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Abstract
This paper quantitatively analyzes how the interdependence of components and 
the complexity of technology relates to the formation of technological trajectories. 
This paper uses the idea of technological trajectory and a method called a main path 
analysis. Technological trajectory is an idea that describes the path-dependent tech-
nological evolution process. The technological trajectories of a technological field 
can be represented as the main paths of patent citation networks. This paper aims 
to elucidate some of the determinants of the evolution of technological trajectories 
using main path analysis. The hypotheses are derived from a model called the NK 
Model. The NK model describes the respective roles of the interdependence of com-
ponents and of complexity in complex adaptive systems. Using the NK model, it can 
be understood that technologies with an intermediate level of interdependence and 
technologies with an intermediate level of complexity tend to be more successful 
than other technologies. According to the result, the patents on the main paths of 
this technological field are concentrated at the intermediate level of interdependence 
but the patents on the main paths of this technological field are not concentrated 
at the intermediate level of technological complexity. Additionally, in the techno-
logical field’s early stage, the interdependence values of patents that are locked-in 
within technological trajectories are high, whereas the same values of the later stage 
are low. This observation is also consistent with the idea of technological trajecto-
ries. These results suggest that the NK model is a useful tool to understand the for-
mation of technological trajectories.
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1 Introduction

This paper quantitatively analyzes how the interdependence of components and 
the complexity of technology relates to the formation of technological trajectories. 
Although digital technology is rapidly evolving and becoming increasingly incor-
porated into daily life, the understanding of the technological evolution process is 
still incomplete. To improve this understanding, this paper aims to contribute to the 
elucidation of the mechanism of the technological evolution process in a quantita-
tive way.

This paper uses the idea of technological trajectory and a method called a main 
path analysis. Dosi (1982) described the technological evolution process using two 
notions, “technological paradigm” and “technological trajectory”. In a technological 
field, development paths are dependent on the technological paradigm. The tech-
nological paradigm is selected in the initial stage of the technological field’s devel-
opment. Technological development must proceed according to the selected tech-
nological paradigm. The direction of technological development is limited by the 
technological paradigm. Dosi (1982) called these paradigm-dependent directions of 
development “technological trajectories”. Verspagen (2007) developed this research 
by introducing a quantitative method. With this method, Verspagen (2007) demon-
strates that the technological trajectories of a technological field can be described 
as the main paths of patent citation networks. The main paths are a technological 
field’s major flows of knowledge that are represented as citation networks. Techno-
logical development is a selective process. While there are many possible directions 
of technological development, only a small fraction of these directions are realized 
as technological trajectories. On the other hand, the formation of the main paths is 
also selective. While there are many possible main paths, only a small fraction of 
these are realized. Therefore, technological trajectories can be represented by main 
paths.

In previous research, the authors examined how technological trajectories evolve 
within the technological field of computer graphic processing systems using main 
path analysis (Watanabe and Takagi 2021). However, the determinants of this evolu-
tion are still unclear. This paper aims to elucidate some of the determinants of evo-
lution. The hypotheses are derived from a conceptual model called the NK Model. 
The NK model, which was originally developed in the field of evolutionary biol-
ogy (Kauffman and Weinberger 1989), describes the respective roles of the inter-
dependence of components and of complexity in complex adaptive systems. In this 
paper, the interdependence of components is called simply “interdependence”. The 
complexity of a complex adaptive system is defined by the interaction between the 
number of system elements and their interdependence (Fleming and Sorenson 2001; 
Ganco 2013, 2017). Like animals, technologies are also complex adaptive systems. 
They are both constituted by components that are dependent on each other. Hence, 
many studies have applied the NK model to technological evolution analysis. Using 
the NK model, the inverted U-shaped relationship between interdependence and the 
usefulness of inventors’ efforts can be understood. In the same way, using the NK 
model, the inverted U-shaped relationship between technological complexity and 
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the usefulness of inventors’ efforts can also be understood. The inverted U-shaped 
relationship, which is presented in Fig. 1, means that an intermediate level of inter-
dependence or complexity is optimal for the success of inventors’ efforts. This rela-
tionship suggests that technologies with an intermediate level of complexity and 
technologies with an intermediate level of interdependence tend to be more success-
ful than other technologies. According to this suggestion, two hypotheses can be 
derived: First, patents on the main paths of a technological field are concentrated at 
the intermediate level of interdependence. Second, patents on the main paths of a 
technological field are concentrated at the intermediate level of technological com-
plexity. This paper tests these hypotheses empirically using patents within the tech-
nological field of computer graphic processing systems. First, the interdependence 
and the technological complexity of each patent in this technological field is calcu-
lated using the methodology of Ganco (2013). Second, this paper compares the dis-
tribution of interdependence of patents on the main paths of the technological field 
and the distribution of interdependence of all patents in the technological field. This 
paper also compares the distribution of technological complexity of patents on the 
main paths of the technological field and the distribution of technological complex-
ity of all patents in the technological field. Additionally, in this paper, the change in 
interdependence values of patents that are locked-in within technological trajecto-
ries is analysed. This additional analysis provides deeper insight into the relationship 
between the idea of technological trajectory and the NK model.

The technological field of computer graphic processing systems is chosen as the 
target of this research. The importance of this technological field is growing together 
with the evolution of artificial intelligence (AI). Image recognition is an important 
technological field of AI. Additionally, many manufacturers use computer-aided 
design (CAD) software to design products. GPUs are necessary to use CAD soft-
ware on PCs. The technological evolution of the technological field of computer 
graphic processing systems has great significance for the productivity of the manu-
facturing industry. Thus, examining the technological evolution of computer graphic 

Fig. 1  Inverted U-shaped relationship
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processing systems is particularly significant at the present time, which is why this 
technological field was chosen as the target of this research.

This paper consists of eight sections. After this introduction, a literature review 
follows. In the literature review, previous studies that are related to the idea of 
technological trajectories, main path analysis, and the NK model are reviewed. In 
Sect. 3, a brief history of the technological field of graphic processing systems is 
presented. In Sect. 4, hypotheses for the main analysis are presented. In Sect. 5, the 
data and the methodology of the main analysis are introduced. In Sect. 6, the results 
of the main analysis are presented. In Sect. 7, additional analysis on the change in 
interdependence values of patents that are locked-in is presented. Discussion about 
the results follows in Sect. 8.

2  Review of previous studies

In this section, two categories of previous studies are reviewed. First, previous 
studies related to the idea of technological trajectories and main path analysis are 
reviewed. Then, previous studies related to the NK model are reviewed.

2.1  Technological trajectories and main path analysis

As mentioned in Sect.  1, the idea of a technological trajectory was presented by 
Dosi (1982). Technological trajectories consist of cumulative and path-dependent 
development paths within a technological field. The idea of technological trajecto-
ries has often been used in the research field of technological evolution. Since Dosi 
(1982), researchers have mainly used qualitative methods to study technological 
evolution and technological trajectories (Possas et al. 1996; Vincenti 1994). Thus, in 
the research field of technological trajectories, qualitative research has been mainly 
cumulative. On the other hand, Verspagen (2007) advanced the research field by 
proposing a quantitative method to find technological trajectories within a citation 
network data set. Verspagen (2007) employed a method called main path analysis 
proposed by Hummon and Dereian (1989). Main path analysis is a method to map 
the major flow of knowledge within a field as citation networks. There are two steps 
to this method. First, every edge in the whole citation network of a field is weighed 
by connectivity. This weight is called traversal weight. This count represents the sig-
nificance of an edge. Second, based on traversal weight, the main paths are searched 
by an algorithm which chains important edges in the citation network. The proce-
dure of main path analysis will be explained in detail in Sect.  5.2. Hummon and 
Dereian (1989) developed this method to find the main knowledge flow within the 
research field of DNA studies. Verspagen (2007) argued that the method of main 
path analysis could be applied to find technological trajectories within a patent cita-
tion network. The main paths, which represent the major flow of knowledge within 
a technological field, can be considered as technological trajectories mapped as 
citation networks. Verspagen (2007) applied main path analysis to find technologi-
cal trajectories within the technological field of fuel cells. After Verspagen (2007), 
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some studies employed main path analysis to find technological trajectories within 
the technological fields of data communication (Fontana et al. 2009) and telecom-
munications switching (Martinelli 2012). In addition, Barberá-Tomás et al. (2011) 
confirmed the validity of main path analysis as a method for studying technologi-
cal evolution. In addition to these studies, Huenteler et al. (2016a) applied the main 
paths of patent citation networks calculated by the method of Hummon and Dereian 
(1989) to study the difference between technological life-cycles of solar PV and 
wind power. Besides, Huenteler et al. (2016b) applied the main paths of patent cita-
tion networks calculated by the method of Hummon and Dereian (1989) to study the 
effect of a product’s design hierarchy on the evolution of technological knowledge. 
Main path analysis is also used to study knowledge evolution in various academic 
research fields. In these studies, academic paper citation network data is examined 
using main path analysis. For example, Yu and Sheng (2020) used main path anal-
ysis to study knowledge evolution in the research field of blockchain technology. 
Other studies examined the knowledge evolution of the research field of data qual-
ity, environmental innovation, IT outsourcing, text mining, data envelopment analy-
sis, new energy vehicles, lithium iron phosphate batteries and the Internet of Things 
(Xiao et al. 2014; Barbieri et al. 2016; Liang et al. 2016; Jung and Lee 2020; Liu 
et  al. 2013; Yan et  al. 2018; Hung et  al. 2014; Fu et  al. 2019). Thus, main path 
analysis has been commonly used as a method to study technological and knowledge 
evolution. However, the method of Hummon and Dereian (1989) fails to include the 
edges which have large traversal counts in some cases. Liu and Lu (2012) proposed 
a method called key-route search to solve this problem. In this research, the authors 
use the key-route search method to find the main paths in the whole citation network 
data. After Liu and Lu (2012), additional new approaches to main path analysis have 
been proposed. For example, Liu and Kuan (2016) proposed a new approach to main 
path analysis taking into account knowledge decay.

2.2  NK model

The NK model, which was originally introduced by Kauffman and Weinberger 
(1989) in the field of evolutionary biology and discussed further by Kauffman 
(1993), is a conceptual model that describes the respective roles of interdependence 
and of complexity in complex adaptive systems. In the NK model, a complex adap-
tive system is described as a binary string of N components. Each digit of the string 
represents a component, which has two states, 0 and 1. For example, when N = 3, a 
binary string 0 1 1 is one of eight possible combinations. The other possible combi-
nations would be 0 0 0, 0 0 1, 0 1 0, 1 0 0, 1 0 1, 1 1 0, 1 1 1. Each combination of 
N components has its fitness value. Fitness means how adaptive a system or a com-
ponent is to the environment. In other words, a high fitness value represents a high 
possibility of success of the system in an environment. The fitness value for each 
combination of components is calculated as the average value of the fitness values 
of the components. The fitness values of the components are assigned randomly. 
The procedure of this random assignment is determined by K values, which repre-
sent the interdependence among components of the system. For the case of N = 3, 
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the minimum K value is 0, which means there is no interdependence among com-
ponents. The maximum K value is 2, which means each component is dependent 
on the two other components. For the case of K = 0, a value from a uniform [0, 1] 
distribution is assigned to the fitness value of each binary component. In this case, 
the fitness value of each component does not change when the state of the other 
components change because the K value is 0, which means the components are not 
dependent on each other. Figure 2 illustrates the case of N = 3 and K = 0. In the table 
of Fig. 2, all possible combinations of the binary string of 3 components are indi-
cated in the left column. The fitness values of components 1, 2, and 3 are indicated 
in the middle columns as w1, w2, and w3. The fitness value for each combination of 
components is indicated in the right column as W. On the other hand, for the case 
of K = 2, the fitness value assigned to each binary component depends not only on 
whether that component is 0 or 1 but also on whether the other two components 
that are interdependent with the component are 0 or 1. In this case, the fitness val-
ues of components show chaotic behaviour because a change of a component in the 
system (for example, a change from a component 0 to a component 1) changes the 
fitness of the other two components. This chaotic behaviour of the fitness values of 
components makes it impossible to predict the effect of a change of a component on 
the fitness values of the other two components. This behaviour occurs because the 
components are dependent on each other. This dependence is described by K = 2. 
Kauffman (1993) describes this chaotic behaviour by assigning a fitness value to 
the binary components of each combination randomly from a uniform [0, 1] dis-
tribution. Figure 3 illustrates this case of N = 3 and K = 2. In the table of Fig. 3, all 
possible combinations of the binary string of 3 components, the fitness values of 
components, and the fitness value for each combination of components are indicated 
in the same way as Fig. 2. 

In the NK model, it is assumed that all possible combinations of N components 
form a fitness landscape. The fitness landscape is also an idea that was originally 
developed in the field of evolutionary biology by Wright (1932). Fitness landscapes 
are presented on the right side of Figs. 2 and 3. In a fitness landscape, agents search 
locally in fitness landscapes. This “search locally” means that agents change the 
state of one component at a time and see whether that change increases the fitness 

Fig. 2  The case of N = 3, K = 0
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value of the whole system. This local search procedure is indicated as arrows in fit-
ness landscapes on the right side of Figs. 2 and 3. In the fitness landscape in Figs. 2 
and 3, each vertex represents a combination of components. Additionally, the fit-
ness value of each combination, which is calculated in the table, is indicated below 
in parentheses. The key insight from this conceptual model is that the higher the 
interdependence of components, the more rugged the fitness landscape. In Fig. 2, 
agents can reach the highest peak (the combination with the highest fitness value) 
in the landscape by searching locally from anywhere in the fitness landscape. On 
the other hand, in Fig.  3, agents cannot always reach the highest peak (the com-
bination 001) by just searching locally. Agents sometimes become stranded at a 
local high peak (the combination 110) because of the ruggedness of the landscape. 
Thus, when K increases, it becomes difficult to find the highest peak because of the 
increasing ruggedness of the landscape. This means that when K increases, problem-
solving becomes more difficult for agents. On the other hand, when K increases, the 
height of the highest peak on the landscape increases at the same time (Fleming and 
Sorenson 2001). This means that when K increases, the ideal fitness which agents 
can obtain from problem-solving also increases. According to these two effects of 
the change in K, it can be understood that an intermediate level of interdependence 
is best for the success of agents’ local search. Kauffman (1993) also mentioned a 
phenomenon called “complexity catastrophe”. “Complexity catastrophe” means 
that when the interdependence of a system is high compared to the number of com-
ponents, agents tend to be stranded at a lower peak. The complexity of a complex 
adaptive system is represented by the ratio of K to N (Fleming and Sorenson 2001; 
Ganco 2013, 2017). “Complexity catastrophe” can be represented as the inverted 
U-shaped relationship between technological complexity value and the usefulness of 
agents’ efforts (Ganco 2017). In other words, “complexity catastrophe” suggests that 
an intermediate level of technological complexity is best for the success of agents’ 
local search.

The NK model has been used to understand the technological evolution process 
as a combinatorial search (Ethiraj and Levinthal 2004; Frenken 2000, 2006; Fleming 
and Sorenson 2001, 2004; Ganco 2013, 2017; Murmann and Frenken 2006; Soren-
son et al. 2006; Taalbi 2017). These studies are part of a lineage of research since 

Fig. 3  The case of N = 3, K = 2
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Schumpeter (1934) that holds that technological novelty comes from the recombi-
nation or synthesis of existing technologies. In particular, Fleming and Sorenson 
(2001), Ganco (2013), and Ganco (2017) are important previous works for this 
paper. These papers empirically examined the validity of the NK model using pat-
ent data. Fleming and Sorenson (2001) developed a methodology to calculate the 
K value and technological complexity value of patents and empirically tested some 
hypotheses which can be derived from the NK model. The result of Fleming and 
Sorenson (2001) supported the hypothesis that an intermediate level of interdepend-
ence is best for the success of agents’ local search. However, their result could only 
find partial support for the hypothesis that an intermediate level of technological 
complexity is best for the success of agents’ local search. Ganco (2013) and Ganco 
(2017) developed the research of Fleming snd Sorenson (2001). In the study of 
Fleming and Sorenson (2001), the methodology to calculate the K value and techno-
logical complexity value of patents was conducted in an inter-industry context. On 
the other hand, Ganco (2013) developed a methodology to calculate the K value and 
technological complexity value of patents in a single-industry context. Additionally, 
Ganco (2017) empirically tested some hypotheses which can be derived from the 
NK model using the calculation methodology of Ganco (2013). The result of Ganco 
(2017) supported the hypothesis that an intermediate level of interdependence is 
best for the success of agents’ local search. Additionally, the result of Ganco (2017) 
also supported the hypothesis that an intermediate level of technological complexity 
is best for the success of agents’ local search.

3  A brief history of computer graphic processing systems

In this section, the history of computer graphic processing systems is reviewed. This 
review is based on work by Das and Deka (2015). The technological field of com-
puter graphic processing systems has advanced together with the evolution of the 
graphics processing unit (GPU). In 1999, NVIDIA introduced the term “GPU”. Until 
this time, the term “GPU” did not exist. However, this term will be used throughout 
this section to ensure consistency. GPUs are designed for 3D graphics rendering cal-
culations. The original GPU designs were based on the graphics pipeline concept. 
The graphics pipeline is a conceptual model that consists of several stages. Through 
the stages, 3D space is converted to 2D pixel space on the screen. In the early GPU 
hardware, only the rendering stage of the graphics pipeline was implemented. The 
graphics pipeline stages which are implemented in GPU hardware increased as GPU 
technology advanced. In 1999, the first GPUs, which implemented the whole graph-
ics pipeline (transform, lighting, triangle setup and clipping, rendering) in their hard-
ware were released. GeForce 256 of NVIDIA and Radeon 7500 of ATI are exam-
ples of these first true GPUs. The first graphics pipeline completely implemented in 
GPU hardware was called a “fixed function” pipeline because the data which was 
sent to the pipeline could not be modified. In 2001, NVIDIA released Geforce 3 
which implemented the programmable pipeline. Using the programmable pipeline, 
the data can be operated while in the pipeline. The programmability of GPUs began 
to progress from 2001. Other examples of GPUs at this time are ATI Radeon 8500 
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and the Xbox of Microsoft. In 2010, NVIDIA released a GPU architecture called 
Fermi Architecture. This architecture was designed for general-purpose computing 
on graphics processing units (GPGPU), which allowed programmers to use GPU 
resources not only for graphics processing. Thus, the GPU hardware has advanced 
from a single core, fixed-function hardware pipeline implementation just for graph-
ics to a set of programmable cores for general computing purposes.

4  Hypotheses

As mentioned in Sect. 2.2, two hypotheses can be derived from the NK model; (1) 
an intermediate level of interdependence among the components of a technology is 
best for the success of agents’ local search, and (2) an intermediate level of tech-
nological complexity is best for the success of agents’ local search. Fleming and 
Sorenson (2001) and Ganco (2017) used regression analysis to test these hypoth-
eses. They checked the inverted-U shaped correlations between K value and the cita-
tion count of patents, and between technological complexity value and the citation 
count of patents. In these studies, the citation count of patents was used to meas-
ure the success of agents’ local search. However, the citation count of patents is not 
the only representation of the success of agents’ local search. In this research, the 
authors assume that the patents belonging to the main paths of a technological field 
represent the success of agents’ local search. As mentioned in Sect. 2.1, the main 
paths, which can be considered as technological trajectories mapped as citation net-
works, represent the major flow of knowledge within a technological field. A patent 
belonging to the major flow of knowledge can be considered as a successful patent. 
Based on this assumption, two hypotheses are derived:

 (i) Patents on the main paths of a technological field are concentrated at the 
intermediate level of interdependence.

 (ii) Patents on the main paths of a technological field are concentrated at the 
intermediate level of technological complexity.

5  Data and methodology

In this section, the data and the methodology of the analysis are presented. The anal-
ysis aims to test the hypotheses which are presented in Sect. 4. To accomplish this 
goal, the following steps are taken. First, the patent citation network dataset of the 
technological field of computer graphic processing systems is processed using the 
methodology of Verspagen (2007) and Liu and Lu (2012). Second, the technological 
complexity and interdependence of each patent in this technological field are calcu-
lated. Third, this paper compares the distribution of interdependence of patents on 
the main paths of the technological field and the distribution of interdependence of 
all patents in the technological field. This paper also compares the distribution of 
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technological complexity of patents on the main paths of the technological field and 
the distribution of technological complexity of all patents in the technological field.

5.1  Patent data

In this section, the data and the methodology which are used for the analysis are 
introduced. The US Patent Office database is used to obtain the entire patent cita-
tion network data in the technological field of computer graphic processing systems. 
This field is defined by the technological classes of US Patent Classification (USPC) 
under Class 345/501. There are eight subclasses (345/502, 345/503, 345/504, 
345/505, 345/506, 345/519, 345/520, 345/522) under this class. Class 345/501 is 
for the technological field of the “Computer graphic processing system”. According 
to the class definition, patents of “subject matter comprising apparatus or a method 
for processing or manipulating data for presentation by a computer prior to use with 
or in a specific display system” (USPC class numbers and titles, Class 345/501) 
are classified under Class 345/501. There are many more patents that are essential 
for the evolution of computer graphic processing systems. For example, patents 
which are classified as Class 382 are about image analysis, which is a subject that is 
strongly related to computer graphic processing systems. However, in this research, 
the patents which are not included in the classes under Class 345/501 are not exam-
ined to keep the data manageable. In addition, the citations that are examined in this 
research are citations within the classes under Class 345/501. The US Patent Office 
online database called PatentsView covers the patents which are published since 
1975. In this study, patents from 1975 to 2015 were obtained from PatentsView. The 
history of computer graphic processing systems started in the 1970s, so the scope 
of the dataset is adequate for this research. The number of patents that are collected 
from PatentsView is 4032. After collecting patents, a citation network data set of 
the technological field of computer graphic processing systems is created. Python 
and its network analysis package NetworkX are used to create this citation network 
data set. In the citation network data set, every node represents a patent, and every 
directed edge represents a citation. The citation network data set in this research 
contains 4032 nodes and 13,147 edges. Every edge is directed to a citing patent from 
a cited patent according to the flow of knowledge. For example, in Fig. 4, an edge is 
directed to node C from node A. This edge represents a relationship in which patent 
C cites patent A. Patent citation networks are always directed acyclic graphs (DAGs) 
because no patents cite patents that are newer than them. In addition, some patents 
are never cited but cite others. Such patents become sink nodes in the network. Sink 
nodes are called “endpoints” in this research. At the same time, some patents are 
cited but cite nothing in the citation network. Such patents become source nodes of 
the network. Source nodes are called “startpoints” in this research.

5.2  Main path analysis

In the main path analysis method, every edge in the citation network data is first 
weighted according to its position in the network. The weight of edges is called 
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the “traversal count”. The search path count method is used to weigh every edge 
in an acyclic network. The term “search path” means a route that connects a pair 
of nodes in the network. Every search path is a sequence of directed edges. For 
example, in Fig.  4, a search path A-C-D-F connects the node A to the node F. 
There are two search path count methods, search path link count (SPLC) and 
search path node pair (SPNP). Search path link count (SPLC) is a method pro-
posed by Hummon and Dereian (1989). In this method, every edge is weighed 
by counting how often the edge lies on all possible search paths. Hummon and 
Dereian (1989) imply that the SPLC method contains search paths whose origins 
are intermediate nodes or search paths whose destinations are intermediate nodes. 
However, the method can also be considered to contain only search paths whose 
origins are startpoints and whose destinations are also endpoints. In this research, 
the SPLC method is considered to contain only search paths whose origins are 
startpoints and destinations are also endpoints. Hummon and Dereian (1989) also 
proposed another method to weigh edges. This method is called the search path 
node pair (SPNP). The edge D-F connects four nodes (A, B, C, D) to its destina-
tion, for example, the node G. At the same time, the edge D-F connects three 
nodes (F, G, H) to its origin, for example, the node A. The SPNP value of the 
edge D-F is calculated by multiplying these numbers. Thus, the SPNP value of 
the edge D-F is 3 × 4 = 12. This number represents how many pairs of nodes the 
edge D-F connects. Both SPLC and SPNP weigh nodes which are more respon-
sible for connecting other nodes. As Verspagen (2007) and Fontana et al. (2009) 
mentioned, the result is not very different between these two methods. In this 
research, the SPNP method is used following Verspagen (2007) and Fontana et al. 
(2009). After finishing weighing edges, the following algorithm proposed by 
Hummon and Dereian (1989) is adopted to define main paths within a network. 
The algorithm below is created in reference to Verspagen (2007).

Fig. 4  Calculating SPNP values



130 Evolutionary and Institutional Economics Review (2022) 19:119–140

1 3

 (i) For each startpoint in the network, pick the outward edge(s) that has(ve) the 
highest SPNP value among all the edges going out from the startpoint. Each 
startpoint is assigned a value equal to the value of the edge(s) with the highest 
SPNP value.

 (ii) Select the startpoint(s) with the highest assigned value. This is the startpoint(s) 
of the main paths.

 (iii) Take the target(s) (citing patent) of the edge(s) identified in the previous step.
 (iv) From the target(s) identified in the previous step, pick (again) the outward edge 

that has the maximum SPNP value among all outward edges from this node 
and add this edge to the main paths. If some edges have the same maximum 
SPNP value, add all these edges to the main paths. If (all) these edge(s) point 
to an endpoint of the network, exit the algorithm, otherwise go back to Step 
(iii) and continue.

The main paths which can be found by this algorithm are called the local main 
paths. This algorithm suffers from the limitation that sometimes it does not include 
the edges which have large traversal counts. To avoid this problem, Liu and Lu 
(2012) invented a new method called key-route search. Key-route search guarantees 
that the local key-route main paths, which are calculated by the method, contain 
edges with the highest traversal counts. According to Liu and Lu (2012), the key-
route search procedure is as follows. The algorithm below is created in reference to 
Liu and Lu (2012).

 (i) Select the key-route, which is the links that have the highest traversal count.
 (ii) Search forward from the end node of the key-route until a sink is hit.
 (iii) Search backward from the start node of the key-route until a source is hit.

“Search forward” is the same as steps (iii) and (iv) of Hummon and Dereian 
(1989)’s method presented previously. “Search backward” represents searching the 
roots of the edges using steps (iii) and (iv) of Hummon and Dereian (1989). The 
local key-route main paths are calculated by this procedure. The local key-route 
main paths within the network of Fig. 4 are presented by thick lines in Fig. 5. The 
authors use the key-route search method to find the main paths in the whole citation 
network data. A network analysis software called Pajek is used to conduct the main 
path analysis. The procedure for analyzing main paths in Pajek is explained in detail 
in de Nooy et al. (2018).

In this research, the main path analysis was repeated for a sequence of periods to 
obtain a series of “snapshots” of the main paths of each year from 1985 to 2015. In 
total, 31 “snapshots” of main paths are obtained. All patents which belong to these 
31 “snapshots” are grouped as patents on the main paths.

5.3  Calculation of the interdependence and complexity of each patent

In this paper, the K values, which represent the interdependence among compo-
nents, and the technological complexity values of patents are calculated using the 
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methodology of Ganco (2013). As referenced in Sect.  2.2, Fleming and Sorenson 
(2001) originally developed the methodology to calculate the K values and the tech-
nological complexity values of patents. This methodology was conducted in an 
inter-industry context. Later Ganco (2013) developed a methodology to calculate the 
K values and the technological complexity values of patents within a single-indus-
try. Since the target technological field of this research is single, the methodology of 
Ganco (2013) is suitable for this research. In the methodology of Ganco (2013), the 
K values of patents are calculated in several steps. First, the Ki values of the compo-
nents are calculated. The patent subclasses to which a patent belongs are considered 
as the knowledge components of which the patent consists. The Ki value of the com-
ponents (patent subclasses) of patent l is described as:

where j belongs to all patent subclasses except i. Subclass i and j are any patent 
subclasses to which at least one patent that is within the target data of this research 
belongs. Second, the K values of each patent are calculated. The Kl value of patent l 
is described as:

Ganco described the logic behind this methodology as follows:
The key idea behind the measure is that when two underlying functions (repre-

sented by patent subclasses) are coupled, components belonging to these classes are 
more likely to occur in a single invention. If the functions A and B are highly cou-
pled, if component a is classified in patent subclass A, a ∈ A, and if component b 
is in subclass B, b ∈ B, then one is more likely to see subclasses a and b in a single 

Ki =

∑

j∈l
−i

count of patents in subclasses i and j

count of patents in subclass i

Kl =
1

count of subclasses of patent l

∑

i∈l

Ki

Fig. 5  The local key-route main paths of the network presented in Fig. 4



132 Evolutionary and Institutional Economics Review (2022) 19:119–140

1 3

invention. In other words, high interdependence between A and B implies that when-
ever an inventor solves a problem related to one of these functions, she/he needs to 
redesign or include the coupled function as well, and the components optimizing 
these functions are likely to be observed together in a patent. Similarly, if the pat-
ent improves the architecture of multiple functions, all components that correspond 
to these functions are likely to be coupled to the architecture. On the other hand, if 
A and B are independent with respect to each other, A is likely to be combined with 
other subclasses without B being present. (Ganco 2013: 676).

Nl , which is the number of components that constitute patent l, is the number of 
patent subclasses to which patent l belongs. The technological complexity value of 
patent l is described as the ratio of Kl to Nl , 

Kl

Nl

 (Fleming and Sorenson 2001; Ganco 
2013, 2017).

6  Result

In this section, the distribution of K values and technological complexity values of 
patents on the main paths of the technological field of computer graphic process-
ing systems, and the distribution of K values and technological complexity values 
of all patents in this technological field are compared. K values and technological 
complexity values of patents are calculated using the methodology presented in 
Sect. 5.3.

The basic statistics of K values and technological complexity values of each 
group are presented in Table 1. From Table 1, it can be said that the K values of 
patents on the main paths are concentrated in a narrower range than the K values of 
all patents in this technological field. On the other hand, the difference between the 
range of technological complexity values of patents on the main paths, and the range 
of the technological complexity values of all patents that in this technological field 
is not as large as in the case of the K values.

The histogram on the top-left side of Fig. 6 presents the distribution of K val-
ues of all patents in the technological field. The histogram on the top-right side of 
Fig. 6 presents the distribution of K values of patents on the main paths. The box-
plot in Fig. 6 presents the comparison of distributions of K values of each group. 
This boxplot shows that the patents on the main paths of a technological field are 

Table 1  Basic statistics of 
K values and technological 
complexity values

K, All K, Main Paths Complexity, All Complex-
ity, Main 
Paths

Size 4032 139 4032 139
Min 2.4842 3.9685 0.2978 0.4804
Max 29.8060 8.3868 5.8104 4.3932
Median 5.1036 4.8207 1.2676 1.2707
Mean 5.5727 5.0169 1.5120 1.4638
Variance 2.9860 0.5827 0.7189 0.5593



133

1 3

Evolutionary and Institutional Economics Review (2022) 19:119–140 

concentrated at the intermediate level of interdependence. The variance of the K val-
ues of all patents in the technological field is 2.9860. On the other hand, the variance 
of the K values of all patents on the main paths is 0.5827. To test the difference in 
the variances between the two groups, the Levene test was used. The p-value of the 
test was less than 0.001. According to Fig. 6 and the result of the Levene test, it can 
be said that the patents on the main paths of this technological field are concentrated 
at the intermediate level of interdependence.

The histogram on the top-left side of Fig. 7 presents the distribution of technolog-
ical complexity values of all patents in the technological field. The histogram on the 
top-right side of Fig. 7 presents the distribution of technological complexity values 
of patents on the main paths. The boxplot in Fig. 7 presents the comparison of dis-
tributions of the technological complexity values of each group. This boxplot shows 
that the patents on the main paths of a technological field are slightly concentrated at 
the intermediate level of technological complexity. The variance of the technologi-
cal complexity values of all patents in the technological field is 0.7189. On the other 
hand, the variance of the technological complexity values of all patents on the main 
paths is 0.5593. To test the difference of the variances between the two groups, the 
Levene test was used. The p-value of the test was 0.2968. According to Fig. 7 and 
the result of the Levene test, it cannot be said that the patents on the main paths of 
this technological field are concentrated at the intermediate level of technological 
complexity.

According to the result presented, Hypothesis (i) is supported and Hyposesis (ii) 
is not supported. In other words, the patents on the main paths of this technological 
field are concentrated at the intermediate level of interdependence but the patents 
on the main paths of this technological field are not concentrated at the intermediate 

Fig. 6  Distributions and Boxplot of K values
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level of technological complexity. Ganco (2017) empirically revealed that there is an 
inverted U-shaped relationship between technological complexity and the usefulness 
of inventors’ efforts in a single-industry context. The result of this paper is inconsist-
ent with the result of Ganco (2017).

7  Change in the K values of locked‑in patents over time

In this section, the change in K values, which represent the interdependence of the 
components, of patents that are locked-in will be examined to obtain additional 
implications. Watanabe and Takagi (2021) mentioned that all patents observed on 
the main paths three times consecutively at 5-year intervals did not drop out from 
the main paths in the long term. They also mentioned that this observation is consist-
ent with the technological lock-in process. According to them, all patents observed 
on the main paths 11 times consecutively at 1-year intervals are considered to be 
patents that are locked-in in the technological field of computer graphic process-
ing systems. In this section, the change in the K values of these locked-in patents is 
analysed. These locked-in patents are extracted from the “snapshots” of main paths, 
which are calculated in Sect. 5.2.

Figure  8 presents the change in the K values of patents that are locked-in 
within this technological field and Table  2 presents the details of the locked-in 
patents. The highest K values are observed at the initial stage of this technologi-
cal field (1978–1980, Patent No. 4121283 and 4209832) and the K values became 
stable within the lower range after the initial stage. This observation is consistent 

Fig. 7  Distributions and Boxplot of technological complexity values
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with the idea of technological trajectory. Dosi (1982) mentioned that there are 
two kinds of technological progress: extraordinary breakthrough innovations and 
normal technological progress. Breakthrough innovations create a new techno-
logical field and set the technological paradigm of the technological field. Subse-
quent normal technological progress is accumulated along the technological tra-
jectory of the technological field. Normal technological progress tries to extend 
the possibility of breakthrough innovations as much as possible and when further 
extension becomes impossible, innovators search for a new paradigm (Arthur, 
2010; Dosi, 1982). The two patents in Fig.  8 with the highest K values can be 
considered as the breakthrough innovations in this technological field. There are 
two reasons for this. First, as mentioned before, these patents are observed at the 
technological field’s initial stage. Second, as explained in Sect. 2.2, high K val-
ues mean that the difficulty of problem-solving is high. At the same time, also 
as explained in Sect. 2.2, the ideal fitness values that innovators can obtain from 
solving these problems are higher than those from solving problems with lower 
K values. Breakthrough innovations are relatively rare, which means such types 
of innovations’ problems are difficult to solve. At the same time, breakthrough 

Fig. 8  Change in the K values of locked-in patents over time
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innovations must have some universality to maintain the paradigm for a long time. 
This universality can be interpreted as high fitness. The two patents in Fig. 8 with 
the highest K values can be considered to have high problem-solving difficulty. 
However, they have belonged to the technological trajectory of this technological 
field for a long time. This observation means that the innovators of these patents 
solved difficult problems and realised high fitness. In Sect. 6, many patents with 
high K values which do not belong to technological trajectories are observed. It 
can be said that the innovators of these patents were not able to realise high fit-
ness by difficult problem-solving. Thus, these features of the two patents with 
high K values (Patent No. 4121283 and 4209832) are consistent with the features 
of breakthrough innovations. On the other hand, the subsequent normal techno-
logical progress occurs frequently, which means such types of innovations’ prob-
lems are not as difficult to solve as those of breakthrough innovations. Addition-
ally, normal technological progress does not need to have as high universality 
as breakthrough innovations. These features are consistent with the features of 
innovations with low K values. Thus subsequent patents in Fig.  8 with low K 
values (Patent No. 4254467 ~) can be considered to be patents of normal techno-
logical progress. Thus, the observation presented in this section is consistent with 
the idea of technological trajectories. In future research, the authors will conduct 
qualitative research to verify whether or not Patent 4121283 and Patent 4209832 
are breakthrough innovations of this technological field. Additionally, the gener-
ality of the observation will be tested in future research. 

8  Discussion

According to the result presented in Sect. 6, Hypothesis (i) is supported and Hypose-
sis (ii) is not supported. In other words, the patents on the main paths of this tech-
nological field are concentrated at the intermediate level of interdependence but 
the patents on the main paths of this technological field are not concentrated at the 
intermediate level of technological complexity. Ganco (2017) empirically revealed 
that, in a single-industry context, there is an inverted U-shaped relationship between 
technological complexity and the usefulness of inventors’ efforts. The result of this 
paper is inconsistent with the result of Ganco (2017). The authors will examine the 
causes of this inconsistency in future research. Additionally, according to the result 
presented in Sect. 7, in the technological field’s early stage, the K values of patents 
that are locked-in within technological trajectories are high, whereas the same values 
in the later stage are low. This observation is also consistent with the idea of tech-
nological trajectories. The result which is presented in Sect. 6 and Sect. 7 suggests 
that interdependence of components affects the evolution of technological trajecto-
ries and the NK model is a useful tool to understand the formation of technological 
trajectories. However, these results are not enough to say that interdependence is one 
of the determinants of the evolution of technological trajectories. The authors will 
do further research to verify whether or not interdependence is one of the determi-
nants of the evolution of technological trajectories. Additionally, this paper has the 
limitation of having only examined patents in the technological field of computer 
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graphic processing systems. The generality of the result should be tested in future 
research.

A theoretical implication is derived from this research: patents on main paths 
tend to have an intermediate level of interdependence. This paper revealed this pre-
viously unknown feature of patents on main paths in the case of patents in the tech-
nological field of computer graphic processing systems. The authors believe that this 
will be confirmed as a proposition applicable to technologies in general as research 
results in other fields become available.

An implication for science and technology policymaking is also derived from 
this research: investments in technologies that do not have an intermediate level of 
interdependence should be avoided because their probability of being a part of a 
technological trajectory seems to be relatively low. This implication is derived from 
the analysis of patents in the technological field of computer graphic processing sys-
tems. It is shown that patents without intermediate interdependence do not belong to 
the main path in this technological field. The generality of this conclusion should be 
tested in future research.
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