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Abstract Femur segmentation from computed tomogra-

phy (CT) images is a fundamental problem in femur-re-

lated computer-assisted diagnosis and surgical

planning/navigation. In this study, an automatic approach

for the segmentation of proximal femur from CT images

that incorporates the statistical shape prior into the graph-

cut framework (SP-GC) is proposed. The proposed seg-

mentation framework includes two major processes,

namely training and segmentation. In the training stage, a

training set of three-dimensional CT images from a group

of normal subjects were segmented semi-automatically.

The shape prior was generated by active shape modeling

that included mean shape and shape variance information.

In the segmentation stage, two shape terms originated from

the training stage were included in the GC energy function.

The minimization of the energy function was achieved

using a max-flow/min-cut algorithm. The performance of

the proposed segmentation method was evaluated by test-

ing on 60 CT datasets from bilateral femurs of 30 normal

subjects. Qualitative and quantitative analyses of the seg-

mentation results of the proposed method were performed

and the results were compared with two widely used

methods, namely the active shape model (ASM) and tra-

ditional GC, with results from manual delineation used as

the ground truth. The mean dice similarity coefficient of

the proposed SP-GC was 0.9600, which is higher than

those of ASM and GC (0.8769 and 0.9358, respectively).

The mean normalized error rate of the SP-GC results was

10 and 6 % lower than those of ASM and GC, respectively.

In terms of the average surface distance measurement, the

value for SP-GC was 0.885 mm, compared with 2.148 and

1.154 mm for ASM and GC, respectively. In comparison

with ASM, SP-GC has superior performance given a small

training set (e.g., n = 12). With increasing number of

training samples, the segmentation accuracy of ASM sat-

urated, but that of SP-GC slightly increased.

Keywords Graph-cut algorithm � Active shape model �
Shape prior � Computed tomography � Proximal femur

1 Introduction

Femur segmentation is a fundamental problem in femur-

related research and clinical applications. The detection of

the imaging biomarker of femoral head shape in

femoroacetabular impingement (FAI) has attracted

increasing attention due to its great potential in clinical

diagnosis. FAI is a relatively recently defined femur con-

dition that could be a pre-condition of osteoarthritis [1, 2].

Cam-type FAI can be differentiated from pincer-type FAI

by a remarkable protrusion on the femoral head-and-neck

junction. Clinically, radiographic images or two-dimen-

sional (2D) slices from computed tomography (CT) or

magnetic resonance (MR) scans are frequently utilized in

its diagnosis [3–5]. However, the reproducibility of 2D-
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image-based diagnosis is problematic due to the limited

shape information presented. In contrast, the three-dimen-

sional (3D) surface of a femur offers much more complete

shape information, so that the statistical femoral shape

difference can be detected for differentiating cam-type FAI

patients from normal subjects and patients with other types

of FAI [6]. CT is the preferred imaging modality for cap-

turing 3D bone structure due to its distinguishable high

intensity in cortical bone. Therefore, the segmentation of

the proximal femoral bone based on CT is suitable for

differentiating cam-type FAI patients.

Despite the highly differentiable signal intensity in

cortical bone in CT images, automatic segmentation of the

femur is still a non-trivial problem. A variety of segmen-

tation algorithms have been proposed [7]. The simplest and

fastest method is threshold-based, but is rarely used inde-

pendently as it is susceptible to noise [8]. This type of

segmentation method is successful only when the structure

to be segmented (i.e., bone) has intensities that are obvi-

ously larger or smaller than those of the background tis-

sues. Therefore, it is seldom possible to determine a

threshold value for all the voxels of the target to be larger

or smaller than this threshold value that. Some efforts have

been made to improve performance, such as multi-thresh-

old [9] and local adaptive threshold methods [10]. Algo-

rithms such as region growing and watershed have the

same limitations as those of threshold-based methods and

often provide initial segmentation results that need post-

processing to be accurate [11]. They tend to cause over-

segmentation and cannot find boundaries of significant

areas when they are low contrast compared to the back-

ground. Recently, the graph-cut (GC) algorithm [12] has

shown great promise for medical image segmentation and

has thus attracted broad attention. Similar to active contour

[13], level set [14], and live wire methods [15], GC is an

energy-based method. It converts an image to a graph and

transforms the image segmentation problem to an energy

function minimization problem. GC combines the infor-

mation of image intensities and boundaries into its energy

function and assumes that when the image is well seg-

mented, this function will reach its minimum. The seg-

mentation methods mentioned above are usually applied

directly to raw image data and make no use of any shape

priors of the segmentation target. For using shape priors to

aid segmentation, the active shape model (ASM) and active

appearance model [16, 17] were proposed. The procedure

is divided into two stages, namely training and testing.

Firstly, images for training are segmented manually in a

slice-by-slice manner. Then, the segmentation results are

grouped and principal component analysis is used to obtain

the mean surface and variability in the group captured by a

number of principal modes. The mean surface is a global

representation of the training set while the modes give

dominant distinctions among individual samples. In addi-

tion to shape variance, the gray-level appearance is gen-

erated according to local intensity feature of landmarks. In

the testing stage, the ASM and active appearance model

search for the updated positions of landmarks by compar-

ing the gray level appearance of current landmarks and

their neighboring voxels.

Extraction of the femur from CT images for analysis of

the proximal femur, which is of vital importance for

characterizing FAI femur morphometry, is the pre-condi-

tion for constructing the femoral statistical model. It is

difficult to obtain reliable segmentation results using only

thresholding, region growing, or other methods. To over-

come the limitations of these general methods, priors about

the segmentation target can be utilized. For instance,

Yokota et al. [18] proposed an automated CT segmentation

strategy for abnormal hips using hierarchical and condi-

tional statistical shape models. The method firstly segments

the pelvis and femur simultaneously and then refines the

segmentation of the femur to improve accuracy under the

condition that the distal femur and pelvis were segmented.

However, due to the repeated optimizations of the statis-

tical shape model, the computation time is considerable.

Although the ASM or active appearance model yields

acceptable performance in osseous structure segmentation

with CT images [19], the result may be suboptimal but not

a global optimum. Moreover, to guarantee the reliability

and accuracy of the statistical model, a considerable

number of training samples are usually necessary, as the

testing stage relies on the training results. In contrast, the

GC method uses the max-flow/min-cut algorithm to opti-

mize its energy function and the result is guaranteed to be

the global optimum [20]. For example, Krcah et al. [21]

used GC to automatically segment the femur bone from 3D

CT images with a success rate of 81 % based on 197

samples. In this method, a bone boundary enhancement

filter is applied, but the separation of neighboring bones

was successful in only 57 % of the cases, which seems

unacceptable in practical applications.

Using image features alone (i.e., neglecting the shape

prior of segmentation target) is likely to achieve incorrect

segmentation results [22]. For instance, the narrow space

between the femoral head and the acetabulum is difficult to

distinguish with GC. In this situation, parts of the acetab-

ulum are regarded as a femoral component and segmented.

Instead of segmenting the proximal femur in a single-step

pattern, some methods addressed this issue in a coarse-to-

fine manner. In this framework, a threshold-based method

is first used regardless of the connection of the femoral

head and the acetabulum. The main effort is then taken to

separate the femoral head and the acetabulum as these two

structures should be disconnected actually. Zoroofi et al.

[23] used Otsu’s method to first segment bone tissues, after
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which the initial boundary of the femoral head and the

acetabulum as well as the joint space between them were

estimated utilizing the information of the greater trochanter

and the shape of the femoral head. The narrow space

between the femur and the acetabulum was detected using

the moving disk technique. This technique achieved good

segmentation accuracy in about 70 % of cases. Cheng et al.

[24] used Bayes decision rules to consider the neighbor-

hood information and the partial volume effect to detach a

connected femur joint after histogram-based thresholding.

Based on a deformable model, O’Neill et al. [25] used the

morphological snake algorithm to iteratively extract cam-

type femurs on a slice-by-slice basis after dividing the

femur into the femoral head and the body. However, as a

semi-automatic framework, necessary interaction is needed

and for the concave region between the femoral neck and

the greater trochanter, segmentation performance is quali-

tatively unacceptable.

Methods combining the original GC with other energy

terms have been proposed. Nakagomi et al. [26] presented

a GC algorithm with neighbor prior constrains for lung

segmentation in CT images. They introduce priors on

neighboring structures from a probabilistic atlas and per-

form the segmentation in a coarse-to-fine manner. Another

method uses weighted directed graph construction to

impose geometrical and smooth constraints learned from

priors and built a cost function by combining selective

feature extractors using a support vector machine classifier

[27]. Level set has been used for prostate segmentation in

MR images [28]. The GC results are used as the initial

values for the level set, after which level-set-based seg-

mentation is used with a shape prior. In this method, level

set is the main algorithm. In GC segmentation with an

adaptive shape prior, instead of using a shape prior at all

pixels, the prior is obtained from selected pixels, where

image labels are difficult to determine to overcome the

parameter selection problem [29]. Chen et al. [30] pro-

posed a synergistic combination of GC and ASM for

medical image segmentation by adding a shape term to

provide additional information for the data term in the

original GC. An overall accuracy of 96 % was achieved

with the method in 2D image segmentation. Intuitively, it is

reasonable to incorporate a shape prior as extra information

for the boundary term. In the present study, the different

influences of shape prior as supplementary data and

boundary information are investigated.

The proposed segmentation scheme of the proximal

femur using CT images is based on the GC algorithm

incorporating a shape prior (SP-GC). A point distribution

model is used for the training samples and the variances of

each landmark among the training group is generated.

Then, these statistical variant modes are used to define the

shape term in the GC energy function. For landmark

correspondence, a plane that passes the most proximal

point of the lesser trochanter and is perpendicular to the

main axis of the femoral shaft for each sample is first

determined interactively. The components above these

planes are registered among training samples, after which a

slightly higher plane is defined for the whole dataset to

obtain training shapes for shape-context-based correspon-

dence [31]. The shape term is attached to the original GC

energy function and the max-flow/min-cut algorithm is

used to obtain the final segmentation results. The seg-

mentation accuracy was measured using the dice similarity

coefficient (DSC), normalized error rate [32], and average

shape distance to compare the performances of the SP-GC,

ASM, and original GC algorithms. Furthermore, for SP-GC

and ASM, the influence of the training set scale on seg-

mentation reliability was evaluated for various numbers of

training samples (12, 16, 20, 24, 28, 32, 36 and 40).

2 Materials and Methods

The conceptual framework of the proposed segmentation

method is shown in Fig. 1. The proposed automatic seg-

mentation framework can be divided into two stages,

namely the training stage and the segmentation stage. In

the training stage, training samples are first segmented. In

the segmentation stage, the background and object intensity

distributions are obtained from the original images and

segmented binary masks for constructing the energy

function. Shape unification is used to unify training shapes

and reduce correspondence error (see Sect. 2.4.1). Gener-

ally, the generated training shapes are described with var-

ious numbers of points. Then, landmark correspondence is

applied to unify the numbers of vertices as well as produce

correspondence across samples. With a point distribution

model, the mean shape of the proximal femur and the

statistical variability are obtained for the next stage. In the

segmentation stage, an energy function is constructed

based on the intensity distributions from training samples

and ASM results. The input data and intensity distributions

are used to define data and boundary terms, as in the

original GC, while statistical variances from the training

stage are for constructing the new shape term. After ini-

tializing the mean shape on input data by setting the

translational, rotational and scaling factors, followed by the

minimization optimization using max-flow/min-cut algo-

rithm, the final segmentation result will be achieved.

2.1 Data Acquisition

A total of 84 femoral CT scans was used in this study.

Among the 84 femurs, 40 samples were selected randomly

as candidates for model training and the remaining 44
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femurs and 16 randomly chosen samples from the training

dataset (for a total of 60) were used as the testing subset.

Participants were selected from those who accepted CT

examination of the hip. The CT scans covered the range

between the whole proximal femur and the lesser tro-

chanter. The inclusion criteria were that the subject should

be asymptotic of any femoral diseases and that the

appearance of the femur should be normal. CT examination

was performed on a 64-slice multi-detector CT scanner

(LightSpeed Ultra, GE Healthcare, Milwaukee, WI, USA)

with a 50-cm scan field of view, 0.625-mm-thick slice

acquisition with no spacing, an accelerating voltage of 120

kVp, an X-ray tube current of 300 mA, and a 0.6-s scan

time. Image reconstruction was conducted using a standard

reconstruction algorithm for bone.

2.2 Graph-Cut Algorithm

Image segmentation aims to divide an image into several

partitions based on the distinctions of some image features,

such as intensity and texture [33]. Image segmentation is

analogous to cutting a graph in graph theory. To apply GC

to medical image segmentation, the image is first converted

into a graph. Based on image information, vertices and

edges of the constructed graph are weighted. Image seg-

mentation is then transformed into a numerical energy

minimization problem.

To apply the GC algorithm, an image is transformed into

an S-T graph G =\V, E[, where V is the set of vertices

and E is the set of edges of an undirected graph G. In GC,

two kinds of vertices as well as edges are defined. Each

voxel of the image corresponds to a vertex in G. Another

type of vertex, called terminal vertices, are virtual nodes

used to represent the background and object. There are

only two terminal vertices, namely S for the object (source)

and T for the background (sink). The edges constructed to

connect two neighboring voxels are called t-edges while

the lines linking each voxel to the terminal vertices (S or T)

are n-edges [34]. In Fig. 2, a 2D image with 9 pixels is

converted into an S-T graph with 11 vertices (9 vertices

corresponding to pixels and two terminal vertices).

According to the weights allocated to each vertex and edge,

the GC algorithm divides the image into the background

and the object (red curve).

The GC algorithm solves the energy minimization

problem using the max-flow/min-cut algorithm. For image

segmentation, the energy function tries to embed image

information into the weights of vertices and edges in the

graph. The cost function in GC consists of its data term and

a boundary term:

CðLÞ ¼ kDðLÞ þ ð1� kÞBðLÞ ð1Þ

where C(L) is the cost of the optimal segmentation sepa-

rating the image into two parts. D(L) and B(L) are the data

term and boundary term, respectively. L is the set of labels

of image voxels, whose value is either 0 or 1, representing

the background and the object, respectively. k is a user-

Fig. 1 Flow chart of SP-GC

algorithm

Fig. 2 S-T graph where black solid lines and blue dashed curves

represent t-edges and n-edges, respectively. Vertices 1, 2, and 3

belong to the object and remaining 6 vertices belong to the boundary

divided by red curve
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defined constant to balance the contributions of D(L) and

B(L).

The definitions of D(L) and B(L) are based on the seg-

mentation image itself to reflect image features. With the

intensity distributions of the background and the object,

D(L) can be defined as:

DðLÞ ¼
X

p2V
PrpðLpÞ Prpð0Þ ¼ � lnPrðIpj0background0Þ

Prpð1Þ ¼ � lnPrðIpj0objectÞ

�

ð2Þ

where p is one of the vertices in V and Lp is the label of p.

PrpðLpÞ is commonly defined as the negative logarithm of

the probability when assigning Lp to p, which can be

computed from its intensity Ip and the distributions of the

background and the object (Fig. 2).

The boundary term B(L) is defined based on both n-

edges and t-edges to reflect boundary information of the

image. The definition of B(L) is as follows:

BðLÞ ¼
X

\p1;p2[2E
dðLp1 ; Lp2ÞB\p1;p2 [ dðLp1 ; Lp2Þ

¼
0; if ðLp1 ¼ Lp2Þ
1; if ðLp1 6¼ Lp2Þ

(
ð3Þ

where\ p1, p2[ is an edge of E linking two neighboring

vertices p1 and p2. B\p1;p2 [ should be a non-increasing

function related to the intensity difference between p1 and

p2, which is commonly proportional to the Gaussian

function as:

B\p1;p2 [ / exp

�
�

Ip1 � Ip2
� �2

2r2

�
1

Distðp1; p2Þ
ð4Þ

where Dist(p1, p2) is the Euclidean distance between p1 and

p2. r is a factor to be defined empirically. In this formula,

when the intensities of p1 and p2 are very similar, B\p1;p2 [

will be very large and it will be practically impossible for a

cut to occur on edge\ p1, p2[. With construction of the

weights on vertices and edges, the energy function of GC

can be minimized using the max-flow/min-cut algorithm.

The result is then transformed back into an image and the

segmentation can be described as a binary mask.

2.3 Active Shape Modeling

ASM is method for deriving a statistical model of a group

of shapes [16]. Frequently, the input of the ASM frame-

work is a certain number of pre-segmented data that are

presented as surfaces with vertices and triangulations using

the marching cubes algorithm [35]. ASM aims at gener-

ating a mean shape by averaging all the input samples and

generalizing variability among individual shapes using

principal component analysis [36]. Usually, the shape

description is stacked as a column vector

Si ¼ ðx1; y1; z1; . . .; xn; yn; znÞT , where n is the number of

landmarks and the triple xj; yj; zj
� �

; j ¼ 1; 2; . . .; n is the

Cartesian coordinates of a landmark. For a training set

consisting of t surfaces, the mean surface can be generated

with:

�S ¼ 1

t

Xt

i¼1

Si ð5Þ

To generalize individual variability inside the group,

singular value decomposition [37] is applied on the

covariance matrix:

C ¼ 1

t � 1

Xt

i¼1

ðSi � �SÞðSi � �SÞT ð6Þ

By performing singular value decomposition, the

eigenvalues and corresponding eigenvectors of C can be

obtained. These eigenvectors delineate how each individual

sample in the training group varies in relation to the mean

shape and the eigenvalues describe which variability mode

is most prominent (the others contribute little to the dif-

ferences). In this way, each shape used for training can be

approximately described as:

Si � �Sþ
Xv

i¼1

Pibi ð7Þ

where bi is the scalar coefficient of ASM and Pj is the

corresponding eigenvectors obtained from singular value

decomposition. Generally, not all of the variability modes

are used to construct a specific shape. To determine the first

v modes used for shape construction, the chosen v should

satisfy:

Xv

i¼1

ki � av
X3n

i¼1

ki ð8Þ

where av is a positive parameter and ki is the ith eigenvalue
when ranking all the eigenvalues from largest to smallest.

Usually, av will be not smaller than 90 %. As 3D shapes

are considered in our experiments, the total number of

eigenvalues is 3n.

2.4 Graph-Cut with Shape Priors

2.4.1 Shape Unification

Accurate manual segmentation results are required for the

training stage in our segmentation framework. To convert

the segmented 3D binary images into surfaces represented

by vertices and triangulations, the marching cubes
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algorithm is used. Under normal circumstances, the

number of vertices describing each sample should be

different when generated, in which situation the point

correspondence is necessary. Being different from skull

whose landmarks can be defined on obvious biomarkers

(e.g. the brow ridges and afterbrain) [19], feature point

definition on the femur surface to unify data is more

vulnerable to operators as the different scanning ranges

for different individuals. After reconstruction, Harris et al.

[6] cropped the femur at the superior aspect of the lesser

trochanter, which is considered to be the most possible

position where cam-tape FAI may occur. However, no

more details were given on how to define those cutting

planes. In order to obtain a more accurate point corre-

spondence result, a semi-automatic method is applied to

unify data for point correspondence. First, the most

proximal vertex of the lesser trochanter is found and a

plane that passes through this vertex and is perpendicular

to the body shaft is approximately defined. The compo-

nent including the femoral head is then obtained. In

addition, the partition of each sample initially defined at

this stage is aligned to a randomly chosen template by

performing rigid registration with the iterative closest

point algorithm [38]. Finally, a new plane parallel to the

formal one for acquiring the template and 1 cm closer to

the femoral head serves as the unified plane. Components

above the unified plane of all the samples are provided as

inputs for point correspondence using shape context [31]

(Fig. 3).

2.4.2 Shape Prior

The original GC algorithm utilizes intensity and boundary

information of the image to perform segmentation. Without

the information of the desired segmentation result, the GC

algorithm tends to find incorrect boundaries in some situ-

ations. The shape prior, a useful piece of information for

guiding image segmentation, is incorporated into the GC

approach in our strategy.

In our method, a shape term (a new energy term) is

attached to the GC energy function for optimization. To

acquire the shape prior, the results of ASM are used. As

mentioned above, ASM gives the mean shape and statis-

tical variability. To define the shape term, it is assumed that

the largest intensity difference between neighboring voxels

is in the direction normal to the object edge so that only the

vertical components of the v modes are used. Figure 4

shows the mode projection. For a landmark, the mode is

drawn as a vector. After determination of the normal

direction of this landmark according to the triangulation

information, the vector is projected to the normal direction.

This vertical component (yellow arrow) is used to construct

the shape term.

2.4.3 Graph-Cut with Shape Prior

The shape term is defined in terms of statistical variability

and added to the original GC energy function to improve

both data and boundary information. Intuitively, an edge

that is closer to the mean shape boundary will be more

likely to be cut. The two neighboring vertices should be

then distributed to different components. Similarly, a ver-

tex whose Euclidean distance to the desired boundary is

large enough belongs to the background or the object

depending on whether it is inside the mean surface. Fur-

thermore, a vertex quite close to the mean shape has an

unclear label, on which occasion data and boundary term

will provide guidance for label assignment.

In our SP-GC approach, the energy function for mini-

mization is defined as:

CðLÞ ¼ kðk1DðLÞ þ ð1� k1ÞS1ðLÞÞ þ ð1� kÞðk2BðLÞ
þ ð1� k2ÞS2ðLÞÞ ð9Þ

where S1 Lð Þ and S2 Lð Þ are the two shape terms for sup-

plying data and boundary information. k1 and k2 are posi-

tive parameters. The definition of S1 Lð Þ is similar to that of

D(L):

S1ðLÞ ¼
X

p2V
PrpðLpÞ ð10Þ

First, the distance between vertex p and the mean shape
�S, which is denoted as Distðp; �SÞ, is defined as the distance

between p and the nearest vertex describing �S. To define

PrpðLpÞ for S1 Lð Þ, with user-defined factor Tn, several sit-

uations are considered:When Dist p; �Sð Þ[ Tn, if p is inside
�S:

Prpð0Þ ¼ Inf

Prpð1Þ ¼ 0

�
ð11Þ

Otherwise,

Prpð0Þ ¼ 0

Prpð1Þ ¼ Inf

�
ð12Þ

When Dist p; �Sð Þ� Tn:

Prpð0Þ ¼ exp

�
�Dist p; �Sð Þ2

2r2S;a

�

Prpð1Þ ¼ 1� exp

�
�Dist p; �Sð Þ2

2r2S;a

�

8
>>><

>>>:
ð13Þ

where a is the vertex index in �S which is closest to p and

Inf is infinity. Tn is a parameter used to distinguish con-

firmable vertices from those difficult to allocate labels.

When a vertex is far away from the mean surface boundary

(with distance larger than Tn), its label can be determined

in advance. For example, if p is inside �S and
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Dist p; �Sð Þ[ Tn, Prp 1ð Þ will equal 0 and Prp 0ð Þ ¼ Inf ,

which means that vertex p will be allocated as the

object.

The definition of S2ðLÞ is related to neighboring nodes

p1 and p2 as:

S2ðLÞ ¼
X

\p1;p2 [2E
ðdðLp1 ; Lp2ÞS2\p1 ;p2 [ Þ ð14Þ

where dðLp1 ; Lp2Þ has the same definition as before and:

S2\p1 ;p2 [ / 1� 1

2

X2

i¼1

exp
�Distðpi; �SÞ2

2r2S;a

 ! !
ð15Þ

When the distance between p1 and �S is very small, as p2
is adjacent to p1 (at a distance of 1 voxel in a 4-connected

system), Distðp2; �SÞ should be also small. In such circum-

stances, S2\p1 ;p2 [ is small enough to approach 0; that is, the

edge connecting these two vertices is more likely to be cut

and each vertex is assigned different labels.

In the proposed SP-GC strategy, an important parameter

is rS;a, which is derived from the ASM training stage. From

Sect. 2.4.2, for all the landmarks, each mode is projected to

the direction perpendicular to the mean shape. Thus, the

shape prior can be embedded into the definition of rS;a as

follows:

rS;a ¼
1

k

Xv

i¼1

La;i ð16Þ

where a ¼ 1; 2; . . .; n and La;i is the length of the ith mode

for landmark index a. k is a positive factor used to deter-

mine the proportion of the shape prior used in experiments.

The calculation of rS;a generalizes the v statistical modes

summarized by ASM construction and is attached to the

GC energy function (Fig. 5). The optimization of the

objective function is achieved with the min-cut/max-flow

algorithm. Although it is only able to find approximate

solutions for multi-label GC problems, in our foreground/

background image segmentation, the algorithm finds a

global optimum for binary labeling problems.

2.5 Experiments

A total of 84 femurs were included in this study. For both

training and segmentation stages, all 84 femurs were seg-

mented with ITK-SNAP (http://www.itksnap.org/) in a

semi-automatic manner. Reliable segmentation results

were needed for training. Manually segmented volumes

served as the ground truths for quantitatively evaluating

segmentation accuracy. The method was implemented in

MATLAB R2011a (The MathWorks Inc., MA).

To obtain the distributions of the background and the

object for the data term in the GC-based energy function,

usually manual seed selection is necessary [34]. In the

proposed segmentation strategy, ASM training is essential

Fig. 3 Illustration of shape

unification. Scanning ranges of

datasets in a and b are different.

After definition of individual

cutting planes (white line in

a and b), proximal femurs are

registrated (five surfaces are

illustrated in white, red, green,

yellow, and blue) and then

unified plane is found to give

final shape unification result

Fig. 4 Mode of one landmark shown as black arrow line. The mode

is projected to its normal direction related to mean surface (yellow

arrow line)
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for shape term construction. This step facilitates the

acquisition of intensity distributions with segmented binary

masks of training samples. In our experiments, three seg-

mentation methods, namely ASM, original GC, and SP-

GC, were compared with the following measurements:

DSC (DSCÞ ¼ 2 A\Mj j=ð Aj j þ jMjÞ, Diff A;Mð Þ ¼ ð Aj j�
jA\MjÞ=jAj, and Diff M;Að Þ ¼ ð Mj j � jA\MjÞ=jMj,
where jAj and jMj refer to the volumes of the segmentation

results of the proposed method and ground truth, respec-

tively, and jA\Mj indicates their overlapping volumes.

The average surface distance, which refers to the average

distance between vertices on the automatically segmented

surface and the ground truth surface, was also used. DSC is

a commonly used measurement to reflect the overlap ratio

of segmentation results and the ground truth. With perfect

image segmentation, DSC is 1; with no overlap, it is 0. For

the other three measurements, namely Diff A;Mð Þ,
Diff M;Að Þ, and average surface distance, the smaller their

value is, the more accurate is the segmentation result.

In the proposed method, two shape priors corresponding

to data and boundary information, respectively, were

embedded into the GC. The influence of each term and that

of the complete SP-GC were measured using the four

measurements.

Both ASM and the SP-GC algorithm need data training

to incorporate the shape prior to guide image segmentation.

The impact of the number of training samples on seg-

mentation accuracy was evaluated. 12, 16, 20, 24, 28, 32,

36, and 40 training samples were tested for both ASM and

the proposed method. The four measurements mentioned

above were applied to evaluate the results. The parameters

used in the experiments were set as follows:

k ¼ k1 ¼ k2 ¼ 0:5; r ¼ 30; av ¼ 95%;Tn ¼ 5, and k ¼ 7.

3 Results

3.1 Segmentation Accuracy

A qualitative comparison of ASM, GC, and SP-GC seg-

mentation results of the proximal femur is shown in Fig. 6,

which was obtained with a training group of 12 samples for

ASM and SP-GC. The results in the first row demonstrate

obvious segmentation error with GC for the gap between

the femoral head and the acetabulum. This might occur due

to the narrow space between these two bony structures.

Parts of the acetabular cortical bone were incorrectly

treated as the femur. The cortical bone of the acetabulum

has a distribution similar to that of femoral bone. There is

an intensity difference between cortical and trabecular

bone. Without the assistance of the shape prior, GC was

easily trapped in a local optimum. Segmentation error was

observed with ASM in the second slice. This outcome

might be caused by the slightly deficient training samples.

For the slice closer to the femoral shaft, all three approa-

ches presented acceptable results, as intensity distinction

was obvious. From the 3D reconstruction results, the seg-

mentation error was visualized clearly. As mentioned, the

GC algorithm improperly allocated some voxels belonging

to the acetabulum to the femur, especially at the narrow

part between these two structures. The output from ASM

was acceptable except for the smoothed surface and some

Fig. 5 Illustration of active

shape modeling results. First

three principal modes of

statistical variability are

represented by red solid lines on

mean shape. Mode 1 captures

the most prominent statistical

variability
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loss of details. The results of the SP-GC algorithm were the

most accurate.

To evaluate algorithm performance quantitatively, the

measurements defined above were applied to 60 testing

data using the manual segmentation results as the ground

truths. The means and standard deviations (STD) of DSC,

Diff(A,M), Diff(M,A), and average shape distance were

computed. They are presented in Table 1. With a training

set comprising 12 samples, the proposed SP-GC algorithm

had a mean DSC of 0.9600, and those of ASM and GC

were 0.8769 and 0.9358, respectively. The mean Dif-

f(A,M) was 0.0412 for SP-GC, and those for ASM and

GC were larger than 0.09. Although Diff(M,A) has sim-

ilar property with Diff(A,M) to reflect segmentation error,

it is interesting that Diff(M,A) of SP-GC was 0.0383,

which is slightly larger than that of GC (0.0257). These

results confirm the qualitative results, where GC tended to

produce over-segmentation. The average shape distance

for SP-GC was smallest (0.885 mm), which is 142 % and

30 % lower than those of ASM and GC, respectively. SP-

GC outperformed the other methods. From Table 1, the

stability of SP-GC is highlighted with a mean STD value

of 0.0130 for DSC, compared with 0.0539 and 0.0150 for

ASM and GC, respectively. GC and SP-GC have higher

accuracy than that of ASM. Although the stabilities of GC

and SP-GC are similar, SP-GC provided better results

with a larger mean DSC. From the results of statistical

significance testing with any two methods related to the

performance measurements, there is no statistically sig-

nificant difference between GC and SP-GC regarding the

average shape distance, with a p value of 0.2262, while

for the other pairs of methods p-values of\0.05 were

obtained.

Another interpretation of segmentation reliability is

shown in Fig. 7. The plots respectively summarize the

proportions of the 60 testing data with DSC larger than a

specified value and Diff(A,M), Diff(M,A), and average

shape distance smaller than the value. All 60 cases reached

a DSC value of 0.6 for all approaches. As the situation

became rigorous, a smaller number of cases satisfied the

larger specified DSC value. For instance, when the DSC

truncation was 0.95, there were still more than 80 % cases

with DSC larger than 0.95 using SP-GC, while for ASM

and GC, the ratio decreased rapidly to less than 20 %

approximately. It is interesting to note that the plots of

Diff(A,M) and Diff(M,A) show a distinguishable tendency

which was matched with the results in Table 1 for ASM

and SP-GC. When the truncation value on the x-axis was

small, such as 0.1, more cases compared to a lager trun-

cation value (e.g. 0.9) using SP-GC had Diff(A,M) smaller

than this value, while considering the value of Diff(M,A),

an opposite trend could be perceived to support GC as a

Fig. 6 Comparison of three

segmentation methods.

a Ground truth and results of

b ASM, c GC, and d SP-GC.

First three rows present

illustrations in a planar

dimension with segmentation

results overlaid on original

images and last row is 3D

reconstruction of segmented

objects

Table 1 Quantitative

segmentation accuracy obtained

using ASM, GC, and SP-GC

with 12 training samples

Method DSC Diff(A,M) Diff(M,A) Distance (mm)

Mean STD Mean STD Mean STD Mean STD

ASM 0.8769 0.0539 0.1369 0.0894 0.1015 0.0518 2.148 1.783

GC 0.9358 0.0150 0.0990 0.0260 0.0257 0.0207 1.154 1.438

SP-GC 0.9600 0.0130 0.0412 0.0190 0.0383 0.0221 0.885 0.933
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better method. The curve of the average shape distance is

similar to that of Diff(M,A).

3.2 Segmentation Accuracy with Various Shape

Priors

The different segmentation accuracy using SP-GC with

each shape prior, namely S1ðLÞ and S2ðLÞ, based on 12

training samples were given in Table 2. With only incor-

porate shape prior S1ðLÞ (k2 ¼ 1) or S2ðLÞ (k1 ¼ 1) into

GC, the segmentation performance was improved, which

was however poorer than using the complete SP-GC with

both S1ðLÞ and S2ðLÞ (k1 6¼ 1 and k2 6¼ 1). From a

numerical view, comparing the impact of S1ðLÞ and S2ðLÞ,
the influence is similar with about 0.02 DSC improvements

than original GC. With statistical significance testing,

regarding DSC, Diff(A,M), Diff(M,A) and average shape

distance, the differences with only S2ðLÞ and S2ðLÞ are not
significant with p-values of 0.7291, 0.7071, 0.9286 and

0.9797, reflecting the similar effects of these two terms

independently. Refer to the differences of :S2ðLÞ-GC vs.

SP-GC, the p-values are 0.007, 0.0027, 0.6733 and 0.4869;

S2ðLÞ-GC vs. SP-GC, the p-values are 0.0039, 0.0007,

0.6725 and 0.5023.

3.3 Effect of Number of Training Samples

To determine the effect of the number of training samples

on segmentation accuracy with DSC, Diff(A,M),

Diff(M,A), and average shape distance, experiments were

carried out with training set sizes of 12, 16, 20, 24, 28, 32,

36, and 40. All other parameters were kept constant. The

results are shown in Fig. 8. The values of vertical axis were

the means of corresponding measurements. Intuitively, SP-

GC was more accurate than ASM even with an increasing

sample size according to the DSC, Diff(A,M), Diff(M,A)

and average shape distance. For the ASM algorithm, the

segmentation accuracy increased with more data used in

the training stage (DSC increased and Diff(A,M),

Diff(M,A), and average shape distance decreased). DSC

Fig. 7 Segmentation accuracy

of ASM, GC, and SP-GC. Plots

show overall segmentation

performance of 60 testing data

with 12 training samples.

a DSC, b Diff(A,M),

c Diff(M,A), and d average

distance

Table 2 Segmentation

accuracy obtained using SP-GC

with each shape prior based on

12 training samples

Method DSC Diff(A,M) Diff(M,A) Distance (mm)

Mean STD Mean STD Mean STD Mean STD

With S1 0.9535 0.0131 0.0524 0.0212 0.0400 0.0214 0.977 1.337

With S2 0.9526 0.0145 0.0539 0.0209 0.0401 0.0255 0.983 1.336

S1 and S2 0.9600 0.0130 0.0412 0.0190 0.0383 0.0221 0.885 0.933
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decreased when the training size increased from 12 to 20

for SP-GC, but then became stable. Although Diff(M,A)

fluctuated with number of training samples, Diff(A,M) and

average shape distance became stable. The number of

training samples significantly influences the segmentation

accuracy of ASM but not that of the proposed SP-GC. Even

with a small number of training samples (e.g., 12), SP-GC

had reliable segmentation results.

4 Discussion

This paper presented a scheme for extracting the proximal

femur, including femoral head and head-and-neck junction,

which is of great significance for diagnosing FAI, based on

CT scans. In the proposed framework, the shape prior is

obtained using ASM and incorporated into the GC algo-

rithm. The energy function of SP-GC contains not only

data and boundary information of the images but also shape

information derived from ASM. Accurate segmentation

results are achieved by minimizing the energy function

with the max-flow/min-cut algorithm.

3D medical image segmentation is increasingly impor-

tant for extracting information regarding anatomy and

function. Image modalities such as MR imaging and CT

make it possible for medical personnel to have a more

intuitional understanding about a variety of tissues and

organs with high resolution for possible 3D reconstruction

[39, 40]. Segmentation is required for further analysis.

Traditional manual segmentation is labor- and time-con-

suming and the results depend on the operator. Many

automatic segmentation methods have been proposed.

Kang et al. [41] used local adaptive thresholding values to

segment femurs in order to avoid incorrectly connecting

the femur and the acetabulum using CT data. However,

manual intervention is still needed in some situations (the

sphere is positioned around the femoral head). Cootes and

Taylor proposed using the shape prior as guidance in

segmentation. The most typical methods are ASM and the

active appearance model. To apply the GC algorithm in

image segmentation, the most apparent disadvantage is

seed selection by the user [34]. In order to obtain the

approximate intensity distribution of the object and the

background, users are required to mark some voxels or

regions for distribution estimation. In SP-GC, since the

intensity can be acquired in the training stage using seg-

mentation results as masks, the intensity distributions of the

object and the background can be obtained and more

importantly, the estimation results are more reliable. Since

automatic segmentation is difficult, some interactive GC

methods that use a bounding box to select regions of

interest have been proposed for more reliable results [42,

43]. However, merely a bounding box should be too

awkward to capture the complete and accurate shape prior

in many different applications as the shapes of different

structures are not the same. Similar to our work, some

Fig. 8 Relationships between

number of training samples and

a DSC, b Diff(A,M),

c Diff(M,A), and d average

distance. Accuracy of SP-GC is

higher than that of ASM
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studies have combined shape priors with GC. Slabaugh and

Unalused [44] used an ellipse to fit a pre-segmented object

using conventional GC and extracted the area around the

fitted ellipse. For segmentation, an inner band boundary as

well as an outer band boundary are defined near the object

edge to constrain the solution of GC. However, the weights

inside each band are constant, which is unreasonable, based

on the assumption in our method that the voxels further

away from the boundary should be less possible boundary

voxels. In the proposed SP-GC, the weights are determined

by a Gaussian function related to the shape information

from ASM. In the study of Chen et al. [30], the shape prior

was generated from ASM, as is done in our algorithm.

However, in their work, the shape prior term is different

and is merely embedded into the data term. From the

experimental results (Table 2), it can be perceived that the

existence of S1ðLÞ made some contributions to the better

performance as X. Chen et al. presented. However, the

complete SP-GC, with both S1 Lð Þ and S2ðLÞ, achieved

better results than either with merely S1 Lð Þ or S2ðLÞ. From
the hypothesis testing, the accuracy differences presented

by DSC, Diff(A,M), Diff(M,A) and average shape distance

between GC incorporating with S1 Lð Þ and S2ðLÞ are not

statistically significant. Another significant distinction is

that their study only provided detailed experimental results

for 2D image segmentation. Although the authors stated

that their method can be extended to 3D segmentation, no

results were given. The shape priors can be embedded into

the energy function to reflect data or boundary information,

whereas in our scheme, both are considered.

In this study, the shapes for training are unified using a

two-step strategy. First, the approximate proximal femur

partitions are generated manually, after which rigid regis-

tration is performed and a unified plane is acquired to

define the final results. The shape prior is calculated as a

portion of the sum of vertical components of statistical

modes from ASM for each landmark and this information

serves as additional information to data and boundary term

(S1ðLÞ and S2ðLÞ). Qualitatively, for 3D reconstruction, GC

gave an obvious error for the superior femoral head; it

wrongly included voxels of the acetabulum. In spite of a

smaller DSC for ASM comparing with GC, the model-

based method presented a better 3D visualization. The

reason for this might be that during ASM optimization, the

updated shape is obtained by transforming the mean shape

with variation restriction, which made the deformation of

the altered surface less excessive. Although the overlap

ratio using ASM was not superior to that of GC, the fun-

damental anatomy of the femur was preserved. The seg-

mentation accuracy was measured with DSC, Diff(A,M),

Diff(M,A), and average shape distance, which showed that

the proposed SP-GC method outperformed other methods.

For example, the DSC value was 0.9600 for SP-GC, which

is close to the ideal value of 1. Although the DSC value of

GC was also outstanding (0.9358), the Diff(A,M) value of

GC was more than double that of SP-GC. The poor per-

formance of ASM might be associated with the small

number of training samples. With a larger sample size for

the training stage, the performance of ASM greatly

improved. When more data were included in the training

subset, ASM was able to capture more complete shape

variability and therefore produced better segmentation

results. When the training subset was 12 for SP-GC, the

DSC value was 0.9600. Original GC can give a quanlita-

tively acceptable result. With shape prior of segmenting

object, the information is more but merely a complemen-

tary component for SP-GC and data and boundary terms

still play an important role in segmentation. Even with less

training samples, it is enough for SP-GC to provide these

shape information to guide segmentation with inherent data

and boundary information. This finding is important as it

reflects the robustness of SP-GC compared to ASM with a

low number of training data.

Although the segmentation framework presented in this

paper was used for proximal femur segmentation in our

experiments, it can be applied for segmenting other struc-

tures. With the training stage, seed selection is unnecessary

for obtaining the intensity distributions of the object and

the boundary for data term definition. With the shape term

attached to the GC algorithm, initialization of the mean

shape on segmentation data is required. Similar to ASM,

the initialization should be approximately close to the real

boundary of the object. In our work the initialization was

achieved by manually setting the translational, rotational,

and scaling parameters heuristically, which is a limitation

of the method. With the data and boundary term, SP-GC

does not depend on the shape prior completely, and thus

the segmentation results are not influenced too much by

initializing position. The effect of initialization and a

possible automatic initialization method require future

investigation.

5 Conclusion

A method for segmenting the proximal femur was proposed

to support evidence-based diagnosis and treatment deci-

sion. First, the shape prior is obtained from ASM with a

mean shape and a number of statistical modes describing

shape variability. This information is embedded into the

GC approach as a supplementary term in addition to the

original data and boundary term. The max-flow/min-cut

method is applied to minimize the objective function.

Compared with ASM and GC, the proposed SP-GC

approach achieves better segmentation accuracy in terms of

a larger DSC and smaller Diff(A,M), Diff(M,A), and
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average shape distance. SP-GC is less sensitive to the

setting of the number of training samples in comparison

with traditional ASM.
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