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Abstract Neural correlates of emotions have been widely

investigated using noninvasive sensor modalities. These

approaches are often characterized by a low level of

usability and are not practical for real-life situations. The

aim of this study is to show that a single electroen-

cephalography (EEG) electrode placed in the central region

of the scalp is able to discriminate emotionally character-

ized events with respect to a baseline period. Emotional

changes were induced using an imagery approach based on

the recall of autobiographical events characterized by four

basic emotions: ‘‘Happiness’’, ‘‘Fear’’, ‘‘Anger’’, and

‘‘Sadness’’. Data from 17 normal subjects were recorded at

the Cz position according to the International 10–20 sys-

tem. After preprocessing and artifact detection phases, raw

signals were analyzed through a time-variant adaptive

autoregressive model to extract EEG characteristic spectral

components. Five frequency bands, i.e., the classical EEG

rhythms, were considered, namely the delta band (d)

(1–4 Hz), the theta band (h) (4–6 Hz), the alpha band (a)

(6–12 Hz), the beta band (b) (12–30 Hz), and the gamma

band (c) (30–50 Hz). The relative powers of the EEG

rhythms were used as features to compare the experimental

conditions. Our results show statistically significant dif-

ferences when comparing the power content in the gamma

band of baseline events versus emotionally characterized

events. Particularly, a significant increase in gamma band

relative power was found in 3 out of 4 emotionally char-

acterized events (‘‘Happiness’’, ‘‘Sadness’’, and ‘‘Anger’’).

In agreement with previous studies, our findings confirm

the presence of a possible correlation between broader

high-frequency cortical activation and affective processing

of the brain. The present study shows that a single EEG

electrode could potentially be used for the assessment of

the emotional state with a minimally invasive setup.
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1 Introduction

There is increasing interest in developing systems that can

automatically detect and distinguish emotions in a quanti-

tative way. Emotions play an important role in the human

experience, influencing cognition, perception, and every-

day tasks such as learning, communication, and decision

making [1]. Besides qualitative methods, such as self-re-

ports, startle responses, and behavioral responses, quanti-

tative approaches based on autonomic correlates and/or

neurophysiological measurements have been recently pro-

posed. As the brain is the centre of every human action,

emotions can be detected through the analysis of physio-

logical signals generated by the central nervous system [2,

3]. Neurophysiological measurements might provide a

direct means for emotion recognition [4]. The neural cor-

relates of emotions have been extensively investigated

using noninvasive sensor modalities, each one with unique

spatial and temporal resolutions and spanning different

levels of usability. Functional magnetic resonance imaging

(fMRI) has been used to uncover cortical and subcortical

nuclei involved in affective responses [5]. Magnetoen-

cephalography (MEG) has been used to explore emotion-
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related neural signals in specific brain loci [6]. The cost and

the laboratory environment of the experimental setup do

not allow these modalities to be used for out-of-lab emo-

tion recognition systems [7, 8]. Electroencephalography

(EEG) has been widely used to investigate the brain

dynamics related to emotions since its high temporal res-

olution allows the early detection of response to emotion-

ally characterized stimuli.

1.1 EEG Emotion Identification

Emotion identification from EEG has been performed

using different features in the time and/or frequency

domain. Event-related potential (ERP) components and

spectral power at various frequency bands are related to

underlying emotional states [4]. In the frequency domain,

the spectral power in various frequency bands has been

implicated in the emotional state. The alpha band power

has been associated with discrete emotions such as happi-

ness, sadness, and fear [9]. Other studies analyzed the

connection between the gamma band and emotions. Li and

Lu [10] analyzed event-related desynchronization (ERD) in

the gamma band during emotional stimuli presentation.

Müller et al. [11] and Keil et al. [12] reported the con-

nection between gamma band activity and emotions when

differential hemispheric activations were induced. Emotion

identification from EEG has also been performed using

mathematical transforms [13] or nonlinear quantities [14,

15]. A complete review of recent contributions to the field

can be found elsewhere [4].

1.2 Toward the Reduction of EEG Channels

Number

The above-mentioned studies employed up to 128 EEG

channels. Such a large number makes these approaches

impractical in real-life situations, resulting in long experi-

mental setup, significant discomfort for the subject, and a

huge computational burden to handle the large amount of

data. Therefore, attention has been focused on developing a

feasible emotion classification system that uses a reduced

number of EEG channels. Min et al. [16] found an emotional

response in physiological signals, including EEG signals

recorded from two channels (Cz and Fz International 10-20

System positions). Alpha and beta relative powers were used

as features to distinguish conditions such as pleasantness,

arousal, relaxation, and unpleasantness. Mikhail and El-Ayat

[1] performed a classification of four emotions through brain

responses elicited by facial expressions using 4 to 25 EEG

channels. They showed a decrease in accuracy with a

reduction in the number of channels. A trade-off between the

complexity of the setup and the accuracy of the classification

was reached with 4–6 channels. The aim of the present work

is to verify whether a single EEG electrode placed in the

central region, i.e., the Cz position, can discriminate emo-

tionally characterized events from a baseline condition. An

imagery approach was used as the experimental protocol.

Emotional responses were elicited by the recall of autobio-

graphical events of four basic emotions, namely ‘‘Happi-

ness’’, ‘‘Fear’’, ‘‘Anger’’, and ‘‘Sadness’’.

2 Materials and Methods

2.1 Experimental Protocol

Twenty-one healthy volunteers from the student body of

IULM University of Milan took part in the experiments.

All participants had no history of neurological or psychi-

atric problems. The present experimental protocol, previ-

ously employed in other works [17, 18], makes use of a

memory recall paradigm of emotionally characterized

autobiographical episodes to trigger physiological respon-

ses. The considered emotions are ‘‘Happiness’’, ‘‘Fear’’,

‘‘Anger’’, and ‘‘Sadness’’. The experiments took place at

the Behavior & Brain Lab at IULM University of Milan

and consisted of two different phases. In the first phase, the

subject told a psychologist two recent emotionally char-

acterized autobiographical episodes for each target emo-

tion. During the recall, the psychologist took notes about

the episodes. For each target emotion, the psychologist

asked the subject to judge the most intense episode. These

episodes were selected as emotional stimuli for the second

phase of the protocol. Subjects unable to recall any episode

Fig. 1 A graphical representation of the protocol. Data were recorded during gray colored boxes. After recording the ‘‘Baseline’’ event, during

‘‘Autobiographical Recall’’ the subject was asked to recall the most vivid episode of the target emotion that they had reported in the first phase of

the study. When the subject nodded to again experience the target emotion, the recording of physiological data was performed for 3 min. A

‘‘washout’’ period of at least 3 min was provided before starting the next ‘‘Autobiographical Recall’’
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related to the target emotion were excluded from the pro-

tocol. The second phase took place 1 day after the first.

After arriving at the lab, the subject was asked to sit in

front of the eye tracker provided of a grey screen monitor,

at a fixed distance of 70 cm, in a room with constant

illumination conditions. First, 3 min of a ‘‘Baseline’’, i.e., a

resting period, were recorded. During this phase, the sub-

ject was asked to sit still and to relax. Subsequently, the

psychologist helped the subject to recall the formerly

selected episode which was related to the first target

emotion. When the subject nodded that they were experi-

encing the emotion, their physiological signals were

recorded for 3 min. This phase is referred to as ‘‘Autobi-

ographical Recall’’. Later on, a ‘‘washout’’ period of at

least 3 min was provided to allow the subject to relax and

clear their mind. Finally, the recall of the next emotional

episode could start. The order of the target emotions was

randomly chosen for every subject. Figure 1 shows a

graphical representation of the experimental protocol.

2.2 Physiological Signal Recording

To track brain activity, single-channel EEG was recorded.

The electrode was placed at the Cz position, according to

the 10–20 International System, while the reference elec-

trode was placed on the left earlobe. The electromyography

(EMG) signal was acquired on the corrugator supercilii

muscle. EEG and EMG were recorded through a Flexcomp

InfinityTM encoder (Thought Technology Ltd., Montreal,

Canada) at a sampling rate of 2048 Hz. Pupil dilation (PD)

signals were recorded using an eye tracker (RED250TM

Eye-Tracker, SensoMotoric Instruments, Teltow, Ger-

many). Prior to the start of ‘‘Baseline’’ and each ‘‘Auto-

biographical Recall’’, calibration of the eye tracker was

performed. Other physiological signals were acquired

during the second phase, but their analysis is not included

in the present study. Further details on the acquired signals

can be found elsewhere [17].

2.3 Signal Preprocessing and Artifact Detection

For computational purposes, the EEG signals were low-

passed and resampled at 100 Hz. Before the analysis of the

EEG signals, artifact detection was performed. Muscle

contraction related to eye movements is the main artifact in

EEG signals because it produces a sudden change in the

electric field around the eyes, which affects the scalp

electric field [19]. In particular, the electric potentials due

to eye blinking can be larger than the EEG signal and can

propagate across most of the scalp, covering and contam-

inating brain signals [20]. To detect eye-blinking artifacts,

we took advantage of simultaneously recorded PD signals.

EMG signals of the corrugator muscle were used for other

undifferentiated muscle activity. The PD signal permits

eye-blinking occurrences to be precisely detected. The

EMG signal tracked the activity of the corrugator supercilii

muscle, which is mostly involved in the frowning response.

When the EMG and PD signals were aligned, a narrow

correspondence between eye-blinking events and EMG

activity peaks was observed, as shown in Fig. 2. According

to this observation, the eye-blinking detection performed

by the eye tracker was used to automatically identify and

exclude contaminated EEG segments. A visual check of the

signals was performed to correct possible misdetections.

2.4 EEG Analysis

EEG power spectral density (PSD) was computed using an

adaptive autoregressive (AAR) method. Florian and

Pfurtscheller [21] claimed that autoregressive (AR)

approaches are more suitable than traditional techniques

based on the Fourier transform, as the frequency resolution

does not depend on the length of the time series. AR

models are suited to stationary signals only, an assumption

that is in general not valid for EEG signals [21]. To cir-

cumvent this limitation, AAR methods have been proposed

[22]. At each new available observation, the set of AR

parameters is updated to track the statistical changes in the

observed data. For each AR update, a window of the signal

is used by assuming that the segment within the window is

stationary.

2.4.1 AAR Model

The vector representation of a generic linear AR model is:

yðtÞ ¼ UðtÞTaþ wðtÞ ð1Þ
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Fig. 2 Artifact detection of EEG signal (in red) from PD (in green)

and EMG (in blue) signals. Eye-blink events and ocular artifacts were

set at 0 in the PD signal
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where w(t) is zero-mean Gaussian noise, a is the vector of

the parameters a1; a2; . . .ap, where p is the model order,

and UðtÞT ¼ ½Uðt � 1Þ; Uðt � 2Þ; . . .;Uðt � pÞ� is the

observation vector. The corresponding predictor is given

by:

y
_ðtÞ ¼ /ðtÞTa ð2Þ

where y
^
tð Þ ¼ y

^
ðtjt � 1Þ is the estimated vector and yðtÞ is

the discrete time series. The difference between the mea-

sured value yðtÞ and its prediction y
^
tð Þ is the prediction

error, also called the a priori error, because it is based on

the parameter vector defined at the previous estimation

step.

The analytical formulation of the prediction error is:

eðtÞ ¼ yðtÞ � y
^
ðtÞ ¼ yðtÞ � Uðt � 1ÞT a^ðt � 1Þ ð3Þ

Once e tð Þ has been computed, the model coefficients are

updated using recursive least squares (RLS) identification. A

forgetting factor k 2 ð0; 1Þ is introduced in the RLS formu-

lation. The coefficients âðt � 1Þ obtained at the previous

sample are updated, adding an innovation term that is

dependent on the estimation error e tð Þ, which is weighted

according to a gain vector Kðt; kÞ, i.e., a vector of weights

depending on the forgetting factor k and the inverse of the

autocorrelation matrix of the time series [23]. k defines a

decay factor T ¼ 1=ð1 � kÞ of the weights, and can be

interpreted as the memory of the update step. More recent

values of the prediction error contribute more than older

ones. A compact formulation of the update is given by:

a
^ðtÞ ¼ a

^ðt � 1Þ þ Kðt; kÞeðtÞ
eðtÞ ¼ yðtÞ � UðtÞT a^ðt � 1Þ

(
ð4Þ

The updating formulation of the autoregressive model,

which tracks the dynamic variations of the signal, is thus

obtained. The factor k is selected as a trade-off between

preserving the fast dynamics of the signal and preventing

the influence of artifacts on the model. From each a(t), the

power spectral density (PSD) and the single spectral

components are computed. The general form of the para-

metric estimation of PSD through an AR model is:
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Fig. 3 Time-frequency

representation of EEG PSD

computed for 2 s during

‘‘Happiness’’ recording for

subject ‘‘sbj05’’

Fig. 4 Block diagram of the

steps performed for the analysis

of the EEG signal. The subscript

indices indicate (i) EEG bands

and (j) emotions
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S fð Þ ¼ T � H zð Þr2H z�1
� �

ð5Þ

where z ¼ expðj2pf Þ; r2 is the variance of the prediction

error, and H zð Þ is defined as:

H zð Þ ¼ 1

A Zð Þ ¼
1

1 þ a 1ð Þ � z�1 þ � � � þ a pð Þ � z�p
: ð6Þ

The spectral components are computed using the

residual method [24, 25]. Each component is attributed to a

given frequency band when the central frequency of its

peak lays within the frequency band itself. Five frequency

bands, i.e., the classical EEG characteristic rhythms, are

considered: the delta band (d) (1–4 Hz), the theta band (h)

(4–6 Hz), the alpha band (a) (6–12 Hz), the beta band (b)

(12–30 Hz), and the gamma band (c) (30–50 Hz). All the

components laying in a given frequency band are summed

to compute the total power of the rhythm. AAR identifi-

cation and correspondent spectral decomposition were

computed for each sample of the entire signal. Figure 3

shows an example of time–frequency representation of

EEG PSD.

For each rhythm the relative power, i.e., the ratio

between the average power in a certain band and the total

variance of the signal, was computed. The main steps of the

method are summarized in Fig. 4.

2.5 Statistical Analysis

The relative powers of the EEG rhythms were used to

compare the experimental conditions. A Lilliefors test [26]

and a Levene test [27] were performed to verify the

hypotheses, respectively, of normality and homogeneity of

the variance. As the hypothesis of normality was rejected

and the hypothesis of the homogeneity of the variance was

accepted, a nonparametric statistical test was performed for

the analysis of variance, i.e., the Kruskal–Wallis test. For

post hoc analysis, the Wilcoxon sign-rank test was per-

formed to test the differences between the ‘‘Baseline’’ and

each emotionally characterized event.

3 Results

Seventeen out of 21 subjects were analyzed, as 4 subjects

were affected by too many artifacts. Table 1 lists the

median values and the first and third quartiles of the rela-

tive powers of EEG signals in each frequency band and for

each emotion.

There are significant differences in the gamma band for

‘‘Baseline’’ versus ‘‘Happiness’’, ‘‘Anger’’, and ‘‘Sadness’’,

respectively. These differences are also shown in Fig. 5.

The median value of ‘‘Happiness’’ is higher than that in the

‘‘Baseline’’ condition. The same trend can be found when

‘‘Baseline’’ is compared with ‘‘Anger’’ and ‘‘Sadness’’,

respectively.

Figure 6 shows the PSD for the subject ‘‘sbj57’’. Each

line represents the mean spectrum computed in each

experimental condition. It can be seen that a higher power

value is observed in the gamma band during ‘‘Happiness’’,

‘‘Anger’’, and ‘‘Sadness’’ compared to that for ‘‘Baseline’’.

Table 1 Median and 1st and 3rd quartiles of the relative powers of each EEG characteristic band

Baseline Happiness Fear Anger Sadness

Delta d 0.688 (0.595,0.788) 0.671 (0.565,0.759) 0.664 (0.533,0.746) 0.618 (0.565,0.733) 0.647 (0.554,0.699)

Theta h 0.513 (0.424,0.655) 0.483 (0.421,0.589) 0.508 (0.420,0.563) 0.500 (0.435,0.545) 0.466 (0.433,0.639)

Alpha a 0.433 (0.383,0.540) 0.448 (0.397,0.557) 0.465 (0.412,0.557) 0.500 (0.415,0.630) 0.511 (0.422,0.616)

Beta b 0.166 (0.154,0.249) 0.175 (0.146,0.253) 0.197 (0.127,0.260) 0.204 (0.136,0.273) 0.196 (0.132,0.248)

Gamma c 0.051 (0.036,0.057) 0.080 (0.060,0.123)* 0.057 (0.047,0.068) 0.061 (0.049,0.094)* 0.062 (0.044,0.080)#

Statistically significant differences between ‘‘Baseline’’ and emotions are bold-typed. Asterisks (*) indicate p values\0.01, and pounds (#)

indicate p values\0.05
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Fig. 5 Boxplots of ‘‘Baseline’’, ‘‘Happiness’’, ‘‘Fear’’, ‘‘Anger’’, and

‘‘Sadness’’ relative power of the gamma band
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Figure 7 shows the inter-subject variations of the rela-

tive power of the gamma band during ‘‘Baseline’’ versus

the other experimental conditions except ‘‘Fear’’. In

particular, the relative power during ‘‘Happiness’’ is higher

than that during ‘‘Baseline’’ for 16 out of 17 subjects.

Similarly, the comparison between ‘‘Anger’’ and
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Fig. 6 An example of PSD for subject ‘‘sbj57’’. Each plot represents a comparison between the PSD during the ‘‘Baseline’’ condition (in black)

and one of the emotional conditions. ‘‘Happiness’’, ‘‘Fear’’, ‘‘Anger’’, and ‘‘Sadness’’ are respectively depicted in green at top left, red at top
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‘‘Baseline’’ shows the same trend in 13 out of 17 partici-

pants. During ‘‘Sadness’’, 12 out of 17 subjects experienced

an increase in the gamma power compared to that for

‘‘Baseline’’.

4 Discussion

This work explored the prospect of using single-channel

EEG (Cz) to evaluate the effect of emotionally character-

ized stimuli when compared with a neutral stimulus. Sev-

eral studies have tried to recognize emotions from EEG

signals with a number of electrodes that varies from 3 [28]

to 128 [12, 29]. Our results show the possibility to distin-

guish the elicitation of basic emotions, i.e., ‘‘Happiness’’,

‘‘Anger’’, and ‘‘Sadness’’, from the ‘‘Baseline’’ condition

using single-channel EEG. The differences between the

baseline and emotions were located in the gamma band.

This result is in agreement with previous studies in which a

connection between high-frequency components in EEG

signals, i.e., gamma rhythm (30–50 Hz), and emotions was

documented. Müller [11] and Keil [12] suggested that

emotions are represented in a wide cortico-limbic network

rather than in particular regions of the brain and that during

processing of emotional stimuli such a network produces

widespread rather than focal cortical activity at high fre-

quencies. Li and Lu [10] used EEG signals to classify

emotional reactions evoked by pictures of facial expres-

sions representing different emotions, and the gamma band

was found to be related to pictures of ‘‘Happiness’’ and

‘‘Sadness’’. These approaches required a large number of

electrodes for emotion detection, 62 in the latter study [10]

and 128 in the former [11, 12]. These findings are in

agreement with our results, which indicate an increase in

the gamma band that is more evident for ‘‘Happiness’’ than

for ‘‘Sadness’’ and ‘‘Anger’’. Müller [11] and Keil [12] also

supported the hypothesis of a localized EEG activity due to

positive and negative emotions. They observed the

involvement of the left hemisphere in positive valence and

of the right hemisphere in negative valence in gamma band

activity. For this reason, it would be difficult to discrimi-

nate among emotions using a single EEG electrode; it

would be necessary to use at least two electrodes, one for

each brain side. Our findings suggest that the activity

collected from a central lobe electrode can distinguish

neural activation of emotional stimuli from neural activa-

tion of a neutral condition. A future development of this

work will be the use of two electrodes placed on the left

and right sides of the central lobe, respectively. This would

lead to a further confirmation of the results in the present

study and allow the investigation of whether it is possible

to improve the results by taking into account the asyn-

chronous activity of the brain.

5 Conclusion

The results obtained in this study suggest the possibility to

use a single-channel EEG (Cz) to evaluate the effect of

emotionally characterized stimuli when compared with

neutral one. Although future development are required, this

work can be a useful guide for the assessment of emotional

states through the use of a minimally invasive system,

particularly in applications such as human–computer

interaction, communication, marketing research, and user

experience, which can take advantage of a quantitative

representation of emotions in a minimal sensory setup.
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