obtained by the sliding window search.

Probability maps P2(x) and P3(x) show low probability

responses in the actual polyp region. However, the final

map after aggregation shows high responses in the polyp

region due to map P1(x) of classifier H1(x), which is trained

for detecting polyps whose appearance is similar to that of

a given polyp in Fig. 4. This strategy greatly improves the

detection rate, and handles polyp appearance variations by

using multiple classifiers trained for detecting polyps with

different appearances.

3.2 Contour Intensity Difference Measure

for Removing False Positives

Even though we can detect polyps with various appear-

ances using the multi-classifier detector, FPs are frequently

caused by colon wrinkles and passages with appearances

similar to those of polyps. For discriminating them, we

propose a CID measure by considering intensity variations

around edges of polyps and other tissues. In order to ana-

lyze the intensity variations, we consider both an illumi-

nation model and the structural difference between polyps

and other tissues (i.e., colon wrinkles and passages).

Fig. 2 Proposed framework for automatic polyp detection

Fig. 3 Image subsets obtained by K-means clustering (K = 4). Sets 1–4 had 261, 256, 431, and 343 clusters, respectively
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3.3 Observations: Illumination and Structural

Models

For the illumination model, we assume that the reflection

on the colon can be described by Phong’s illumination

model [19], defined as:

Ip ¼ KaIa þ CpKd cosðhÞ þ WðhÞ cosnðiÞ
� �

ð4Þ

where Ka is the ambient reflection constant, Ia is the

ambient intensity, Cp is the reflection coefficient of the

object at point p, Kd is the diffuse reflection coefficient, h is
the angle between the surface normal and the illumination

source (i.e., incident angle of the ray), W(h) is a function of

the specular reflected light, i is the angle between the

direction of the reflected light and the camera, and n is a

power of the specular reflected light for each material. In

our polyp detection system, an endoscope is equipped with

a camera and an illumination source is placed in almost the

same position and direction as those of the camera. In this

case, h is the incident angle of the camera, and i is equal to

2h; therefore the incident angle of the camera (h) affects
the illumination of the colon, as shown in Fig. 5a. For the

structural model of a polyp, we observed that polyps

usually have a roughly semi-spherical shape and protrude

from the flat colon surface, as shown in Fig. 3.

Based on the illumination model and the structural

model of a polyp, we can simulate intensity variations

around contours of a polyp under various camera angles

(h = 0�, 55�, 95�). As shown in Fig. 5b, intensities Iin of

the inside region of the polyp contour tend to be higher

than intensities Iout of the outside region in all cases. The

colon wrinkles and passages have a tube shape and their

walls are uneven, as shown in Fig. 5c. As a result, Iin is

lower than Iout for colon wrinkles and passages, as depicted

in Fig. 5d, since most of the light cannot reach behind

wrinkles and passages. Although our illumination and

structural models are simple and imperfect, observations

based on them are very helpful for removing FPs.

3.4 Contour Intensity Difference Measure

Based on the observations described in Sect. 3.2.1, we

define the CID measure as:

CID ¼
PN

j¼1 IinðjÞ � IoutðjÞ½ �
N

ð5Þ

Fig. 4 Example of probability map aggregation when K = 3

Fig. 5 Illustration of synthetic polyp and colon model a synthetic polyp model and illumination model, b polyp images captured at different

camera angles (0�, 55�, 95�), c exterior and interior synthetic colon model, and d false positive causes: f1 colon passage, f2 colon wrinkle
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where N is the number of total sampling points around a

contour, and Iin(j) and Iout(j) are the intensity values of the

inside and outside regions of the contour around the j-th

sampling point, respectively. CID reflects the average

intensity difference between the inside and outside regions

of the contour.

In order to reliably measure CID, it is important to

consider only object-level contours (OLCs) that can cause

FPs. In general, OLCs are strong and circular contours

similar to those of polyps. Before detecting OLCs, we first

detect strong contours using an edge detection method such

as the Canny edge detector [20] or a learning-based edge

detector [21]. Then we have strong contours ei 2 E, where

E is the initially detected contours, and each contour is

denoted by ei = (li, ri), where li is the length of the con-

tour, ri is the radius of circle fitted to the contour. ri rep-

resents a curvature of a contour; for example, a large radius

implies small curvature. We obtained ri using the least

squares circle fitting method [22].

However, as shown in Fig. 6a (Initial), the initially

detected contours E contain several outliers. To filter out

the outliers, we adopt two-step contour filtering. First, we

remove short and noisy contours by checking their length

since short contours are caused by clutters in general. To

this end, we filter out the noise contours as:

OLClengthðeiÞ ¼ ei 2 Ejli �
Wp
a

� �
ð6Þ

where Wp is the maximum length of the circle enveloped

with W 9 W (pixels) input image, and a is a parameter

determining the allowable length of the contour. We

hereby adaptively filter out a number of noisy contours

depending on the length of the input image. For instance,

Fig. 6a (Step 1) shows the removed noisy contours marked

as red and we have OLClength(ei) = {e1, e3}. Next, we

further check the curvature of each contour in order to

remove remaining outliers (e.g., strong and long enough

contours but not circular as a polyp, as shown in Fig. 6a

(Step 2)) as follows:

OLCðeiÞ ¼ ei 2 OLClengthðeiÞj
W

b
� 2ri � bW

� �
ð7Þ

where b defines the allowable curvature range (or radius

range) of the contour. In our experiment, we empirically set

a = 8, b = 2, and consequently, we have the OLCs (e.g.,

OLC(ei) = {e1}) shown in Fig. 6a (Result). In practice, it

is possible that OLC(ei) contains multiple contours. When

OLC(ei) is obtained, we calculate the normal and inverse

normal vectors of each contour point. In order to figure out

whether the normal vectors point towardinside or outside

of the contour, we check the directions of normal vectors

and the position of the fitted circle center. We assume that

the vector heading for the circle center (marked as blue

arrows in Fig. 6b) is heading for inside of the contour and

the vector heading for the opposite direction of the circle

center (marked as red arrows in Fig. 6b) is heading for

outside of the contour. Likewise, we extract Iin(j) and

Iout(j) for measuring CID, as shown in Fig. 6b. If the value

of CID is lower than r, the detection result is regarded as

an FP and ignored. Examples of CID measure values are

shown in Fig. 6c.

In order to select a reasonable decision threshold r, we
analyzed CID distributions of polyps and non-polyp-

scausing FPs (i.e., colon wrinkles and passages).2 Figure 7

shows both distributions. To separate the two distributions

with minimum classification error, the decision threshold is

decided as ropt = - 9. Although ropt has the minimum

classification error (17.3%), polyps will be regarded as FPs

with a 8.05% chance. For the polyp detection system, it is

more important to maintain a high detection rate than

Fig. 6 CID measure computation a object-level contour detection, b conceptual diagram of CID, c examples of CID values for polyp (top) and

colon passage (bottom), and d examples of removed false positives using CID

2 In order to find the CID probability densities, we performed the

following process. First, we manually detected all polyps and the FP

factors in the datasets. Second, we extracted all CID measures of

polyps and FP factors in the test dataset and found the CID probability

densities. For example, when we conducted fivefold cross-validation,

we have five test datasets, and obtain five CID probability densities of

polyps and FP factors, respectively. In practice, we set the CID

distributions from the first fold test dataset as the representatives since

the five distributions from each fold are very similar to each other.
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reduce FPs; thus polyps should not be rejected by CID. In

that respect, we adjusted the decision threshold to com-

promise between maintaining the detection rate and

rejecting FPs. In this paper, we set the decision threshold

ropt = -25, as shown in Fig. 7 (magenta line). This

threshold should keep 97.1% of detected polyps and reject

72.4% of FPs caused by passages or wrinkles.

4 Experimental Design

4.1 Database

In our experiments, we utilized two databases: the CVC

colon database (CVC [13]) and our colon databases (ODB

and ODBseq). CVC contains 300 colonoscopy images cap-

tured from 15 sequences. Each image contains at least one

polyp and the type of polyp is annotated (flat polyp or

peduncular polyp). However, CVC has a small number of

images of only 15 distinct polyps, which is insufficient to

cover challenging situations of polyp detection (e.g.,

diverse appearances of polyps). To validate the proposed

method with diverse appearances of polyps, we built our

colon database ODB, which contains 1432 colonoscopic

images with 1098 distinct polyps captured from respective

examinations. In addition, we built colon sequence data-

base ODBseq, which contains 87 images from three endo-

scopy sequences. The polyps in ODB and ODBseq were

annotated by experts as follows: larger than 5 mm, smaller

than 5 mm, laterally spreading tumors, submucosal tumor,

and colon cancer. Table 1 shows a summary of the

databases.

4.2 Evaluation Settings

In the polyp image datasets, positive samples (i.e., polyp

image patches) were manually extracted. Negative samples

(i.e., non-polyp image patches), which did not overlap with

the positive samples, were automatically and randomly

extracted from the images. For the image patches, we

extracted the HOG features and used them to train multiple

SVM classifiers using a linear kernel. To detect various

sizes of polyps, we generated a seven-level image pyramid

for each test image with scaling values [0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1]. For example, a 520 9 450 pixel test image

with a scaling value of 0.4 will be a 208 9 180 pixel

image.

Then, a detector consisting of the multi-classifier den-

sely scans across the image pyramid using the sliding

window search, and generates decision probabilities

P(x) (Eq. (3)) by combining scores of the multi-classifier at

scanning points. From extensive evaluation, we empirically

set the window size to 128 9 128 pixels. As mentioned

above, with the image pyramid, we can search different

sizes of polyps using a fixed window size. After scanning,

points with positive decision scores are merged via non-

maximal suppression and the remaining points with high

scores are considered as locations of bounding boxes BBd.

Here, the sizes of boxes are computed by dividing the

window size by their scaling values used for image

pyramid.

To evaluate detection performance, we employ an

intersection of union (IOU) measurement [23], defined as:

IOU ¼ areaðBBd

T
BBgtÞ

areaðBBd

S
BBgtÞ

[ 0:5 ð8Þ

We consider two boxes as matched if the ratio of an

overlap area over a union area between a detection box BBd

and a ground truth box BBgt exceeds 0.5. Matched BBd and

BBgt are counted as true positives (TPs). On the other hand,

unmatched BBd and BBgt are counted as FPs and false

negatives, respectively. Using this matching result, we plot

detection error tradeoff (DET) curves, which represent the

Fig. 7 Distributions of CID and

decision threshold: CID

distribution of polyp (blue), CID

distribution of colon wrinkles

and passages (red), minimum

error decision threshold ropt

(cyan), and selected decision

threshold r (magenta) (best

viewed in color)

Table 1 Summary of datasets

Dataset CVC [13] ODB ODBseq

Frames 300 1432 87

Sequences 15 – 3

Identities of polyps 15 1098 4

Total number of polyps 300 1425 80

Image size (pixels) 574 9 500 520 9 450 520 9 450
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miss rate versus false positives per image in log–log scale.

Our method was tested with various test scenarios for

unbiased evaluations, as summarized in Table 2 and

compared with several existing methods, as summarized in

Table 3.

5 Results

In order to evaluate the methods as fairly as possible, we

take into account various test scenarios, as described in

Table 2. Under the test scenarios, we first evaluated the

performance of several single classifiers with various types

of kernel [linear, polynomial, radial basis function (RBF)]

and multi-classifiers with various numbers of classifiers, as

shown in Fig. 8a. The classifier using the linear kernel

outperformed single classifiers using non-linear kernels.

This means that a non-linear classifier does not always lead

to better performance. The proposed multi-classifiers out-

performed all single classifiers. This implies that the pro-

posed multi-classifier learning method achieves good

generalization for the various appearances of polyps.

Among the multi-classifiers, the multi-classifier with

K = 4 showed the best performance; therefore, we selected

it for subsequent experiments.

Figure 8b shows the performance (for all test images) of

a single classifier (SCL), four different sub-classifiers, and

a multi-classifier containing the four sub-classifiers (MCL).

Overall, all sub-classifiers yield low performance since

they are trained for detecting a specific appearance. On the

other hand, the performance of the multi-classifier shows

good performanceby combining the sub-classifiers. Inter-

estingly, the single classifier that used all training samples

performs worse than the second sub-classifier that used

training image set 2 in Fig. 3. This result indicates that it is

difficult to cover various appearances of polyps using only

a single classifier, and that training a classifier with too

many diverse samples can degrade performance.

Figure 8c, d show the performances of detectors with

different features and learning methods. We implemented

other polyp detection methods using LBP, GLCM16 [4],

and CWC [5] within our framework for a fair comparison.

Since other studies [4, 5] evaluated their performance using

the receiver operating characteristic (ROC) curve based on

a per-window measure, we conduct the comparison using

the ROC curve with a per-window measure in Fig. 8c and

the DET curve with a per-image measure in Fig. 8d3 under

Table 2 Summary of test

scenarios
Scenario Training data Test data Validation Related results

Database No. of images Database No. of images

1 CVC?ODB 1386 CVC?ODB 346 fivefold Fig. 8a–d, Fig. 9

2 ODB 1432 CVC 300 onefold Fig. 8e

3 CVC 300 ODB 1432 onefold Fig. 8f

4 CVC?ODB 1732 ODBseq 87 onefold Fig. 10

In test scenario 1, we randomly divided an image set consisting of two databases (CVC 300 images

[13]?ODB 1432 images) into five subsets similar in size, and conducted fivefold cross-validation. At each

fold, we selected four subsets (about 1386 images) for training and one subset (about 346 images) for

testing. In test scenarios 2–4, onefold validations were conducted using each database separately for

training and testing

Table 3 Methods used for evaluation

Index Method Feature group Clasification Kernel

1 Local binary patterns (LBPs) [4] Texture SVM Linear

2 Gray-level co-occurrence matrix (GLCM) [4] Texture SVM RBF

3 Color wavelet covariance (CWC) [5] Texture SVM RBF

4 RGB color histogram (RGB-CH) Color SVM Linear

5 HSV color histogram (HSV-CH) Color SVM Linear

6 Proposed method baseline: HOG with single-classifier learning (HOG-

SCL)

Shape SVM Linear, polynomial,

RBF

7 Proposed method with multi-classifier learning (HOG-MCL) Shape SVM Linear

8 Proposed method with multi-classifier learning and CID measure (HOG-

MCL?CID)

Shape and color

difference

SVM Linear

3 As discussed in another study [24], the per-window measure leads

to better scores than using per-image. For more details of both

measures, refer to [24].
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test scenario 1 (fivefold cross-validation using two data-

sets). In Fig. 8c, the performance (82.5%) of the SCL using

the HOG feature is better than that (77.5–71.6%) of the

others [4, 5], proving that the HOG feature is more

appropriate for polyp detection. In Fig. 8d, the proposed

detector MCL-HOG?CID (blue) shows the best

performance, proving the effectiveness of the proposed

MCL and CID measure. By comparing the DET curves of

SCL-HOG (black), MCL-HOG (red), and MCL-HOG?-

CID (blue), we can see that the proposed learning and CID

reduce FPs while preserving the detection rate. As shown

Fig. 8 a Performance of multi-classifiers with various numbers of classifiers, b performance of each sub-classifiers when K = 4, c performance

comparison with other detection methods (ROC curves) under test scenario 1, and performance comparisons (DET curves) under d test scenario

1, e test scenario 2, and f test scenario 3 (best viewed in color)
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in Fig. 6d, CID can extract OLCs and measure the intensity

difference around the contour to remove FPs.

In order to compare the methods more extensively, we

provide additional results under test scenarios 2 and 3

(details given in Table 2). Through these test scenarios, we

observed the performance of each polyp detector to detect

totally unseen polyps. Since the two datasets do not share

the same patients, the distributions of images (e.g., iden-

tities of polyps, view point, lighting condition, etc.) in CVC

and ODB can be different. Figure 8e, f show the results

under test scenarios 2 and 3, respectively.

The results of Fig. 8f generally show lower performance

than those of Fig. 8e since test scenario 3 is much more

challenging.4 Nevertheless, our methods still show

promising performance under both scenarios. The LBP-

based method [4] performed poorlyunder scenario 3, as

shown in Fig. 8f. The proposed CID measure under sce-

nario 3 contributed a lot to remove FPs since ODB contains

more challenging scenes (e.g., with many colon wrinkles

and passages) than those in CVC (Fig. 8f). This result

confirms that the CID measure works properly for

removing FPs and that its contribution is higher when the

colon scenes are complex .

In order to compare our method with more recent work,

we also compared the methods using various evaluation

metrics, as show in Table 4. F1 score is a measure of

testing accuracy that considers both precision and recall:

Table 4 Performance

comparison with other methods
Method GT TP : FP ; Precision : (%) Recall : (%) F1 score : Speed ; (s/frame)

LBP [4] 300 139 248 35.92 46.33 40.46 0.2

SA-DOVA [13] 300 215 241 47.14 71.66 56.86 19

Proposed 300 211 209 50.24 70.33 58.62 2

For further comparisons, we used public CVC dataset and various evaluation metrics (precision and recall).

For each metric, the best results are marked in bold. Each method was executed on a computer with an

Intel-i7 processor using Matlab scripts for implementation

The bold values are indicates the best result

Fig. 9 Results of our method a–e detection of semi-sphere polyps, f–j detection with complex structures, and (k–o) detection with various

appearances of polyps

4 Test scenario 3 is challenging because ODB contains more diverse

polyps and complex scenes than those in CVC and the numbers of

Footnote 4 continued

training and test samples are not balanced (training: 300 � test:

1432).
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F1 ¼ 2 � precision � recall
precisionþ recall

ð9Þ

where precision ¼ TP
TPþFP

and recall ¼ TP
TPþFN

. The results

show that our method outperforms SA-DOVA [13] in

terms of accuracy (F1) and speed.

Figure 9 shows the qualitative evaluation results (i.e.,

detection results) of our methods. Polyps with a roughly

semi-spherical shape are detected by both detectors (i.e.,

SCL and MCL), as shown in Fig. 9a–d. However, the

detector based on SCL produces FPs and missed detec-

tions due to colon wrinkles, as shown in Fig. 9e–h. Fig-

ure 9i–l show that the detector based on MCL

successfully detects various shapes of polyps using the

multi-classifier and generates few FPs using the CID

measure (no polyps are detected by the detector based on

SCL in Fig. 9i–l).

As shown in Fig. 8c–f, the LBP-based method [4]

shows higher performance than that of other previous

methods in the various test scenarios. To show the per-

formance enhancement based on our methods, we provide

qualitative evaluation results of our method and Amel-

ing’s method [4] under challenging endoscopic sequence

dataset ODBseq, as shown in Fig. 10. Sequence 01 con-

tains severe illumination changes (frames #1–#3), but our

polyp detector successfully detects all polyps. In sequence

02, a textureless polyp is not detected by the texture-based

detector [4], whereas it is correctly detected by our shape-

based detector using the HOG feature. We further show

that our detector can produce accurate detections in

blurred images caused by severe endoscope motion, as

shown in sequence 03 (frames #2–#5). In these sequences,

our method achieves high detection accuracy but also

reduces FPs and missed detections. These experimental

results confirm that our method is far superior to Amel-

ing’s method [4]. They also show that our method is more

reliable and appropriate in a clinical environment for

polyp detection.

6 Conclusion

In this paper, we proposed a framework for automatic

polyp detection. We evaluated several features to dis-

criminate between polyps and normal tissues and adopted

the HOG feature, which has larger discriminative power

than that of other features. In addition, we proposed a

multi-classifier learning method for detecting polyps with

significant appearance variations and a CID measure for

removing FPs caused by colon winkles and passages.

Experimental results using both public and our own data-

sets verify that our method achieves better performance

than other state-of-the-art polyp detection methods.
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