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Abstract This study explores the discrimination power of

a multiscale analysis method based on the discrete wavelet

transform (DWT) in characterizing nonlinear features for

congestive heart failure (CHF) recognition. Two DWT

paradigms, namely standard DWT and DWT with recon-

struction (RDWT), were employed to characterize two

categories of nonlinear features, namely sample entropy

(SE) and chaotic features, for CHF recognition based on

heart rate variability (HRV). The performance of the

wavelet-based analysis methods was compared to that of a

traditional coarse grained average (CGA) method. The

support vector machine was used as a classifier and the

capability of the features was evaluated using the leave-

one-out cross-validation method. The results show that

when using solely SE features, all three multiscale analysis

methods (CGA, DWT, and RDWT) with five dyadic scales

outperform traditional CGA with twenty consecutive scales

in characterizing HRV for CHF recognition. When using

chaotic features calculated from the five dyadic scales,

RDWT outperformed DWT and CGA with sensitivity,

specificity, and accuracy rates of 95.45, 97.22, and

96.55 %, respectively. This performance was even superior

to that obtained using both SE and chaotic features. The

proposed multiscale analysis method using 5-scale RDWT

and chaotic features outperforms three well-known CHF

classifiers reported in the literature.

Keywords Multiscale � Discrete wavelet transform �
Sample entropy � Chaotic features � Congestive heart

failure � Heart rate variability

1 Introduction

Heart rate variability (HRV) is a powerful tool for

assessing neural control of heart activities. Linear methods,

such as time-domain analysis and the Fourier transform,

have been widely used to characterize HRV signals for

diagnosing heart disease or analyzing physiological states

in humans [1, 2]. However, traditional linear approxima-

tion methods may not be sufficient for resolving the com-

plex nature of HRV signals. Methods based on nonlinear

dynamics are required to further uncover the intricate and

subtle properties of HRV [3–7]. The concept of entropy,

which is associated with the rate of information production,

was usually used to quantify the complexity of physio-

logical data [3, 4]. Chaotic parameters have been used to

analyze the time evolution of HRV in the phase space for

implications in clinical cardiology [5–7].

Recently, a time series analysis technique called coarse

grained average (CGA) has been proposed for calculating

entropy-based complexity measures from HRV signals in

multiple scales [8, 9]. This category of complexitymeasures,

termed multiscale sample entropy (MSE), has been demon-

strated to successfully differentiate HRV signals of young

subjects from those of elderly subjects [8]. However, when

applying MSE to differentiate HRV signals of the normal

sinus rhythm (NSR) and two pathological states, namely

congestive heart failure (CHF) and atrial fibrillation (AF),

one may need to consider not only the specific values of the

entropy measure but also their dependence on resolution

(scale) to better characterize the physiological processes [8].
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By using the CGA method, the original time series of

length N is first dissected into segments of length s, the
scale, and then the average values of individual segments

are calculated to construct a shrunken time series of length

N/s. The averaging process is actually a low-pass filter.

Thus, CGA is similar to passing a signal through a low-

pass filter followed by a down-sampler, a process compa-

rable to the use of the discrete wavelet transform (DWT)

for signal decomposition [10]. Compared to CGA, multi-

level DWT can only generate subband components in a

dyadic manner such that the scales are limited to be

numbers that are powers of two, i.e., the output of the d-th

level DWT has a scale of 2d and a data length 2-d times the

original data length.

Our recent study [11] investigated the discrimination

power of MSE features based on CGA and DWT for rec-

ognizing CHF. The results demonstrated the superiority of

using MSE features calculated from the five dyadic scales

using the two multiscale analysis methods to that based on

all 20 scales using CGA. However, the recognition rates

were not high enough for practical use and the method had

room for improvement. Therefore, other nonlinear features,

such as chaotic features, and other multiscale analysis

methods that can provide longer multiscale lengths, such as

DWT with reconstruction (RDWT), were evaluated as

possible solutions to further enhance system performance.

The present study explores the discrimination power of

wavelet-basedmultiscale analysis methods in characterizing

nonlinear features for CHF recognition. Two DWT para-

digms, namely standard DWT and RDWT, were employed

to decompose HRV signals into multiple scales for further

analysis. Sample entropy (SE) [12] and four chaotic mea-

sures, namely time delay (TD), embedding dimension (ED),

correlation dimension (CD), and largest Lyapunov exponent

(LLE) [7], that characterize the dynamics of the signal in the

phase space, were employed as features. Theoretically, SE

has some connection with the other four chaotic measures

since the calculation of SE also requires embedded recon-

struction [7–9]. However, since SE features have been

applied successfully to multiscale analysis methods such as

CGA [8, 9] and DWT [11] for characterizing HRV signals,

SE and the other four chaotic measures are treated separately

in order to compare the discriminatory capability of these

two categories of nonlinear features.

The following hypotheses were tested: (1) DWT, with its

orthogonality property, has better resolution power than that

of CGA in multiscale analysis, (2) RDWT, which recon-

structs subband components back to the original data length,

can better characterize length-sensitive SE and chaotic fea-

tures for CHF recognition, and (3) the four chaotic features,

which describe the evolution of HRV signals in the phase

space, have better CHF differentiation power than that of SE

features. The discrimination power of the wavelet-based

multiscale analysis methods were compared to that obtained

using the traditionCGAmethod. Experimentswere designed

to clarify the roles of different multiscale analysis methods

and different categories of nonlinear features in the recog-

nition of CHF. The performance of the proposedmethod was

also compared to that ofwell-knownCHFclassifiers found in

the literature [2, 13, 14].

2 Multiscale Analysis of Signals

Two categories of multiscale signal analysis method were

employed in the study. One was CGA, which has been

successfully used [8, 9] with SE for characterizing CHF

and AF based on HRV sequences. The other was the DWT,

which decomposes signals into subbands (scales) to

uncover the hidden information that is otherwise buried in

the original signals [11].

2.1 Coarse Grained Average Analysis

Consider a time series of length N, {xi} = {x1, x2,…, xN}.

One can construct a coarse grained averaged time series

{vj(s)} [8], where s is the scale factor, such that:

vj sð Þ ¼ 1

s

Xjs

i¼ðj�1Þsþ1

xi; 1� j�Round N=sð Þ ð1Þ

where Round(N/s) rounds N/s to the nearest integer less

than or equal to N/s.
For scale 1, the time series {vj(1)} is simply the original

time series. For scale factors s larger than unity, the original
time series shrinks into a coarse grained sequence of length

N/s with values calculated from the N/s non-overlapping

segments of length s. In this manner, CGA smoothes and de-

correlates a time series into sequences of different scales.

The CGA method proposed in another study [8] is used here

to generate the first twenty consecutive scales of signal

suggested by the paper for calculating the SE features.

2.2 Discrete Wavelet Transform

The DWT has been widely used in signal processing tasks

[10]. The major advantage of the DWT is its great time and

frequency localizations. Moreover, the DWT allows the

decomposition of the signal into different scales, each of

which represents a particular coarseness of a signal.

Among the various wavelet bases, the db4 wavelet was

reported to provide maximum energy localization in ana-

lyzing HRV signals [15]. It was thus chosen as the mother

wavelet in our recent [11] and present studies.

In this study, a 4-level DWT was employed for signal

decomposition. Each level of the DWT signal decomposer
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contained a pair of complementary high- and low-pass filters,

each of which was followed by a two-point down-sampler

[10]. After the first level of DWT, a signal was decomposed

into detail (D1) and approximation (A1) components, which

represent the signal parts in the higher- and lower-half sub-

bands of the spectrum, respectively. The approximation

component A1 was further decomposed by the second level

DWT using the same pair of filters. This process continued

until all the four levels of the DWT were processed.

The four approximation components, Ai, i = 1, 2, 3, and

4, corresponding to the lower frequency part in the four

levels of the DWT decomposition were used for further

feature calculation. Because a low-pass filter followed by a

two-point down-sampler was used, each of the Ai (i = 2, 3,

4) components contained the information of the lower-half

subband and was half the length of its input Ai-1. Therefore,

components A1 through A4 were comparable to CGA at

scales 21 (=2), 22 (=4), 23 (=8), and 24 (=16), respectively.

The only difference is that CGA at each dyadic scale replaces

the low-pass filter of the multiscale DWT with a first-order

moving average filter. The first-ordermoving average filter is

actually the low-pass filter of the DWT with a Haar basis,

except that the coefficients of the first-order moving average

filter are scaled down by a factor of 2-1/2 [10]. Therefore,

CGA at dyadic scales 2i, i[ 0, can be considered as the 2-i/2

scaled version of the approximation component Ai of an i-

level DWT with a Haar basis. The frequency response of the

first-ordermoving average filter can be easily derived to have

a magnitude of cos(0.5 X) for -p B bx B p, where

bx = 2pf/fs is the digital frequency of the analog frequency

fwith a sampling frequency fs [16]. The Haar wavelet has the

shortest support among all orthogonal wavelets and is not

well suited to approximating smooth functions. Compara-

tively, many well-known wavelets, such as Daubechies

wavelets, need to be carefully designed to ensure minimum

support for any given numbers of vanishing moments and,

thus, usually result in DWT low-pass filters with narrower

transition bands [10].

Since 24 (=16) was the largest dyadic integer that was

smaller than the largest scale 20 used in CGA, applying the

DWT up to level 4 was adequate to extract the largest subset

of components to be compared to its counterpart using CGA.

As a result, by using the 4-level DWT, the original signal and

the subband components A1 throughA4were used to analyze

the signal in five dyadic scales, i.e., 1, 2, 4, 8, and 16.

2.3 Discrete Wavelet Transform

with Reconstruction

By using DWT, subband components with dyadically (with

powers of 2) shortened data lengthswere acquired.However,

it has been pointed out that data length is critical in

calculating accurate nonlinear, especially chaotic, features

[7, 8]. Therefore, the RDWT was applied to convert the

shrunken subband components back to their original signal

length. The procedure was as follows. The signal was first

decomposed with the regular DWT. Each subband compo-

nent was converted back to the original length by first filling

all the other subbands with zero and performing the inverse

DWT. In this manner, subband components A1 through A4

were converted back to the original length. The four com-

ponents, togetherwith the original signal, were the outputs of

the 5-scale RDWT method for further analysis.

3 Features Used in Study

Two categories of features were used to test the capability

of the multiscale representation of RR interval (RRI)

sequences in discriminating CHF from NSR. The first

category was the SE features based on information theory.

The second category of features was calculated from the

chaotic analysis of the RRI sequences. As pointed out in

the introduction section, although SE has some connection

with the chaotic measures [7–9], it and the other four

chaotic features were treated separately in order to compare

the discriminatory capability of these two categories of

nonlinear features in CHF recognition. These two cate-

gories of features are described below.

3.1 Sample Entropy Features

The concept of entropy has been widely used to quantify

the complexity of a signal [7]. Traditional entropy-based

algorithms usually require an infinite data series with

infinitely accurate precision and resolution [12]. To deal

with short and noisy time series, Pincus [17, 18] introduced

approximate entropy (AE). However, AE is a biased

statistic which makes it dependent on the data length [12].

Therefore, Richmann and Moorman [12] modified AE and

developed a related complex measure, SE, to cope with this

problem [12]. Costa et al. [8] combined CGA analysis with

SE to characterize the complexity of physiologic time

series in multiple scales.

In the applications of AE or SE, a critical parameter is

the length of the pattern vectors that are to be analyzed and

compared [17, 18]. The present study adopted SE measures

with pattern vector lengths of one and two, denoted as SE1

and SE2, respectively, as features. The two entropy mea-

sures were consistent with previously suggested values

from the literature [17, 18] and were employed by Pincus

[19] to characterize heart rate for human aging studies.

Other important parameters of the two SE features include

a unity time delay and a tolerance of 0.15 times the
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standard deviation of the original sequence, as utilized

elsewhere [8].

3.2 Chaotic Features

The notion that the normal human heartbeat sequence is

chaotic was first proposed by Goldberger and West [20].

Numerous studies have supported this concept [5–7].

Researchers mapped time series signals into the phase space

domain and successfully uncovered the chaotic nature of

biological signals. The phase space is a coordination system

used to demonstrate the behavior of a dynamic system, in

which the trajectory of the dynamic system usually con-

verges to a stationary state, called an attractor. Takens [21]

proposed the embedding theorem, which states that an

m-dimensional attractor can be reconstructed from one-

dimensional projected data while preserving the topological

properties of the original attractor. For a time series

xi, i = 1, 2,…, N, the m-dimensional vector in the phase

space with time delay s is expressed as y = [y1, y2,…, yL]
T,

where L = N-(m-1)s is the number of time delay vectors

and each time delay vector is expressed as yi = [xi, xi?s,…,

xi?(m-1)s]
T. Both TD s and ED m must be carefully deter-

mined in order to successfully unfold the attractor.

This study employed four chaotic features to charac-

terize the chaotic nature of the HRV signal, namely TD,

ED, CD, and LLE. The relationship among these features is

depicted in Fig. 1. Among these features, TD and ED were

first determined to adequately map the time series into the

phase space. Then, CD was calculated to symbolize the

geometric complexity of the system and LLE was calcu-

lated to describe the divergence of nearby trajectories in

the phase space [22, 23].

3.2.1 Time Delay and Embedding Dimension

A good choice of time delay (s) provides low correlation

between adjacent elements in the embedding vector. One

method detects the delay time based on linear correlation

[24]. Considering the nonlinear nature of the chaotic sys-

tem, the method proposed by Fraser and Swinney [25] that

alternatively uses mutual information to characterize the

nonlinear correlation was applied here.

The ED (m) is used to properly unfold an attractor in m-

dimensions. Many algorithms have been proposed to esti-

mate this quantity [26–28]. Cao [29] proposed an objective

and computationally effective method for estimating the

minimum ED, especially for short time series. It is adopted

here.

3.2.2 Correlation Dimension and Largest Lyapunov

Exponent

Before calculating CD and LLE, one needs first to recon-

struct the attractor dynamics in a phase space with properly

estimated TD and ED. CD gives an estimate of system

complexity in chaos. This study adopted Grassberger and

Procaccia’s method [22] to compute CD.

Lyapunov exponents are quantitative measures of

exponential separation of nearby trajectories in the phase

space [23]. Wolf et al. [30] proposed a practical method for

the estimation of LLEs. Rosenstein [23] further modified

Wolf’s method and proposed an efficient LLE method

especially suitable for short data series. Therefore,

Rosenstein’s method is applied in this study.

4 Experimental Design

The block diagram of the experimental design is depicted

in Fig. 2. The details of the functional blocks are described

below.

4.1 Database

Records from 44 CHF subjects (19 male and 25 female;

aged 55.30 ± 11.38 years) and 72 NSR subjects (35 male

and 37 female; aged 54.6 ± 16.2 years) were obtained
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from CHF and NSR databases, respectively, both of which

are available on PhysioNet [31]. Each record also con-

tained a beat annotation file which specifies the occurrence

times of individual R peaks. The 15-minute segment data

recorded in the early morning of each record were

extracted and the RRI sequences for experiments were

generated based on the annotation files of individual

records. Selecting a 15-minute data length was motivated

by a recent study [32] which explored the influence of

segment length in differentiating CHF from NSR and

suggested that 15-minute record segments are sufficient for

CHF recognition. The 15-minute data segments were

confined to be extracted in the same time period of day to

minimize the possible influence of the physiological cycle.

Figure 3 shows the representative heartbeat (RR) interval

(RRI) time series from a healthy subject (a) and a subject

with CHF (b). The RRI time series usually also contain

slowly changing trends and impulse-type artifacts, such as

the two drastic dips in Fig. 3b. These phenomena can cause

false interpretation of the RRI time series and mistakes in

feature extraction. Therefore, preprocessing techniques

such as de-trending and artifact removal filters are usually

used.

4.2 Preprocessing and Feature Extraction

Our earlier study [33] developed simple preprocessors for

removing ectopic beats and trends in the original RRI

sequences. This procedure eliminates outliers, especially

extremely small-valued data possibly induced by artifacts.

The results in our previous study [33] demonstrated the

effectiveness of the proposed preprocessors in reducing the

effect of artifactswhile preserving themajor properties of the

RRI sequences for CHF recognition. Moreover, the DWT

requires input data that are evenly sampled, but the RRI

sequence is unevenly spaced. To standardize the RRI

sequence for allmultiscale analysismethods, the filteredRRI

sequence was interpolated with the cubic-spline method and

re-sampled at a rate of 4 samples/s. The evenly spaced RRI

sequences were first analyzed by different multiscale anal-

ysismethods. The two SE and four chaotic featureswere then

calculated from each of the multiscale signals.

4.3 Support Vector Machine Classifier

Support vector machine (SVM) maps the training samples

from the input space into a higher-dimensional feature

space via a mapping (kernel) function [34]. Any product
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between vectors in the optimization process can be

implicitly computed to generate a hyper-plane to categorize

two classes. Numerous studies have demonstrated the

superiority of using an SVM classifier over other classifiers

in pattern classification tasks. In this study, SVM was

employed as the classifier and the radial basis function

(RBF) was empirically selected as the kernel function.

4.4 Performance Measures and Validation

The performance of the classifier was measured in terms of

sensitivity (SEN), specificity (SPE), and accuracy (ACC).

SEN is defined as the ratio of the number of correctly

recognized CHF to the total number of CHF records. SPE

is defined as the ratio of the number of correctly recognized

NSR to the total number of NSR records. ACC is the

percentage of all test data that are correctly classified.

The leave-one-out cross-validation method was

employed to evaluate the performance of a classifier. This

method uses all, except one, samples to train the classifier

and then uses the excluded sample to test the performance

of the classifier. This procedure repeats until all the sam-

ples have been excluded once as the testing sample. The

percentage of true results is calculated as a measure of

classifier performance. This method tests over the entire

database and allows each sample the same opportunity to

serve as a training or testing sample. Many CHF recogni-

tion systems published in the literature were evaluated

using the leave-one-out method [1, 2, 13, 14], and thus it is

applied here to also facilitate comparison.

4.5 Experimental Protocol

All 116 records of the database (44 CHF and 72 NSR) were

used in the study. All features were extracted from the

records and normalized by first subtracting the mean and

then dividing by the standard deviation and passing

through a tangent sigmoid function, such that all the fea-

tures were normalized to the range [-1, ?1]. The nor-

malization process was performed prior to classification to

eliminate the influence of bias due to different feature

scales. SVM was then employed as a classifier with leave-

one-out cross-validation. The discrimination capabilities of

the two SE and four chaotic features in CHF recognition

under different multiscale analysis schemes were

investigated.

5 Results

In recent studies [8, 9], researchers applied CGA as a

multiscale analysis method to characterize SE and distin-

guish CHF from NSR. The present study first compares the

discrimination power of wavelet-based multiscale SE fea-

tures to that obtained using CGA in recognizing CHF.

Then, the discrimination power of wavelet-based multi-

scale chaotic features and the combination of wavelet-

based multiscale SE and chaotic features in CHF recogni-

tion is investigated.

5.1 Performance of Multiscale Sample Entropy

Features

A previously reported method [8] was followed to calculate

two SE features (SE1 and SE2) from each of the 20 CGA

scales. This process resulted in a total of 40 SE features.

The wavelet-based multiscale analysis methods were based

on 4-level DWT and RDWT, both of which provided five

dyadic scales, i.e., scales 1, 2, 4, 8, and 16, for feature

calculation. The five dyadic scales was chosen because the

largest scale (16) generated in this manner is the largest

dyadic number that is smaller than the number (20) of

applied CGA scales. To assess the influence of decreasing

the number of scales from 20 to 5 dyadic numbers, the SE

features were also extracted from the five dyadic CGA

scales for comparison. As a result, with two SE features

calculated from each of the five scales, the 5-scale CGA,

DWT, and RDWT methods each has ten SE features. The

discrimination power of the SE features calculated using

different multiscale analysis methods are summarized in

Table 1. The recognition rates obtained using SE features

calculated only from the scale 1 (original) signals are also

included in the table for comparison.

It is notable that using only two SE features calculated

from the original signal achieved SEN, SPE, and ACC

values of 47.71, 87.50, 72.41 %, respectively. Compara-

tively, applying SE features calculated from the CGA

method with all 20 scales achieved SEN, SPE, and ACC

values of 59.09, 70.83, and 66.37 %, respectively. Using

the 5-scale CGA, DWT, and RDWT methods remarkably

improved the performance of the classifier (i.e., increased

ACC). The 5-scale CGA and 5-scale DWT methods

achieved the same ACC of 85.34 %, with the 5-scale

RDWT method attaining a slightly lower ACC of 82.75 %.

Table 1 Performance of SE features calculated from various multi-

scale analysis methods for CHF recognition

Feature group SEN (%) SPE (%) ACC (%) NF

SE of scale 1 47.73 87.50 72.41 2

20-scale CGA 59.09 70.83 66.37 40

5-scale CGA 77.27 90.28 85.34 10

5-scale DWT 72.73 93.06 85.34 10

5-scale RDWT 68.18 91.67 82.75 10

NF number of features
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All three 5-scale multiscale analysis methods outperformed

the 20-scale traditional CGA method in characterizing SE

features for CHF recognition.

5.2 Performance of Multiscale Chaotic Features

Since the 5-dyadic-scale approach effectively improved the

recognition rates of SE features, the possibility of using this

approach to improve the recognition power of chaotic

features was explored. As mentioned in previous sections,

four chaotic features were used in the study, namely TD,

ED, CD, and LLE. The four chaotic features calculated

from each of the five scales resulted in a total of twenty

chaotic features used in the CGA, DWT, and RDWT

methods, respectively. The recognition rates of the multi-

scale chaotic features are summarized in Table 2. The

results obtained using chaotic features calculated solely

from the scale 1 HRV sequences are also included in the

table for comparison.

By using the four chaotic features calculated from the

scale 1 HRV sequences, the classifier achieved SEN, SPE,

and ACC values of 38.64, 88.89, and 69.82 %, respec-

tively. Applying 5-scale CGA increased ACC to 77.58 %.

Comparatively, 5-scale DWT increased ACC to a slightly

lower level of 75 %. However, if the chaotic features were

calculated from the 5-scale RDWT, ACC was boosted to a

very high level of 96.55 %, with SEN and SPE values of

95.45 and 97.22 %, respectively.

5.3 Performance of Combined Multiscale Sample

Entropy and Chaotic Features

Considering the high recognition rates obtained using

multiscale SE features and chaotic features in CHF

recognition, the performance of the classifier with the two

categories of features combined was evaluated. The results

are summarized in Table 3. The results obtained using SE

and chaotic features calculated solely from the scale 1

HRV sequences are also included in the table for

comparison.

By using the two SE and four chaotic features calculated

from the original HRV sequences, the classifier achieved

an ACC of 72.41 %, which was slightly higher than that

obtained using only the chaotic features and was the same

as that obtained using only the SE features calculated

solely from the original signals. However, this value was

inferior to that for the combined SE and chaotic features

using either of the three 5-scale methods. For the three

5-scale multiscale analysis methods, similar to the results

in Table 2, multiscale features calculated using the 5-scale

RDWT method achieved the highest recognition rates.

Compared to the 5-scale CGA and DWT methods, 5-scale

RDWT outperformed them by 13.79 and 18.96 % in terms

of ACC, respectively. However, when compared to the

performance of chaotic features, the ACC for the combi-

nation of SE and chaotic features was only slightly higher

(?2.59 %) than that obtained using CGA, the same as that

obtained using DWT, and slightly lower (-2.59 %) than

that obtained using RDWT.

5.4 Comparison with Existing Methods

The results in previous sections demonstrated that chaotic

features extracted from the 5-scale RDWT provide superior

performance with the proposed scheme. Therefore, this set

of features was used for further comparison. To evaluate

the performance of the proposed method with existing CHF

classifiers, the discriminating capability of the proposed

classifier was compared to that of CHF classifiers proposed

by Asyali [2], Isler and Kuntalp [13], and Melillo et al.

[14], referred to as Asyali’s, Isler’s, and Melillo’s methods,

respectively. The comparison results are summarized in

Table 4.

Asyali’s method applies nine time-domain features

calculated from long-term HRV signals. It achieved an

ACC of 93.24 %. However, SEN was only 81.92 %. Isler’s

method uses short-term HRV signals for CHF recognition

with a k-nearest neighbor (KNN) classifier. A genetic

algorithm is applied as a feature selector. The best SEN and

ACC values were 96.43 and 96.39 %, respectively. Melillo

et al. proposed a simple framework which applies only

three features and a regression tree (CART) to categorize

CHF from NSR. Their system achieved a SEN of 89.74 %

and an ACC of 96.36 %. All three studies used the leave-

one-out cross-validation method to evaluate the perfor-

mance of the system.

The proposed method with 5-scale SE and chaotic fea-

tures based on RDWT had ACC values 3.31, 0.16, and

0.19 % higher than those of Asyali’s, Isler’s, and Melillo’s

methods, respectively. The SEN value, which is believed to

be the most crucial in clinical diagnosis, was 13.69 and

5.71 % higher than those of Asyali’s and Melillo’s meth-

ods, respectively. Compared to Isler’s method, which

employs a genetic algorithm as a feature selector, the

proposed method achieved the same levels of recognition

Table 2 Performance of chaotic features calculated from various

multiscale analysis methods for CHF recognition

Feature group SEN (%) SPE (%) ACC (%) NF

Chaotic features of scale 1 38.64 88.89 69.82 4

5-scale CGA 63.64 86.11 77.58 20

5-scale DWT 61.36 83.33 75.00 20

5-scale RDWT 95.45 97.22 96.55 20

NF number of features
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without the application of any time-consuming feature

selectors.

6 Discussion

This study investigated the performance of several multi-

scale analysis methods in characterizing SE and chaotic

features from HRV signals for CHF recognition. The

concept of multiscale analysis stems from the CGA anal-

ysis of SE features [8]. The concept of multiscale analysis

was extended here to the subband decomposition of signals

based on DWT. Four chaotic features were used to further

characterize the HRV signals in the phase space.

In the analysis of multiscale analysis methods for cal-

culating SE features for CHF recognition, it was unex-

pected to find that the CGA method with all 20 scales did

not improve the performance obtained using SE features,

but showed inferior results when compared to those

obtained using only SE features calculated from the scale 1

(original) signals. The 5-scale CGA, DWT, and RDWT,

even with a smaller number of SE features, showed supe-

rior discrimination power when compared to that of the

20-scale CGA method.

These results imply that although multiscale SE has

been successfully employed to analyze various categories

of signals, such as HRV time series [8, 9], complex rainfall

time series [35], and pattern synchronization in cardio-

respiratory coupling [36], it may not provide an efficient

and compact feature set for recognition tasks. Without

orthogonality between scales, SE features extracted from

some of the CGA scales may be redundant and may even

deteriorate the performance of the classifier, as observed in

the present study. This phenomenon was confirmed by the

superiority of recruiting the five dyadic scales, as a subset

of the 20 scales, over the 20-scale SE features calculated

from CGA, no matter which of the three multiscale anal-

ysis methods were used. However, there is currently no

evidence that the SE features calculated from the five

dyadic scales are an optimal subset of multiscale SE

features.

Moreover, standard SE measures with unity time delay

and pattern vector lengths of one and two were recruited.

However, Kaffashi et al. [37] pointed out that SE with

unity time delay may only be suitable for characterizing

signals with rapidly decaying autocorrelation functions.

For a signal with other kinds of autocorrelation functions,

the time delay should be carefully selected to more

appropriately quantify the complex aspects of the signal.

The suitability of using pattern vector lengths of one and

two in calculating SE for CHF recognition may need to be

justified [38]. Optimization techniques may be applied to

simultaneously optimize the pattern vector length and the

time lag such that the most suitable SE can be selected for

CHF recognition [38]. Several approaches have been pro-

posed in recent studies to solve these problems, such as

systematically testing the influence of time delay on SE

[37], investigating the effect of the pattern vector length on

entropy values [35], applying empirical mode decomposi-

tion to decompose data into scale-dependent intrinsic mode

functions [39], and estimating entropy values over the

adaptive scales of the signal [40]. This important issue will

be considered in our future work to develop an efficient and

reliable clinical heartbeat recognition system based on

ECG.

In the evaluation of 5-scale chaotic features for CHF

recognition, RDWT outperformed CGA and DWT in

characterizing chaotic features for the SVM classifier. The

Table 3 Performance of

combining SE and chaotic

features calculated from various

multiscale analysis methods for

CHF recognition

Feature group SEN (%) SPE (%) ACC (%) NF

SE and chaotic features of scale 1 56.82 81.94 72.41 6

5-scale CGA 63.64 90.28 80.17 30

5-scale DWT 63.64 81.94 75.00 30

5-scale RDWT 93.18 94.44 93.96 30

NF number of features

Table 4 Comparison of proposed system with three existing methods

Algorithm NP Classifier Feature selector SEN (%) SPE (%) ACC (%) NF

Asyali’s method [2] 81 Bayesian None 81.82 98.08 93.24 9

Isler’s method [13] 83 KNN Genetic algorithm 96.43 96.36 96.39 11–16

Melillo’s method [14] 110 CART None 89.74 100 96.36 3

Proposed method (5-scale RDWT ? chaotic features) 116 SVM None 95.45 97.22 96.55 20

NP number of participants, NF number of features
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use of inverse DWT to reconstruct the subband components

back to the length of the original signal contributed to the

effective calculation of chaotic features for the recognition

of CHF. The superiority of RDWT over CGA and DWT

might be explained by the distinct characteristics of chaotic

features that require longer data to construct the trajectory

in the phase space for the calculation of reliable values [7].

Compared to SE features, the chaotic features were

more discriminative in CHF recognition. One of the rea-

sons is that the chaotic features were extracted optimally.

Contrary to the use of a unity time lag and pattern vector

lengths of one and two in calculating the SE features,

optimal values of the time lag and embedding dimension

were estimated for the reconstruction of the phase space

and the calculation of CD and the Lyapunov exponent. In

this manner, nonlinear dynamics were appropriately char-

acterized. Therefore, in order to enhance the discrimination

power of SE features, optimization techniques should be

applied to the parameters of SE features [38]. Moreover, an

effective feature selector, such as the genetic algorithm

applied in Isler’s method [13], may be employed to select

an optimal subset of multiscale SE features to further

improve the performance of multiscale SE. With parameter

optimization and feature selection processes, an efficient

and compact multiscale SE feature set can be constructed.

WhenSE featureswere combinedwith the chaotic features,

not all the multiscale analysis methods showed increases in

recognition rates. Combining SE and chaotic features only

slightly increased theACCofCGA,yet showed the sameACC

by using DWT and even showed a slightly (2.59 %) decrease

in ACC using RDWT. These results elucidate the significance

of using RDWT and chaotic features in characterizing HRV

signals for CHF recognition. Adding SE features into the

feature vector did not further enhance the discriminality of the

feature space, which further confirms the disadvantage of

using SE features of inadequately assigned parameters in CHF

recognition, as pointed out earlier in this section.Optimization

techniques are required to allocate the most suitable SE fea-

tures for CHF recognition. Better results can then be expected

when combining SE and chaotic features. This topic will be

considered in our futurework to develop an effective heartbeat

recognition system based on ECG.

Compared to three existing CHF classifiers, the pro-

posed method using 5-scale SE and chaotic features based

on RDWT outperformed all of them in terms of ACC and

SEN. Considering the crucial importance of correctly

detecting suspicious CHF from NSR HRV (high SEN), the

proposed method is more suitable than the three existing

methods for practical clinical services. Even without fea-

ture selectors, the proposed method achieved the same high

level of recognition compared to that of Isler’s method,

which employs a time-consuming genetic algorithm as a

feature selector.

7 Conclusion

This study applied three multiscale analysis methods,

namely CGA, DWT, and RDWT, to explore the capability

of two categories of nonlinear features, namely SE and

chaotic features, for CHF recognition. The chaotic features

calculated from 5-scale RDWT were the most promising in

differentiating CHF from NSR. The proposed method

outperforms three existing methods in terms of ACC and

SEN. This method can be readily applied to photo-

plethysmography (PPG) signals with little modification

[41].

The SE features employed in this study were standard

SE measures with predefined parameters that may not be

optimal for characterizing signals such as HRV. In con-

trast, the chaotic features were estimated to optimally

characterize the nonlinear dynamics of the HRV in the

phase space. The RDWT preserves the length of the orig-

inal data and enables the generation of more reliable

chaotic features that are length-sensitive for CHF

recognition.
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