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Abstract This paper proposes a multispectral magnetic

resonance imaging (MRI) image fusion scheme for

improved visualization of anatomical and pathological

information of meningioma (MG) brain tumors that com-

bines the contourlet transform and fuzzy statistics. The

proposed fusion technique mainly targets the tumor and its

surrounding hyperintense (edema) region, which leads to

improved brain imaging informatics for radiologists. The

developed methodology mainly consists of the contourlet

transform for multiscale and directional decomposition,

fuzzy entropy for fusing approximation coefficients, and

region-based fuzzy energy for fusing detailed coefficients

of two input images with the same orientations. Two fusion

rules are established here in order to fuse corresponding

lower- and higher-frequency subbands of images. The

proposed methodology is applied to five various combi-

nations (such as T1-weighted and T2-weighted, T1 post-

contrast and T2-weighted etc.) generated from four

modalities of MRI images (T1-weighted, T1 post-contrast,

T2-weighted, and fluid-attenuated inversion recovery

(FLAIR)). A total of 150 MRI images (30 images from

each of five combinations) are considered from 20 cases of

MG brain tumors. A quantitative evaluation of the pro-

posed method is performed in terms of three performance

measures. The performance is compared with that of

existing medical image fusion techniques tested on the

same dataset. Experimental results show the superiority of

the proposed methodology in terms of both qualitative and

quantitative measures, which also indicates that fused

images contain enriched diagnostic information that can

aid the detection of tumors and edema. A fusion of post-

contrast T1-weighted MRI images with FLAIR and T2-

weighted MRI images provided clinically relevant

information.

Keywords Magnetic resonance imaging (MRI) � Brain
tumor � Edema � Fuzzy statistics � Image fusion � Contourlet
transform

1 Introduction

Brain tumors are solid masses that result from uncontrolled

cell division, which leads to abnormal growth of brain

cells. They are categorized as benign (non-cancerous) or

malignant (cancerous). Their invasiveness and aggres-

siveness obstruct the normal functionalities of the brain,

making them life-threatening. In addition, fluid accumu-

lation surrounding the tumor region, called edema, leads to

dysfunction of healthy tissues by creating pressure. Edema

plays an important role in diagnosis, because radiologists

can correlate it with the size and growth of a tumor. Among

various brain imaging techniques, magnetic resonance

imaging (MRI) is regarded as the most effective modality

for evaluating brain tumors due to its impressive soft tissue

contrast. Moreover, it is non-invasive and radiation-free.

Conventional MRI scans (e.g., T1-weighted (T1), T2-
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weighted (T2), T1 post-contrast (T1C), and fluid-attenuated

inversion recovery (FLAIR)) provide differential intensity

profiles of tumors and edema [1]. For T1C, a paramagnetic

substance, gadolinium contrast agent (which shortens

relaxation times of neighboring protons), is injected. It

crosses the blood–brain barrier and enhances the visual-

ization of the active vascular region of a tumor. Experi-

mentally, it is well understood that a tumor becomes

hypointense in T1 whereas the same tumor gets enhanced

in T1C. Interestingly, edema is almost invisible in both

scans. In the FLAIR imaging protocol, the effects of the

cerebrospinal fluid (CSF) are suppressed and hyperintense

(finely heterogeneous) edema with an isointense tumor can

be seen. In some situations, hyperintense edema is found in

T2, but the visibility of isointense/hypointense (with gray

matter) lesion or active region suffers due to an overlap of

intensities. Therefore, the identification of an exact margin

of a solid tumor region from T2 seems to be an impossible

task. This kind of situation is very common in MG brain

tumors, which are defined as extra-axial brain tumors that

originate from arachnoidal cells. About 88–94 % of MGs

are benign and a very small percentage are atypical and

malignant [2]. This kind of tumor is more common in

women than men. An MG is a highly vascularised lesion,

and perilesional edema is very common. Sometimes, cal-

cification appears within the lesion, but MRI has limita-

tions in visualizing this. In practice, radiologists usually

examine all types of MRI scans for anatomical and

pathological evaluation of MG tumors and edema

sequentially. The evaluation is not only subjective but also

very time-consuming to obtain accurate diagnosis. Under

such circumstances, it would be more effective to evaluate

the abnormality (MG) if both the enhancing lesion and

edema can be represented in a single image. In view of this,

our research aims at integrating an enhancing vascular

region and its surrounding edema of an MG brain tumor

into a single image by keeping their original location intact.

As an enhancing lesion is hyperintense and has a well-

defined boundary, it can be identified from the surrounding

region as well as edema in a single image. In order to

achieve this, various combinations of different scans are

taken into account by deriving an effective image fusion

methodology.

Volumes of white matter, gray matter, and CSF have

been evaluated through the fusion of different brain MRI

images using a context-based fusion operator [3]. Gen-

erally, image fusion can be done at four levels, namely the

signal level, pixel level, feature level, and decision level

[4, 5]. Pixel-level image fusion is simple and easy to

implement, but it introduces loss of information and

blurring of edges due to its simplicity [6, 7] which

degrades the quality of fusion. In feature-level fusion,

features are extracted from different types of brain

imaging data and fused using a data-driven analysis

technique to obtain a more clinically significant image

[8]. The problems of pixel-level fusion can be overcome

by implementing multiscale decomposition along with

pixel-level image fusion. Multiscale decomposition can

be achieved using Fourier, Laplacian pyramid, or wavelet

transforms. A one-dimensional (1D) wavelet is very

efficient in capturing the edge or contour information of a

1D signal. Particularly, this leads to fast transformation

and a convenient tree data structure. Hence, 1D wavelets

are popular in many signal processing and communication

applications. When a 1D wavelet is extended to a two-

dimensional (2D) wavelet for three-band MRI image

fusion by using the tensor product, it is efficient in iso-

lating discontinuities at edge points, but lacks direction-

ality and efficiency [9]. Therefore, several new transforms

have been developed to solve the problem of 2D wavelet

transform. The problem of directionality can be solved

using a dual-tree complex wavelet transform (CWT) [10].

The dual-tree discrete wavelet transform [11] has been

developed for image coding. As the coefficients of CWT

are complex, a large amount of data is required to record

the imaginary part of the coefficients. The contourlet

transform [12] has better directionality and efficiency, and

can preserve the geometrical structure of the image. Other

approaches, such as bandlets [13], wedgelets [14], and

quadtree coding [15], can be employed for representing

geometrical regularities. The major drawback of these

approaches is the requirement of an edge detection stage,

which is very noise sensitive. Being a fixed transforma-

tion, the contourlet transform does not require edge

detection, which is responsible for its popularity in a wide

range of medical image fusion applications [16, 17]. The

dual-tree complex contourlet transform is employed for

multi-modal medical image fusion by using principle

component analysis (PCA) for generating fusion rules

[18]. Fuzzy logic is a well-appreciated method for esti-

mating the transform coefficients of the contourlet trans-

form [19] and the non-subsampled contourlet transform

[20] for developing the fusion rules in medical image

fusion. A fusion algorithm based on a fuzzy inference

system [21] has been proposed for multi-modal medical

image fusion. Li et al. proposed a novel approach of

ensembling a dictionary learning technique with group

sparsity and graph regularization for combining hard and

soft tissues through the fusion of T2 MRI images with

computed tomography (CT) images [22]. Due to the lack

of anatomical information in single-photon emission

computed tomography (SPECT) images, researchers have

developed various fusion schemes for fusing them with

MRI images to obtain an informative image [23, 24]. Shen

et al. developed a fusion rule based on cross-scale for

multispectral volumetric MRI image fusion and showed
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the applicability of their method for CT-T1, SPECT-T2,

and positron emission tomography (PET)-T2 fusion [25].

This paper proposes an efficient technique for multi-

spectral MRI image fusion to improve the visualization of

MG brain tumors that combines an enhancing lesion and

surrounding edema based on the contourlet transform dri-

ven by fuzzy logic. In the proposed method, two multi-

spectral MRI images are decomposed into one low-

frequency and many high-frequency subbands using the

contourlet transform. For fusing the corresponding low-

frequency subbands of both input images, fuzzy entropy is

applied to each coefficient for obtaining its degree of par-

ticipation in the fusion. This paper proposes a fusion rule

based on a fuzzy entropy function for low-frequency sub-

band fusion. A fusion rule based on a fuzzy energy function

is proposed for high-frequency subbands. Experimental

results show the efficacy and superiority of the proposed

methodology in comparison to existing fusion methods.

2 Materials and Methods

2.1 MRI Image Database

Brain MRI images were produced using a 1.5-T MRI

scanner in Digital Imaging and Communications in Medi-

cine (DICOM) format with a resolution of 512 9 512. The

field of view (FOV), slice thickness, flip angle, and mag-

nification of four types of MRI image (T1, T2, T1C, and

FLAIR) were kept at 240 9 180 mm2, 5 mm, 90�, and 1.2

respectively. During the scan, the repetition time (TR) and

echo time (TE) for T1 were maintained in the ranges of

250–500 and 10–30 ms, respectively. Similarly, for the T2

scan, TR and TE were fixed in the ranges of 2000–5000

and 100–200 ms, respectively. In the post-contrast T1 scan,

generally 10 ml of gadolinium (Gd)-dimeglumine was

injected. The usual prescribed dose for this contrast med-

ium is 0.1 mmol/kg of body weight. 1 ml of contrast

medium corresponds to 469.01 mg of Gd-dimeglumine.

The inversion recovery (IR) time for FLAIR was kept at

750 ms for all cases. For each MRI protocol, 19 slices were

acquired for each patient in a particular plane. 20 cases of

human MG brain tumors were considered in this study.

During image processing, the T1 MRI images were kept as

the reference images and all other modalities (T2, T1C, and

FLAIR) were co-registered with T1 using a rigid registra-

tion technique for each case. This task was accomplished

with three-dimensional (3D) slicer software [26].

2.2 Proposed Methodology

The main goal of this study is to fuse complementary

information by removing redundant information from the

source registered images. The contourlet transform is a

multiscale and directional decomposition framework in the

transform domain, which provides a sparse representation

of an image. Moreover, it preserves the smooth contours of

an image, which avoids the difficulties encountered with

the wavelet and curvelet transforms [27]. The contourlet

transform is also referred to as a pyramidal directional filter

bank (PDFB), which is a combination of a Laplacian

pyramid (LP) [28] and a directional filter bank (DFB) [29].

PDFB thus has a double filter bank structure. The multi-

scale decomposition is obtained from LP by generating the

down-sampled low-pass version of the source image. The

difference between the source and low pass filtered image

represents the band-pass image. This resulting image is fed

into the DFB to obtain the directional subbands (i.e., high-

frequency components). DBF comprises two-channel

quincunx filter banks with fan filters, which do not mod-

ulate the image. At each level l, DFB decomposes the

image into 2l directional subbands. The contourlet trans-

form returns the contourlet coefficients in the form of cell

vector aL; dl;k
� �

of length n ? 1, where n is the total

number of decomposition levels. The first element of the

cell represents low-frequency (approximation) coefficients;

the remaining cell corresponds to each pyramidal level,

representing a cell vector that contains band-pass direc-

tional subbands (detailed coefficients) from the DFB at that

particular level. If l is the level of decomposition, the

directional subbands at this level must satisfy k = 2l. The

key difference between the contourlet transform and other

transforms is that the contourlet transform allows different

numbers of directions at each scale.

In the context of multiscale and directional decomposi-

tion, a fusion rule has an important impact on the quality of

the fused image. The high-frequency components contain

discontinuity lines, such as smooth curves and edges, which

are key for visualizing geometric shapes. Here, high-fre-

quency components play a pivotal role in enhancing the

visual quality of MG tumor regions along with edema in a

single image. Therefore, the development of separate fusion

rules for the two coefficients is more efficient approach in

fusion. According to this, coefficients with similar charac-

teristics are fused with the same fusion rule. In this regard,

separate fusion rules are developed for the two coefficients

to achieve the desired goal. Figure 1 shows the step-by-step

operations of the proposed methodology.

2.2.1 Input Images

Consider two input MRI images, A and B, that are

decomposed into low- and high-frequency subbands as

faAL ; dAl;kg and faBL ; dBl;kg, respectively, using the contourlet

transform. The coefficients of the fused image are denoted

as faFL ; dFl;kg, where L represents level of decomposition,
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k indicates the number of decomposition direction, and

1 B l\ L.

2.2.2 Approximation Coefficient Fusion Rule

The conventional way of averaging the corresponding

approximation coefficients aAL and aBL of two inputs leads to

major information loss, which in turn degrades the quality

of the fused image. Therefore, the proposed method esti-

mates the contribution of each approximation coefficient

towards fusion. This estimation process is done by

employing a fuzzy entropy function. To achieve this, these

coefficients are considered as a fuzzy set and the mem-

bership of each is obtained from the Gaussian membership

function [30]. Fuzzy entropy is then derived from the

membership value of each approximation coefficient as:

Fig. 1 Proposed methodology of multispectral MRI image fusion for MG brain tumor and edema identification
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hðlAðxÞÞ ¼
2ðlAðxÞÞ; for 0\lAðxÞ\0:5

2ð1� lAðxÞÞ; for 0:5� lAðxÞ� 1

(

ð1Þ

This entropy function hðlAðxÞÞ is monotonically

increasing, but once l reaches 0.5, it is at its maximum

(i.e., 1); it then starts decreasing in the same manner.

The integral entropy function [31] (H(A)) of a fuzzy

image set (A), which is defined over a universe of dis-

course, say U, is:

HðAÞ ¼ k
n

Xn

i¼1

hðlAðxiÞÞ � pðxiÞ ð2Þ

where k ([ 0) and n are a positive constant and the total

number of elements in the set.pðxiÞ and lAðxiÞ denote the

probability distribution and fuzzy membership functions of

the ith element of x in set A, respectively. Finally, the

integral entropy of all approximation coefficients is

obtained from the sum of the product of individual entro-

pies, the probability distribution of each coefficient, and a

fixed value. A similar process is repeated for obtaining the

integral fuzzy entropy (H(B)) of the second input image.

The proposed design rule for obtaining the fused

approximation coefficient from the input coefficients of

two MRI images is defined as:

aFL ¼ aAL � HðAÞ þ aBL � HðBÞ
HðAÞ þ HðBÞ ð3Þ

Multiplication of fuzzy entropy with the approximation

coefficient enhances the effect of the coefficient having

more information and reduces the effect of the coefficient

having less information.

2.2.3 Detailed Coefficient Fusion Rule

Detailed coefficients contain directional subbands at dif-

ferent decomposition levels. The fuzzy information energy

of each coefficient is computed as the initial stage of

fusion. In this context, detailed coefficients are considered

as the elements of a fuzzy set and again the Gaussian

membership function is employed to generate the mem-

bership of each element. The information energy [32] of a

fuzzy set A for an element x is derived from its membership

and its complement ðlcAðxÞÞ as:

Table 1 Performance of fusion algorithms in terms of UIQI tested over 20 cases for each combination

Input T1C-FLAIR T1C-T2 T1-FLAIR T1-T2 T2-FLAIR

AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed

C001 0.546 0.313 0.774 0.584 0.373 0.780 0.529 0.503 0.795 0.473 0.195 0.740 0.682 0.496 0.743

C002 0.633 0.375 0.739 0.399 0.491 0.795 0.671 0.427 0.694 0.412 0.227 0.736 0.738 0.528 0.825

C003 0.568 0.395 0.760 0.580 0.473 0.712 0.556 0.496 0.798 0.631 0.201 0.807 0.733 0.554 0.758

C004 0.614 0.487 0.781 0.517 0.430 0.769 0.554 0.376 0.711 0.559 0.164 0.799 0.658 0.398 0.793

C005 0.677 0.580 0.817 0.596 0.322 0.736 0.656 0.552 0.813 0.517 0.098 0.724 0.742 0.467 0.762

C006 0.595 0.572 0.721 0.451 0.290 0.692 0.573 0.575 0.781 0.525 0.153 0.746 0.594 0.527 0.848

C007 0.754 0.467 0.790 0.633 0.382 0.711 0.644 0.518 0.816 0.604 0.237 0.814 0.656 0.538 0.776

C008 0.637 0.519 0.753 0.483 0.449 0.774 0.713 0.390 0.855 0.568 0.149 0.766 0.683 0.465 0.812

C009 0.739 0.572 0.768 0.599 0.513 0.689 0.670 0.436 0.830 0.440 0.184 0.822 0.699 0.563 0.859

C010 0.701 0.559 0.811 0.618 0.478 0.761 0.749 0.481 0.731 0.658 0.152 0.836 0.677 0.470 0.779

C011 0.538 0.547 0.762 0.542 0.317 0.699 0.738 0.425 0.848 0.664 0.265 0.785 0.673 0.461 0.738

C012 0.649 0.523 0.788 0.640 0.429 0.675 0.695 0.376 0.716 0.599 0.216 0.743 0.718 0.439 0.801

C013 0.547 0.475 0.807 0.573 0.458 0.709 0.576 0.373 0.755 0.691 0.147 0.829 0.624 0.490 0.794

C014 0.683 0.526 0.755 0.484 0.490 0.688 0.516 0.459 0.853 0.632 0.083 0.789 0.689 0.521 0.781

C015 0.749 0.530 0.784 0.426 0.356 0.745 0.606 0.464 0.892 0.533 0.299 0.763 0.670 0.547 0.779

C016 0.561 0.467 0.775 0.632 0.467 0.758 0.683 0.488 0.744 0.628 0.168 0.790 0.667 0.520 0.814

C017 0.610 0.451 0.743 0.697 0.306 0.672 0.611 0.417 0.702 0.574 0.128 0.796 0.751 0.455 0.760

C018 0.592 0.427 0.805 0.498 0.423 0.730 0.659 0.359 0.758 0.561 0.169 0.811 0.671 0.623 0.792

C019 0.716 0.539 0.739 0.556 0.381 0.787 0.599 0.409 0.803 0.583 0.241 0.757 0.728 0.463 0.817

C020 0.608 0.541 0.742 0.672 0.429 0.761 0.647 0.430 0.685 0.422 0.177 0.823 0.747 0.488 0.752

Mean 0.635 0.493 0.770 0.559 0.412 0.732 0.632 0.447 0.779 0.563 0.182 0.783 0.690 0.500 0.789

Std 0.070 0.072 0.027 0.082 0.068 0.039 0.067 0.061 0.060 0.080 0.053 0.034 0.042 0.051 0.033
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eðlAðxÞÞ ¼ 2ðl2AðxÞ þ lc2A ðxÞÞ � 1 ð4Þ

The value of information energy is in the range of 0 to 1.

The local information energy, independent of x, as a

measure of the total fuzzy energy of a set A, is obtained by

integrating the product of individual energy and the

corresponding probability distribution within the limit of

½a; b� as:

E½a;b�ðAÞ ¼
Zb

a

eðlAðxÞÞ � pðxÞ dx ð5Þ

To compute this for an individual coefficient, we use a

neighborhood-based processing technique, where a square

neighborhood with dimensions of w 9 w (w is an odd

integer) is chosen. In this work, a normalized window with

dimensions of 3 9 3 is considered. The local energy (E(v))

at every element (i, j) of the detailed coefficient matrix with

dimensions M 9 N for image A with respect to a square

neighborhood is computed as:

EðdAl;kði; jÞÞ ¼
X1

m¼�1

X1

n¼�1

wðiþm; jþnÞ

� eðdAl;kðiþm; jþnÞÞ�pðiþm; jþnÞ
ð6Þ

The first term wði; jÞ is the weight ðwði; jÞ ¼ 1=9Þ, the
second term denotes the fuzzy information energy of the

coefficient, and last term is the probability distribution.

After obtaining the local energy of each element of the

detailed coefficient matrix in image B, an element-based

comparison of energy is carried out to identify the coeffi-

cients with high energy. These coefficients will be con-

sidered for fusion. The mathematical process of this

comparison is:

flagðdAl;kði; jÞÞ ¼
1; if EðdAl;kði; jÞÞ [ EðdBl;kði; jÞÞ
0; otherwise

(

ð7Þ

flagðdBl;kði; jÞÞ ¼ 1 � flagðdAl;kði; jÞÞ ð8Þ

The proposed design rule for generating the fused

detailed coefficients is defined as:

dFl;k ¼ dAl;k � flagðdAl;kÞ þ dBl;k � flagðdBl;kÞ ð9Þ

For the fusion of detailed coefficients, we consider

coefficients with high information energy for the fused

image while discarding coefficients with low information

energy. After obtaining the fused approximation and

detailed coefficients at all decomposition levels, an inverse

Table 2 Performance of fusion algorithms in terms of entropy tested over 20 cases for each combination

Input T1C-FLAIR T1C-T2 T1-FLAIR T1-T2 T2-FLAIR

AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed

C001 6.416 6.267 6.989 6.752 6.905 6.735 6.683 6.814 6.849 6.538 6.883 6.912 6.689 6.785 6.974

C002 6.668 6.553 6.707 6.537 6.724 6.928 6.392 6.792 6.763 6.127 6.646 6.843 6.794 6.937 6.925

C003 6.308 6.737 6.674 6.718 6.752 6.681 6.726 6.990 6.877 6.660 6.766 6.835 6.994 6.863 7.143

C004 6.719 6.664 6.742 6.574 6.718 6.749 6.460 6.632 6.758 6.547 6.952 7.089 6.113 7.153 7.120

C005 6.638 6.847 6.914 6.685 6.854 6.991 6.775 6.834 6.975 6.286 6.857 6.863 6.942 7.001 7.233

C006 6.192 6.791 6.873 6.216 6.649 6.784 6.013 6.563 6.752 6.109 6.924 7.166 6.327 6.972 7.255

C007 6.627 6.811 6.674 5.894 6.793 6.841 6.417 6.982 6.714 6.339 6.457 6.909 6.851 7.190 6.971

C008 6.673 6.795 6.774 6.683 6.895 7.053 6.348 6.674 6.746 6.723 6.963 6.871 7.056 6.724 6.994

C009 5.995 6.853 6.746 6.638 6.846 6.782 6.129 6.839 6.726 6.478 6.918 6.938 6.635 6.949 6.944

C010 6.659 6.799 6.951 6.460 6.918 6.641 6.635 6.865 6.855 6.659 6.697 6.906 6.830 7.116 7.265

C011 6.703 6.768 6.827 6.710 6.799 6.771 6.783 6.426 6.788 6.485 6.861 6.893 7.148 7.154 6.908

C012 6.592 6.692 6.656 6.372 6.875 6.824 6.224 6.759 6.907 6.238 6.995 7.158 6.807 7.147 6.919

C013 6.636 6.824 6.723 6.543 6.799 6.715 6.619 6.917 6.916 6.002 7.058 6.918 6.826 6.986 6.991

C014 6.273 6.759 6.800 6.724 6.403 6.853 6.507 6.756 6.779 6.763 6.967 6.834 7.017 6.773 6.978

C015 6.643 6.842 6.853 6.626 6.916 6.793 6.334 6.892 6.847 6.559 6.719 6.890 6.728 6.938 6.921

C016 6.679 6.745 6.931 6.668 6.758 6.838 6.427 6.935 6.923 6.157 6.983 6.857 6.953 7.095 7.172

C017 6.694 6.790 6.861 6.794 6.794 6.922 6.711 6.523 6.745 6.291 6.912 6.915 6.586 6.975 6.948

C018 6.582 6.775 6.711 6.653 6.726 6.905 6.596 6.836 6.937 6.716 6.884 6.829 6.880 7.036 7.106

C019 6.697 6.833 6.939 6.627 6.816 6.917 6.162 6.898 6.821 6.431 7.092 6.934 6.460 6.827 7.114

C020 6.726 6.836 6.855 6.774 6.833 6.783 6.356 6.684 6.723 6.364 6.894 6.967 6.974 7.173 6.874

Mean 6.556 6.749 6.810 6.582 6.788 6.825 6.464 6.780 6.820 6.423 6.871 6.926 6.780 6.989 7.037

Std 0.205 0.134 0.103 0.214 0.116 0.103 0.225 0.154 0.081 0.226 0.150 0.099 0.256 0.143 0.125
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contourlet transform is applied to reconstruct the fused

image (F).

2.3 Performance Evaluation

Three performance measures, namely universal image

quality index (UIQI), entropy, and fusion factor (FF),

were employed for the quantitative assessment of the

proposed fusion technique. UIQI is employed to measure

the structural distortion that appears during the process of

fusion [33]. Entropy is evaluated to quantify the amount

of rich information present in the fused image [34] and FF

signifies how well the input images are fused in terms of

mutual information [35]. The ideal value of UIQI is one

and higher values are desirable for the other two mea-

sures. A statistical analysis was conducted to test the

significance of the obtained results. The 95 % confidence

interval (CI) for the mean of the difference in the per-

formances of two methods with respect to a performance

measure was calculated and the p value was computed for

the corresponding CI in order to test the hypothesis (hy-

pothesis: null hypothesis is rejected if the proposed

approach outperforms an existing method (p-value

\0.05); if both methods perform equally, the test statistic

fails to reject the null hypothesis) [36].

3 Results and Discussion

In this experiment, five combinations of axial slices of MRI

images (T1C-FLAIR, T1C-T2, T1-FLAIR, T1-T2, and T2-

FLAIR) were used. Slice selection plays a key role in this

study, because a tumor and edema do not exist in all slices.

In this regard, radiologist’s assistance has been taken to

consider the input slices. The corresponding slices of two

MRI sequences were nominated for fusion. For example, if

the radiologist chose the 11th MRI image for a particular

case, then T2 and T1C of the 11th slice would be fused. To

test the efficiency of the proposed methodology, a perfor-

mance evaluation was conducted with UIQI, entropy, and

FF for 20 cases for each combination and the performance

was compared with that of conventional techniques, i.e.,

the average method (AVG) and PCA [17]. The quantitative

assesments of fusion methods (AVG, PCA, and the

Table 3 Performance of fusion algorithms in terms of FF tested over 20 cases for each combination

Input T1C-FLAIR T1C-T2 T1-FLAIR T1-T2 T2-FLAIR

AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed AVG PCA Proposed

C001 4.685 3.783 4.758 4.250 3.683 6.751 3.476 1.847 6.008 3.972 4.101 5.901 4.452 2.238 6.379

C002 4.998 4.006 5.203 4.768 3.015 6.685 3.982 3.307 5.519 4.517 3.527 6.538 4.103 4.361 6.552

C003 3.301 2.608 4.929 4.115 3.422 6.327 4.071 2.983 5.721 4.893 3.703 5.884 4.931 2.472 6.760

C004 4.738 3.114 4.609 3.242 2.902 6.949 4.458 3.829 5.804 4.090 2.226 6.652 4.920 2.235 6.297

C005 3.854 3.776 5.237 5.162 2.477 6.819 4.647 3.254 5.581 4.822 2.890 6.197 5.317 2.724 6.383

C006 4.611 2.991 4.992 4.707 3.592 6.455 3.712 3.545 5.791 4.218 2.618 6.592 4.209 3.711 6.173

C007 3.945 4.134 5.076 3.853 2.319 6.702 4.820 3.335 5.611 3.269 3.124 5.994 5.163 2.803 6.201

C008 4.827 3.249 5.318 4.316 2.854 6.793 3.244 2.814 5.870 4.915 2.504 6.058 3.375 3.488 6.372

C009 4.613 2.540 4.906 3.116 2.178 6.324 4.009 2.685 6.102 4.097 3.114 6.632 4.408 3.834 5.916

C010 4.236 3.839 5.165 3.293 2.630 6.679 3.316 1.613 5.668 3.713 2.637 6.599 3.699 3.770 6.833

C011 3.772 3.709 5.253 3.656 2.826 6.852 3.742 2.328 5.715 3.660 2.820 6.447 5.558 3.452 6.619

C012 3.981 3.682 5.175 4.161 3.775 6.729 3.503 2.672 5.633 3.310 2.637 6.087 5.230 4.516 6.425

C013 4.710 3.137 4.806 3.735 2.952 6.457 4.151 2.725 5.805 4.375 2.983 5.801 3.418 2.769 6.626

C014 3.407 3.411 4.825 4.385 2.683 6.404 3.779 1.990 5.610 3.261 2.861 5.790 3.534 3.981 6.190

C015 3.006 2.887 5.144 4.638 3.916 6.829 3.920 3.469 5.910 3.835 3.714 6.594 3.960 3.504 5.842

C016 4.572 3.200 5.347 4.843 2.602 6.758 4.153 2.814 6.207 4.035 3.375 6.411 5.002 3.183 6.714

C017 4.750 2.903 5.173 4.233 3.265 6.493 3.816 3.636 5.528 4.872 3.603 5.832 3.954 2.653 6.390

C018 4.596 3.008 5.213 3.651 3.392 6.674 4.439 1.808 5.762 4.214 2.287 6.256 4.273 3.239 6.577

C019 4.660 3.497 5.716 4.073 2.340 6.326 4.702 3.791 5.780 3.385 3.101 6.397 4.594 2.443 6.820

C020 3.788 3.647 4.755 3.433 3.961 6.856 4.418 3.895 5.852 4.716 2.712 6.483 4.875 3.100 6.755

Mean 4.252 3.356 5.080 4.081 3.039 6.643 4.017 2.917 5.773 4.108 3.026 6.257 4.448 3.223 6.441

Std 0.578 0.459 0.259 0.577 0.555 0.200 0.459 0.713 0.183 0.563 0.509 0.313 0.663 0.678 0.283
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proposed methodology) for all combinations in terms of

UIQI, entropy, and FF for each case are presented in

Tables 1, 2, and 3, respectively. The outcomes of fusion

obtained using the proposed, AVG, and PCA methods for

all five combinations of a particular case are depicted in

Fig. 2. Similarly, the results of T1C-T2 fusion obtained

using the proposed, AVG, and PCA methods are presented

in Fig. 3 for two different cases. From Tables 1, 2, and 3, it

can be observed that the proposed methodology has the

highest mean and lowest standard deviation (Std) values of

all three performance measures for all five combinations as

compared to those of the AVG and PCA methods. On the

Fig. 2 Fusion results of AVG, PCA, and proposed methodology for all five MRI image combinations of 2D axial slices. a T1C-T2, b T1C-

FLAIR, c T1-T2, d T2-FLAIR, and e T1-FLAIR
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basis of these results, the proposed methodology outper-

forms the AVG and PCA techniques in fusing multispectral

information into a single image. The statistical analysis of

the experimental results (Tables 1, 2, and 3) is presented in

Table 4, which highlights the test outcomes based on 95 %

CI of the mean of the difference. This mean of the dif-

ference was computed from the obtained values of per-

formance measures evaluated for the fused images

obtained using three fusion methods (proposed, AVG, and

PCA). From Table 4, we can be 95 % certain that the

proposed methodology is superior to AVG and PCA for all

input combinations based on the differences in FF and

UIQI measures (because the null hypothesis was rejected

for all input combinations). However, for entropy, the test

statistic failed to reject the null hypothesis for all combi-

nations except for T1C-FLAIR when comparing the pro-

posed methodology with PCA. From Table 2, there is no

significant difference between the performance of the

proposed method and the PCA method, even though the

proposed method is better than PCA in terms of the mean

and standard deviation. Therefore, due to the very little

difference (in entropy), the two methods perform almost

equally based on the statistical test. The statistical test

demonstrates the superiority of the proposed method over

AVG on the basis of entropy for all input combinations.

Therefore, the statistical tests show the effectiveness and

superiority of the proposed approach. From this quantita-

tive and statistical comparison of fusion algorithms, it can

be concluded that the proposed methodology is efficient

and superior to AVG and PCA for multispectral MRI

image fusion for all combinations. The selection of the

decomposition level and number of directions for com-

puting the contourlet transform is discussed next.

3.1 Effects of Decomposition Level on Fusion

Quality

In this study, the decomposition level used to compute the

contourlet transform for all input combinations was selected

on the basis of finding the highest entropy in the corre-

sponding level. A fusion experiment using the proposed

algorithm was conducted on our dataset at different levels of

decomposition. The computed entropy at each decomposi-

tion level is represented by the error bar for all combina-

tions, respectively (see Figs. 4a–e). Figures 4a–e show how

the entropy of fused image varies with the decomposition

level. Initially, entropy increases with the level of decom-

position up to a certain value, and then decreases gradually

as the level is further increased. Figures 4a and c show that

the mean entropy reaches a maximum value with the min-

imum standard deviation at the 4th level of decomposition

for the T1C-FLAIR and T1-FLAIR combinations; the T1C-

T2, T1-T2, and T2-FLAIR combinations have the highest

mean entropy with the lowest standard deviation at level 6

(see Figs. 4b, d, and e, respectively). This strategy of finding

the maximum value entropy is used for selecting the level of

decomposition (the level at which entropy is maximum).

The processing time increases almost linearly with the level

of decomposition, as shown in Fig. 4f. During the experi-

ment, the processing time was independent of MRI image

combination.

3.2 Effects of Number of Decomposition Directions

on Fusion Quality

In the contourlet transform, it is possible to change the

number of directions at every multiscale decomposition

Fig. 3 Fusion results of axial 2D slices for two cases. a Original T2, b original T1C, and output of c AVG, d PCA, and e proposed methodology
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level. In this study, the decomposition levels were fixed at

4 and 6, for which we obtained the desired results, as

presented in Tables 1, 2, and 3. The number of decom-

position directions was selected on the basis of decompo-

sition levels according to basic property of contourlet

transform. An experiment was performed using proposed

algorithm to examine the changes in the performance

measures (entropy and UIQI) with variations in the number

of decomposition directions. Initially, there were variations

in entropy with increasing number of directions. However,

it was observed that when the number of decomposition

directions was increased to beyond 128, entropy varied

very slowly for all combinations, as shown in Fig. 5a.

Figure 5b shows that for all five input combinations, UIQI

increases with the number of decomposition directions for

64–128 directions, and then remains constant or slowly

decreases with a further increase in the number of

directions.

The primary goal of this study was to develop an image

fusion technique for clinically enhancing the visualization

of MG brain tumors and edema based on the contourlet

transform and fuzzy statistics. The clinical contribution of

this research is to aid surgical planning, therapeutic

intervention, and prognosis of MG brain tumors. From the

viewpoint of a radiologist, the T1C-FLAIR and T1C-T2

combinations are clinically significant, as the resulting

fused images integrate anatomical and pathological

information by combining the enhancing lesion and per-

ilesional edema (see Figs. 2a, b and 3, respectively). But

other three combinations are taken into account to test the

efficiency and robustness of the proposed algorithm. The

contourlet transform was implemented because of its

ability to determine the edges in all directions, which a

wavelet cannot do because it represents edges only in the

vertical, horizontal, and 45� directions. In the context of

this research problem, edges play a key role in the visu-

alization of a tumor region from surrounding tissues and

hence the contourlet transform is well suited for this

application. Fuzzy statistics are adopted for fusing the

coefficients of the contourlet transform. Fuzzy logic can

be used to deal with uncertainty or ambiguity, making it

an efficient approach for estimating the contribution of

coefficients towards the fusion. Fuzzy integral entropy

and local energy are employed for designing separate

fusion rules for low- and high-frequency components.

The results of fusion of all five combinations are pre-

sented in Fig. 2. The AVG method produces low-contrast

images, so we cannot clearly identify edema and the

lesion in the fusion of T1C-T2 and T1C-FLAIR combi-

nations. Similarly, the PCA method introduces large

artifacts, which degrade the visual quality of the fused

image. The proposed technique gives impressive results

for all combinations, improving the visualization ofT
a
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tumors and edema in a single image. Figure 3 shows the

results of the T1C-T2 combination for two different cases.

Each axial slice of T2 indicates homogeneous water

density in the vasogenic edema that surrounds the mixed-

density isointense lesion, whereas the T1C image shows

an enhancing lesion surrounded by brain tissues, as

depicted in Fig. 3. The edema and lesion in the fused

image obtained using AVG method are more hypointense

than input T2 and T1C slices. The PCA method produces

a highly distorted image, in which none of the

Fig. 4 Selection of decomposition level on basis of maximum entropy in a T1C-FLAIR, b T1C-T2, c T1-FLAIR, c T1-T2, and e T2-FLAIR

input combinations. f Impact of decomposition level on processing time

Fig. 5 Effects of number of decomposition directions on a entropy and b UIQI of fused images

480 S. Koley et al.

123



characteristics are clearly visible. The proposed method-

ology produces a well-defined hyperintense lesion sur-

rounded by well-delineated perilesional edema.

Therefore, the fused image obtained using the proposed

algorithm presents both the lesion and edema in a single

image, which would be really helpful for delineating the

whole tumor region of MG. The performance of the

proposed algorithm was compared with that of two

existing medical image fusion techniques, namely a fuzzy

inference system (FIS)-based technique [21], which was

developed for multi-modal CT-MRI fusion, and the

Neuro-FIS system [37], which was proposed for CT-MRI

and SPECT-MRI image fusion. The performance of these

two methods was evaluated using our dataset for multi-

spectral MRI image fusion for improved visualization of

MG brain tumors. At the beginning of this section, we

compared the performance of the proposed methodology

with that of a PCA-based method [17]. Al-Azzawi et al.

proposed this technique for multi-modal CT-MRI image

fusion. The PCA-based technique was also tested using

our MG dataset. The results of PCA are included in the

comparison with existing medical image fusion algo-

rithms. This comparison (see Table 5) was conducted in

terms of the entropy measure of the fused images. The

results show the effectiveness and applicability of the

proposed technique for multispectral MRI image fusion.

The main focus of the proposed methodology is to bring

both the enhancing lesion and perilesional edema of an MG

brain tumor into a single image plane so that the patho-

logical and anatomical information can be integrated,

improving imaging informatics. This fusion method can be

used as an assistive technique for clinicians in surgical and

therapeutic interventions. The identification of the bound-

ary of a complete tumor region (enhancing lesion and

edema) will aid diagnosis. The efficiency of proposed

fusion technique was determined by testing the perfor-

mance of a segmentation process implemented over the

fused images. To accomplish this task, a popular unsu-

pervised clustering algorithm, k-means [38], was

employed. The performance validation was done with

respect to the ground truth images, which are the standard

reference frames made by the radiologist signifying the

exact contour of a complete tumor region. Two statistical

measures, namely Jaccard and Dice scores [39], were used

for the quantitative evaluation of segmentation accuracy.

These two performance measures compute the similarity

between the outputs of k-means and the ground truths. A

higher value (closer to one) of either measure indicates a

better quality result. Figure 6 shows the segmentation

outcomes of the k-means algorithm applied over the fused

images obtained using the proposed method. From the

quantitative validation of performance over 30 fused

Table 5 Comparison of

proposed methodology with

existing methods

Input Reference Method Entropy

(mean ± Std)

T1C-FLAIR Teng et al. (2010) [21] FIS 6.720 ± 0.123

Teng et al. (2010) [36] NFIS 6.781 ± 0.113

Al-Azzawi et al. (2009) [17] PCA 6.749 ± 0.134

Proposed CT-FS 6.810 ± 0.103

T1C-T2 Teng et al. (2010) [21] FIS 6.811 ± 0.112

Teng et al. (2010) [36] NFIS 6.980 ± 0.147

Al-Azzawi et al. (2009) [17] PCA 6.788 ± 0.116

Proposed CT-FS 6.825 ± 0.103

T1-FLAIR Teng et al. (2010) [21] FIS 6.722 ± 0.103

Teng et al. (2010) [36] NFIS 6.718 ± 0.123

Al-Azzawi et al. (2009) [17] PCA 6.780 ± 0.154

Proposed CT-FS 6.820 ± 0.081

T1-T2 Teng et al. (2010) [21] FIS 6.736 ± 0.134

Teng et al. (2010) [36] NFIS 6.813 ± 0.104

Al-Azzawi et al. (2009) [17] PCA 6.871 ± 0.150

Proposed CT-FS 6.926 ± 0.099

T2-FLAIR Teng et al. (2010) [21] FIS 6.831 ± 0.136

Teng et al. (2010) [36] NFIS 6.935 ± 0.144

Al-Azzawi et al. (2009) [17] PCA 6.989 ± 0.143

Proposed CT-FS 7.037 ± 0.125

CT-FS contourlet transform and fuzzy statistics

Multispectral MRI Image Fusion for Enhanced Visualization of Meningioma Brain Tumors… 481

123



images of the T1C-T2 combination, we obtained a mean

Jaccard score of 0.88 with a standard deviation of 0.05 and

a mean Dice score of 0.93 with a standard deviation of

0.03. This computational analysis proves that the detection

of a complete tumor area is achievable from the fused

images (T1C-T2 combination) obtained using the proposed

technique. The proposed methodology can thus be applied

to MRI image fusion for better visualization of MG brain

tumors and edema. In this study, the size and shape of the

tumor varied from image to image. The imaging parame-

ters, described in the MRI image database section, were

fixed in a specified range during the scanning of the 20

cases of MG brain tumors. The proposed methodology and

the existing techniques mentioned in this study were tested

Fig. 6 Segmentation outputs of k-means clustering algorithm. a–c Fused images of T1C-T2 combination obtained using proposed methodology,

d–f corresponding ground truth images (red region is exact area of complete tumor region), and g–i results of k-means (yellow area) for complete

tumor area detection
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on this real dataset. The proposed methodology outper-

forms some of the existing fusion algorithms, which proves

its efficiency.

We tested the proposed method for all five combinations

to prove its robustness, efficiency, and flexibility. From the

quantitative performance comparison with existing

methodologies and the radiological significance of the

fused images obtained using the proposed methodology,

the proposed algorithm is promising. Segmentation of

hypointense or isointense tumors is very difficult because

of the overlap of intensities with neighboring tissues, so the

presence of an enhancing lesion along with edema in a

single image plane can help at the next level machine

vision application, i.e., segmentation of the outer boundary

of a complete tumor region. The performance of k-means

clustering on the fused images obtained using the proposed

methodology confirms this statement.

4 Conclusion

This study proposed a multispectral MRI image fusion

algorithm for integrating anatomical and pathological fea-

tures of two MRI scans of a given slice of an MG brain

tumor. This methodology improves radiological signifi-

cance by identifying the entire tumor region that includes an

enhancing lesion and edema in the fused image. The major

contribution of this research is the design of separate fusion

rules for low- and high-frequency subbands. The proposed

method outperforms the traditional technique and some

existing medical image fusion methods in terms of quanti-

tative analysis and radiological significance. In addition, the

segmentation of a complete tumor region in the fused

images (fusion of the T1C-T2 combination) obtained using

the proposed method was accomplished using the clustering

method. The proposed multispectral MRI image fusion,

which combines the contourlet transform and fuzzy statis-

tics, is a novel and coherent approach for improving the

visualization of MG brain tumors along with the edema

region, facilitating surgical and therapeutic interventions.
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