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Abstract Tele-assessment systems are crucial for home-

based rehabilitation, as they allow therapists to assess the

status of patients and adjust the parameters of various

home-based training devices. Traditional force/torque

sensors are commonly used in tele-assessment systems to

detect muscle strength because such sensors are conve-

nient. However, muscle activity can be measured using

surface electromyography (sEMG), which records the

activation level of skeleton muscles and is a more accurate

method for determining the amount of force exerted. Thus,

in this paper, a method for predicting muscle strength using

only sEMG signals is proposed. The sEMG signals mea-

sure the isometric downward touch motions and are

recorded from four muscles of the forearm. The prediction

function is derived from a musculoskeletal model. The

parameters involved are calibrated using the Bayesian

linear regression algorithm. To avoid the complex model-

ing of the entire movement, a neural network classifier is

trained to recognize the force-exerting motion. Experi-

mental results show that the mean root-mean-square error

of the proposed method is below 2.5 N. In addition, the

effects of the high-pass cutoff frequency and the co-

activation of flexors and extensors for EMG force predic-

tion are discussed in this paper. The performance of the

proposed method is validated further in real-time by a

remote predicted-force evaluation experiment. A haptic

device (Phantom Premium) is used to represent the pre-

dicted force at the therapist’s remote site. Experimental

results show that the proposed method can provide

acceptable prediction results for tele-assessment systems.

Keywords Tele-assessment system � Muscle strength

prediction � Surface electromyography � Classification �
Bayesian linear regression � Co-activation � Haptic device

1 Introduction

Approximately 795,000 new or recurrent strokes are

reported annually in the United States [1]. Compared with

traditional physical therapy, which is labor-intensive and

requires one-to-one therapist-patient interaction, therapeu-

tic robots have been investigated by many researchers to

make the process more practical and to ease the burden on

therapists [2]. Although these devices can relieve the bur-

den of physical therapy, most of them are bulky and cannot

be moved. Thus, patients still have to travel to rehabilita-

tion centers, which is an inconvenience that may interface

with some patients’ continuing rehabilitation. Therefore,

tele-rehabilitation systems, which contain suitable home-

based rehabilitation devices as well as tele-assessments,

would be a significant step forward.

A previous study developed a portable exoskeleton

device [3, 4]. The device serves as part of a patient’s home-

based rehabilitation. Because the pre-set training parame-

ters should be determined for each patient by an experi-

enced therapist, a tele-assessment system is required. Park

& Songyuan Zhang

s13d505@stmail.eng.kagawa-u.ac.jp

1 Graduate School of Engineering, Kagawa University,

Takamatsu, Kagawa 761-0396, Japan

2 Institute of Advanced Biomedical Engineering System,

School of Life Science and Technology, Key Laboratory of

Convergence Medical Engineering System and Healthcare

Technology, The Ministry of Industry and Information

Technology, Beijing Institute of Technology, Haidian

District, Beijing 100081, China

3 Department of Intelligent Mechanical Systems Engineering,

Kagawa University, Takamatsu, Kagawa 761-0396, Japan

123

J. Med. Biol. Eng. (2016) 36:121–131

DOI 10.1007/s40846-016-0112-5

http://crossmark.crossref.org/dialog/?doi=10.1007/s40846-016-0112-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40846-016-0112-5&amp;domain=pdf


et al. [5] developed a tele-assessment system for elbow

joint spasticity in which a torque sensor is used to measure

force/torque. However, comparatively, surface elec-

tromyography (sEMG), which records the activation level

of skeleton muscles, is a more accurate method for

obtaining the amount of force exerted. Thus, this study

proposes a tele-assessment system that uses sEMG to

predict the muscle force on the wrist joint.

In recent decades, the relationship between muscle force

and sEMG signals has been extensively investigated [6, 7].

Savelberg and Herzog [8] used an artificial neural network

(ANN) with a backpropagation algorithm to predict

dynamic tendon forces from EMG signals. However, these

authors applied a generalization of ANN to the represen-

tation of complex relationships between dynamic forces

and EMG signals without any explicit function description.

Conversely, Cavallaro et al. [9, 10] developed a myopro-

cessor based on Hill phenomenological muscular models,

which implements a genetic algorithm to tune the param-

eters involved in muscular models and is a relatively

explicit method for predicting the joint torques of upper

limbs.

However, to study such relationships, both explicit and

implicit methods require careful processing of sEMG sig-

nals and elaborate parameter calibration. According to one

study [6], the validity of muscle force estimation using

sEMG comprises several criteria, such as accurate esti-

mation of muscle activation, nature of the EMG–force

relationship, differences in temporal characteristics

between EMG and force signals, normalization of the EMG

amplitude, and effects of muscle contraction dynamics. To

estimate muscle activation, Manal and Buchanan [11]

proposed a one-parameter model for obtaining muscle

activation from neural activation. The optimal parameter

was determined iteratively using the Newton–Raphson

method. A non-linear normalization method proposed by

Potvin et al. [12] has also been applied [13–18].

Here, a muscle force prediction method for isometric

downward touch motion that uses only sEMG signals is

proposed. The predicated force is used to assess the muscle

strength of patients. Unlike clinical studies of individual

muscles (such as those mentioned above), the proposed

method tries to predict contact force as an output of the

function of muscle groups. The sEMG signals recorded

from four muscles of the forearm are used for force pre-

diction. The prediction function was derived from a

dynamic equation based on an upper-limb musculoskeletal

model, with muscle activation levels as the input. The

parameters were calibrated using the Bayesian linear

regression (BLR) algorithm. Because the total motion is

dynamic, it is necessary to identify the force-exerting

motion from other motions; in order to do so, and to avoid

complex modeling of the entire movement, an ANN was

applied to classify the force-exerting motion. Additionally,

a remote force estimation experiment was designed to

validate real-time performance. The effect of high-pass

cutoff filtering and the co-activation of flexors and exten-

sors for force prediction (root-mean-square (RMS) error

and linear correlation coefficient (CC)) are also considered

in order to improve the results.

2 Materials and Methods

2.1 Experimental Apparatus and Protocol

Seven male subjects without neuromuscular deficit (age:

25.67 ± 2.66 years, height: 1.71 ± 0.05 m, weight:

66.50 ± 9.04 kg) participated in the experiment. The

experimental setup is shown in Fig. 1a. Prior to data

Fig. 1 a Downward touch motion (A signal acquisition device and

filter box; B force sensor; C two MTx sensors; D electrodes mounted

on correlative muscles). b Surrogate therapist operating haptic device

(Phantom Premium) (A haptic device; B surrogate therapist)
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collection, the subjects were shaved and wiped down with

alcohol. Dry rectangular electrodes (Ag/AgCl, size:

26 9 14 mm, Oisaka Development Ltd., Japan), with a

skin contact surface of 20 mm2 and an inter-electrode

distance of 15 mm, were placed parallel to the subjects’

muscle fibers, according to SENIAM references [19].

Electrode placements were confirmed according to a

method described in a previous study [20]. The recorded

sEMG signals were pre-processed by a commercial filter

box (10–500 Hz band pass, 60 Hz band rejection, ampli-

fied 10009, Personal EMG, Oisaka Development Ltd.,

Japan) with differential amplification (gain: 1000) and

common-mode rejection (104 dB) at a sampling frequency

of 3000 Hz. They were then sampled at 1000 Hz by a

16-bit analog-to-digital (A/D) acquisition device

(USB4716, 16-channel input, Advantech Co., Ltd.,

Taiwan).

When using EMG signals to predict muscle force, a

movement-restricting apparatus is often used to constrain

the joint angle of the upper limb being measured (e.g., a

one-degree-of-freedom exoskeleton testbed [21]). Because

the joint angle involves factors that affect the EMG–force

relationship [21], this restriction of motion is necessary for

the purposes of clinical study. In our study, MTx sensors

(Xsens Technologies B.V., Enschede, The Netherlands)

were attached to the subject’s hand and forearm to record

joint angles. A force sensor (ThinNANO, BL AUTOTEC,

LTD., Japan) was mounted on a platform to record the

subjects’ downward touch force. A haptic device (Phantom

Premium, Geomagic, USA) can be used to represent the

predicted contact force to therapists at a remote location.

Phantom Premium (shown in Fig. 1b) is a commercial

haptic product with which haptic force can be exerted by

the patient and remotely sensed by the operator via a

handle.

During the downward touch motion, each subject was

asked to touch the center of the force sensor with his index,

middle, and ring fingers while keeping the entire palm flat.

The hand faced downward while the forearm flexed

approximately 30� and the wrist flexed approximately 45�
(as shown in Fig. 1a). First, each subject found a com-

fortable position for performing the downward touch

motion, and the joint angles were recorded for reference.

Then, maximum voluntary contraction (MVC) tests were

performed to record sEMG data for four forearm muscles.

As part of the MVC tests, the subject was asked to press the

force sensor (wrist flex) as hard as possible (a deviation in

joint angle within 3� of its reference measurements indi-

cated high joint stiffness) and to maintain that maximum

level of force for 5 s. The sEMG data from this motion

were recorded to obtain the MVC values for the flexor

carpi radialis (FCR) and the flexor carpi ulnaris (FCU). The

subject was then asked to perform the same gesture with

the dorsal aspect of his hand against the underside of the

platform while extending the wrist as much as possible and

maintaining the same maximum level of force for 5 s. The

sEMG data recorded for this motion were used to obtain

the MVC values for the extensor carpi radialis longus

(ECRL) and the extensor carpi ulnaris (ECU). Each trial

was repeated three times with a 1-min rest in between; the

highest value for each was treated as the MVC value.

After the MVC tests, subjects were asked to perform a

downward touch experiment. The downward touch move-

ment was divided into five steps: (1) an initial gesture with

the upper limb in a relaxed position; (2) a reaching motion

to touch the force sensor (lasting about 2 s); (3) a force-

exerting motion (lasting about 5 s); (4) a return to the

initial gesture (lasting about 2 s); and (5) the initial gesture.

The experiment was divided into two groups, namely the

offline and online groups. In the offline group, subjects

performed the downward touch motion following a refer-

ence gesture. The maximum force amplitude ranged from 5

to 25 N, in increments of 5 N (i.e., total of 5 trials), and

each trial was repeated five times with a rest time of 30 s in

between. Then, the data were processed and ANNs were

trained for each subject individually. In the online group,

subjects were asked to perform the downward touch motion

in a relatively free way (deviation of the joint angle from

its reference was within 10�); the contact force was pre-

dicted in real-time, and there were five trials, just as with

the offline group.

During the online evaluation, one surrogate therapist

was asked to hold the handle of the haptic device in order

to feel the contact force in a remote location. Because the

maximum force provided by the haptic device is 22 N, the

evaluation was graded into three levels: 0–5 N (low level),

5–10 N (medium level), and 10–15 N (high level). Prior to

the experiment, a simulation test allowed the surrogate

therapist to be familiarized with how each of the three

levels would feel.

2.2 Data Processing and Analysis

The sEMG signal acquired from an A/D board was pro-

cessed with a digital high-pass first-order Butterworth filter

with cutoff frequencies of 20, 200, and 400 Hz, respec-

tively, to compare the effects of high-pass cutoff frequency

on downward touch force estimation. Post-processed

sEMG signals were then full-wave rectified and low-pass

filtered by a first-order Butterworth filter with a cutoff

frequency of 2 Hz to acquire the envelope. Afterward,

normalization was performed on the four channels of

sEMG data by dividing the corresponding MVC values.

The above process, following a previous study [11], was

applied to transform raw sEMG signals to values called

e(t). A discretized second-order recursive filter with the
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discrete form of Eq. (1) was implemented to obtain u(t)

from e(t) [22]. In Eq. (1), d is the electromechanical delay

and a, b1, and b2 are the coefficients that define the sec-

ond-order dynamics. A detailed description of these

parameters can be found elsewhere [23].

uðtÞ ¼ aeðt � dÞ � b1uðt � 1Þ � b2uðt � 2Þ ð1Þ

Non-linear processing was performed on u(t) to obtain

muscle activation a(t):

aðtÞ ¼ 100
expð�uðtÞ � cÞ � 1

expð�100 � cÞ � 1
ð2Þ

where constant c was set at 0.02 for this study.

The raw signals from the force sensor, MTx sensors, and

sEMG electrodes were sampled simultaneously and saved

for further processing. Data from the force sensor were

low-passed by a digital first-order Butterworth filter with a

cutoff frequency of 2 Hz. The data recorded from the MTx

sensors needed no further filtering since an embedded

algorithm was used. Repeated measurements of one-way

analysis of variance (ANOVA) were used with the high-

pass cutoff frequency as a fixed factor and RMS errors and

CCs between predicted results and measured ones as

dependent variables. Furthermore, in order to determine the

effect of flexor and extensor co-activation on prediction,

another analysis was performed with and without using

extensors as a fixed factor for prediction. The significance

level was set at 0.05.

2.3 Schematic of Proposed Contact Force

Prediction Method

A schematic of the proposed method is depicted in Fig. 2,

including the offline calibration and online prediction. An

ANN classifier was applied to classify the force-exerting

motion and the BLR algorithm was adopted to calibrate the

parameters involved in the prediction function. The input

was the muscle activation levels of the four muscles and

the output was the predicted contact force. The inputs were

first recognized by the ANN classifier in order to separate

the force-exerting motion from other motions. When the

force-exerting motion was recognized, the muscle activa-

tion levels were used sequentially to predict the contact

force. Details for each block in the schematic are provided

in the following subsections.

2.4 Motion Recognition

During muscle strength assessment, only the muscle acti-

vation for the exerting force is needed. However, the entire

movement includes the relaxed phase, reaching phase,

force-exerting phase, and returning phase. Although some

researchers have developed explicit models to study the

movement of upper limbs [24], the topic itself is chal-

lenging and additional sensors are needed; comparatively,

the pattern recognition method using only sEMG signals

[25–29] is more suitable for our case. The identified muscle

activation for the exerting force was used for further force

prediction.

In this paper, an ANN classifier was applied to identify

the various motions. The muscle activation levels for each

of the four muscles were the classifier’s input; the binary

representations of each of the four motions (relaxed,

reaching, force-exerting, and returning) were the output.

The training data were well labeled, according to the joint

angles and force values. One set of the training data is

shown in Fig. 3. The relaxed motion was labeled when

there were no changes in joint angles or muscle activation

levels. The reaching and returning motions were labeled

when there were changes in joint angles but no change in

force value. The force-exerting motion was labeled when

the force value changed.

The ANN contained one hidden layer with eight neu-

rons. The hyperbolic tangent sigmoid transfer function and

scaled conjugate gradient backpropagation training algo-

rithm were adopted for the hidden layer combination and

learning process, respectively. The training process was

conducted using MATLAB neural network recognition

tools (Version 7.10.0.499, MathWorks, Inc., USA) and the

online recognition was calculated by a modified C??

program, in which the parameters involved were obtained

from the ANN training results from MATLAB.

In some cases, we found that the ANN classifier could

not recognize a motion immediately; this is a problem in

force prediction. Because the classifier cannot be guaran-

teed to recognize the force-exerting motion as soon as the

subject exerts a force on an object, when the force-exerting

motion is finally recognized, the predicted result will be

discontinuous from the previous one (i.e., a zero value).

Thus, the end result is also discontinuous. Thus, when the

predicted force is transmitted to the therapist’s location, a

suddenly increased or decreased force will appear. In order

to address this problem, we propose a proportional

smoothing algorithm:

F0
i ¼ Fi � ðD� D � i=tÞ i ¼ 1; 2; 3; . . .; t ð3Þ

Fig. 2 Schematic of proposed downward touch force prediction

method. a represents muscle activation level. ANN is classifier used

to recognize force-exerting motion. BLR algorithm was adopted to

calibrate parameters in prediction function

124 S. Zhang et al.

123



where Fi is the original prediction result and F0
i is the

smoothing result. D is the difference between the discon-

tinuous point and the previous point. t is the time interval

for smoothing processing (set at 200 ms for this study).

The minus sign (plus sign) indicates the beginning (end) of

measurements.

2.5 Development of Prediction Function

Previous research has addressed the linear relationship

between the musculotendon force (FT) and the muscle

activation level [a(t)], as defined in Eq. (4), where CT

denotes the constant coefficient [30]:

FT ¼ cTaðtÞ ð4Þ

The proposed prediction function was derived from the

dynamic equation developed from a musculoskeletal model

of the downward touch motion (shown in Fig. 4a). This

paper is only concerned with palm flexion and extension,

and the co-activation of flexors and extensors around the

forearm was counted in order to balance the torque exerted

by the contact force. Thus, the dynamic equation can be

written as:

sFlexors � sExtensors þ smg ¼ sF ð5Þ

where sFlexors denotes the torque exerted by the flexors

(FCR and FCU) while sExtensors denotes the torque exerted

by the extensors (ECRL and ECU). sF is the torque derived

from the contact force. smg is the torque exerted by the

hand’s gravity force. The friction in the joint is ignored

here. The gesture in which the upper arm, forearm, and

hand form a line and the contact force passes through the

wrist joint is referred to as the ‘‘singular gesture.’’ During

the singular gesture, the main function of the forearm’s

flexors and extensors is to maintain stiffness at the wrist

joint, and contact force is balanced by contractions in other

muscle groups. Subjects were required to avoid (to the best

of their ability) the singular gesture when performing

downward touch motions; such avoidance was guaranteed

while recording the subjects’ reference gestures.

Because the force-exerting motion is isometric, the

moment arms involved in Eq. (5) can be considered con-

stant. Substituting Eq. (4) back into Eq. (5) yields:

cFF ¼
Xn

i¼1

caaiðtÞ þ smg ð6Þ

where ca equals the product of moment arm and constant

coefficient cT and n (=4) represents the number of muscles.

cF is the moment arm of contact torque sF ; which was also

considered constant. Dividing cF on both sides of Eq. (6)

yields:

F ¼
Xn

i¼1

xiaiðtÞ þ smg=cF ð7Þ

where x equals ca/cF. Equation (7) was used to predict the

contact force after the ANN classifier recognized the force-

exerting motion. To compare the effects of not considering

the co-activation, sExtensors was eliminated from Eq. (5),

which meant that n = 2 for Eq. (7).

2.6 Parameter Calibration

The parameters x of Eq. (7) were calibrated with the BLR

algorithm using data recorded from offline experiments.

Assuming that the noise in the prediction function is in

Gaussian form, Eq. (7) can be written as:

Fig. 3 Recorded data. Upper

plot shows normalized muscle

activation levels from four

muscles. Middle plot shows

recorded downward touch force

from force sensor. Lower plot

shows wrist joint and elbow

joint angles recorded from MTx

sensors. Different motions are

labeled in middle plot
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F ¼ yða;xÞ þ e ð8Þ

where e is a zero-mean Gaussian random variable with

precision b and the bold forms of a and x represent the

vector. The following likelihood function can thus be

obtained:

pðFja;x; bÞ ¼
YM

n¼1

NðFnjxTan;b
�1Þ ð9Þ

where M denotes the number of samples used for

calculation.

It was assumed that the prior probability distribution

over x was also in the form of a Gaussian distribution:

pðxÞ ¼ Nðxjm0; S0Þ ð10Þ

where m0 denotes the mean value of x and S0 denotes the

covariance.

Because the posterior distribution is proportional to the

product of the likelihood function and the prior, the fol-

lowing function is obtained:

pðxjFÞ ¼ NðxjmN ; SNÞ ð11Þ

where

mN ¼ SN � ðS�1
0 m0 þ bUTFÞ ð12Þ

S�1
N ¼ S�1

0 þ bUTU ð13Þ

mN denotes the mean of x given the condition of F, and SN
is the covariance. The evidence approximation method was

adopted to calculate mN and SN. As there were 5 9 5 sets

of data, a ‘‘cross-validation’’ selection criterion was

adopted to obtain local optimal parameters. In this crite-

rion, one set of the experimental data was used to calculate

the parameters; the performance of those parameters was

assessed by evaluating the RMS errors with the remaining

data. This procedure was performed on all experimental

data and those with the smallest RMS errors were selected

as the final optimal parameters.

3 Results

3.1 Performance of ANN Classifier

Experimental results of the ANN classifier’s recognition

accuracy rates are listed in Table 1. The average accuracy

rate for the seven subjects is 96.8 %. The average time

consumption for motion recognition with the ANN
Fig. 4 a Proposed musculoskeletal model and b corresponding

downward touch force. Flexors (FCR and FCU) and extensors (ECRL

and ECU) of forearm were considered in musculoskeletal model.

Actual force was three-dimensional. Because Z-axis had most force,

X- and Y-axes are ignored for simplicity in this paper
Table 1 Recognition accuracy rates for seven subjects

Subject

A B C D E F G

Recognition accuracy

rate (%)

96.0 97.4 94.7 96.7 97.4 98.2 97.1
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classifier was 0.0034 ms, calculated with a personal com-

puter (Inter Core2 Duo E7500 CPU at 2.93 GHz, 4 GB of

RAM, Windows 7). A detailed classification confusion

matrix of one classifier is plotted in Fig. 5a, where numbers

1 through 4 represent the relaxed, reaching, force-exerting,

and returning motions, respectively. The recognition

accuracy rate for the classifier shown in that figure is

96.0 %. In particular, the recognition accuracy rate for the

force-exerting motion is quite high (99.0 % in this case),

which indicates that using ANN as the classifier is suit-

able in our case. One set of online experimental results for

motion classification is plotted in Fig. 5b, where the upper

plot shows the recognized motions (depicted as lines with

different colors) while the corresponding contact force and

joint angles are plotted in the middle and lower plots,

respectively.

3.2 Contact Force Prediction

The entire time consumption of a single-loop contact force

prediction was within 0.3 ms, including data collection,

pre-processing, motion recognition, and prediction.

Table 2 lists the experimental results of RMS errors and

linear CCs of contact force predictions for the downward

touch motion with various high-pass cutoff frequencies. A

set of online prediction results with a high-pass cutoff

Fig. 5 a Classification confusion matrix of one classifier. Recogni-

tion accuracy rate for motion 3 was most important one for this study.

b Upper plot shows classification results. Misclassification did not

affect prediction results because only force-exerting motion was

affected. Middle and bottom plots show the corresponding contact

force and joint angles, respectively
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frequency of 200 Hz is shown in Fig. 6. The experimental

results show that (except for subject B) the RMS errors of

all subjects were below 2.0 N (subject B’s RMS error was

2.27 N). Although the RMS errors and linear CCs of the

different cutoff frequencies were slightly different, the

high-pass cutoff frequency had no significant effect on

them (p[ 0.5). The experimental results of the effect of

flexor and extensor co-activation on RMS errors and CCs

are plotted in Fig. 7. The results were obtained using a

high-pass cutoff frequency of 200 Hz. The effect of co-

activation for RMS errors and CCs is significant

(p\ 0.001). The average RMS error is 1.70 ± 0.30 N with

co-activation and 4.90 ± 1.08 N without it. Linear CCs are

0.90 with co-activation and 0.59 without.

The effect of the smoothing algorithm is shown in

Fig. 8, where the upper and lower plot shows the prediction

results without and with smoothing, respectively.

By using the proposed smoothing algorithm, a therapist

can accurately grade the patient’s predicted force in real

time.

4 Discussion

This study aimed to build a muscle strength assessment

system for home-based tele-rehabilitation. Two crucial

aspects for clinical application were considered and are

Table 2 RMS errors (N) and

CCs of downward touch force

predictions

High-pass cut-off frequency (Hz)

Subject RMS errors Linear CCs

20 200 400 20 200 400

A 1.40 ± 0.80 1.33 ± 0.78 1.42 ± 0.62 0.88 0.91 0.92

B 2.27 ± 1.40 2.20 ± 1.42 2.25 ± 1.38 0.79 0.86 0.86

C 1.69 ± 1.04 1.72 ± 1.03 1.65 ± 0.95 0.87 0.91 0.92

D 1.62 ± 0.81 1.91 ± 0.79 1.50 ± 0.81 0.85 0.92 0.93

E 1.64 ± 0.79 1.38 ± 0.64 1.60 ± 0.87 0.87 0.91 0.91

F 1.71 ± 0.89 1.69 ± 0.66 1.70 ± 0.79 0.89 0.90 0.91

G 1.81 ± 1.12 1.73 ± 0.89 1.51 ± 1.00 0.88 0.91 0.91
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Fig. 6 On-line prediction results. Solid blue line is predicted results.

Measured results are plotted with green dashed line. Errors between

the two are plotted with dotted gray line
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Fig. 7 Effect of co-activation for force prediction. a Comparison

results of RMS errors. b Comparison results of CC. Co-activation of

flexors and extensors had significant effect on RMS errors and CCs

between predicted and measured results

Fig. 8 Effect of smoothing algorithm. Upper plot shows experimen-

tal results without smoothing (two discontinuous points would cause

sensation of impact in remote force evaluation experiment). Lower

plot shows results with smoothing (note that smoothing eliminates

sensation of impact)
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summarized as follows. First, sEMG provides a basic

method for determining the amount of force exerted. A

method for predicting motion based on sEMG that is more

simplistic than existing methods was proposed, which can

easily be extended to general rehabilitation training with

more motions. Second, traditional movement-restricting

apparatuses, which increase the burden on patients (par-

ticularly for home-based training), were avoided. Instead, a

more effective motion detection method with MTx sensors

was proposed for use during tele-assessment situations.

Instead of using complicated explicit dynamic movement

modeling, an ANN classifier was adopted to identify the

force-exerting motion from the group of four identified

motions involved in the subjects’ downward touch move-

ment. The muscle force was assessed with isometric con-

traction, for which the ANN classifier is adequate, as

indicated by the obtained accuracy rates. However,

although accuracy rates were quite high (approximately

99 % for the force-exerting motion), the recognition reso-

lution makes it impossible to classify the force-exerting

motion at the moment that it happens. Some researchers

[28] have discussed similar problems occurring during

class transitions and dynamic movement phases; in those

cases, the recognition results were affected. Thus, post-

process correcting methods have been proposed to improve

the classification accuracy rate. However, merely improv-

ing the accuracy rate does not seem to be enough to fix our

problem (the accuracy rate with the proposed method is as

high as 99 %); instead, the proposed proportional

smoothing method must be used. Without this smoothing

method, a therapist may feel a significant sensation of

impact at the beginning and end of the force-exerting

motion in a remote force evaluation. Furthermore, the

functions involved are not complex and can be easily

implemented on another hardware platform. Consequently,

the proposed method is suitable for a wide range of

applications.

During force prediction, the high-pass cutoff frequency

has no significant effect on the RMS errors and linear CCs

of the downward touch contact force prediction. In Potvin

and Brown’s study [31], a high-pass filter with a cutoff

frequency of 400 Hz improved the EMG–force estimation

of biceps brachii; furthermore, in Staudenmann et al.’s

study [32], a high-pass filter benefitted the moment esti-

mation of trunk muscles. In Potvin and Brown’s case, the

relationship was focused on a single muscle; in Stauden-

mann’s case, suppression of ECG contamination was one

probable factor in the demonstrated improvement. In our

case, the contact force was predicted based on the model of

multi-muscle movement results, rather than just one mus-

cle, and no obvious ECG contamination was found.

Co-activation of flexors and extensors is also considered

in this paper. The performance of the prediction results for

RMS errors and linear CCs were significantly better when

including the extensor in the prediction function

(p\ 0.001). These results correspond to Brown and

McGill’s results [33]; however, this paper studies the

muscles around the forearm, while Brown and McGill

studied trunk muscles. Consequently, it is strongly rec-

ommended to take into account the effect of co-activation

when predicting the downward touch force of forearm

muscles.

The joint angle was another factor affecting the EMG–

force relationship [21]. Different joint angles result in

varying muscle length, muscle-moment arm, and the rela-

tive location of the innervation zone with respect to the

electrode used to record sEMG signals. Therefore, a

movement-restricting apparatus is often used to constrain

the joint angle. Because the proposed method aims to be

applied to home-based muscle strength assessments, it is

inconvenient for patients to wear such devices when per-

forming the assessment. However, the utilized MTx sen-

sors provided ‘‘soft restrictions’’ on the subject’s motion.

During the online experiment, this soft restriction was less

rigid; therefore, subjects were able to skip the step of

adjusting their gesture to match the reference gesture, and

thus were able to directly perform the subject task at hand.

Note that subjects may have remembered the general

position from the offline experiment and that the range of

joint angles was within a limited range. The average range

of the wrist joint angle was 3.00� ± 2.47�, and that of the

elbow joint was 2.90� ± 1.18�. These ranges are within the

increments usually studied in the literature. However, the

proposed protocol is more practical, and the experimental

results verify that the proposed method can guarantee the

validity of force predictions without the use of any

restricting apparatus.

5 Conclusion

In this study, a novel contact force prediction method for

downward touch motion, using only sEMG signals, was

proposed. The proposed method can provide acceptable,

accurate prediction results with RMS errors of below

2.3 N. The sEMG signal is of great importance in the

understanding of muscle activities. A remote force evalu-

ation experiment validated the real-time performance of the

proposed method and provides an example of its applica-

tion; it can transmit the sensation of touch to a therapist at a

remote location. Furthermore, the effects of high-pass

cutoff frequency and of the co-activation of flexors and

extensors on EMG–force predictions were also discussed.

The high-pass cutoff frequency has no significant effect on

RMS errors and linear CCs, but it is strongly recommended

that the co-activation of the forearm’s flexors and extensors
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be considered when predicting the contact force of down-

ward touch motions.

This study primarily focused on the wrist joint for

downward touch motion. Because the proposed method

predicts contact force as an output of the function of

muscle groups instead of studying individual muscles, the

method can be easily used for predicting other motions

(e.g., a push motion). Future study endeavors will extend

the proposed predicting method to other motions with more

elegant musculoskeletal models to provide a comprehen-

sive assessment of the patient. Moreover, the designed

exoskeleton device can train not only the wrist joint but

also the elbow joint with multiple degrees of freedom.
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van Dieën, J. H. (2007). Effects of EMG processing on biome-

chanical models of muscle joint systems: Sensitivity of trunk

muscle moments, spinal forces, and stability. Journal of Biome-

chanics, 40, 900–909.

33. Brown, S. H., Brookham, R. L., & Dickerson, C. R. (2010). High-

pass filtering surface EMG in an attempt to better represent the

signals detected at the intramuscular level. Muscle and Nerve, 41,

234–239.

Muscle Strength Assessment System Using sEMG-Based Force Prediction Method for Wrist Joint 131

123


	Muscle Strength Assessment System Using sEMG-Based Force Prediction Method for Wrist Joint
	Abstract
	Introduction
	Materials and Methods
	Experimental Apparatus and Protocol
	Data Processing and Analysis
	Schematic of Proposed Contact Force Prediction Method
	Motion Recognition
	Development of Prediction Function
	Parameter Calibration

	Results
	Performance of ANN Classifier
	Contact Force Prediction

	Discussion
	Conclusion
	Acknowledgments
	References




