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Abstract
We directly observed a Cobb–Douglas symmetric plane using the index of surface 
openness, which is used in geography, and successfully identified it. Based on this 
observation, we measured the capital shares (capital elasticity) and labor shares 
(labor elasticity) and compared them with the results of multiple regression analysis 
used in economics. We confirmed consistent agreement in seven countries: Japan, 
Germany, France, Spain, Italy, the UK, and the Netherlands. Thus, we show that 
the Cobb–Douglas production function can be clearly captured in empirical data as 
a geometric entity with a quasi-inverse symmetry of variables. Based on the above 
discussion, we theoretically clarified why the Cobb–Douglas production function is 
better fitted to empirical data in economics, because it uniquely derives the fact that 
its variable follows a power-law distribution.

Keywords  Cobb–Douglas production function · Quasi-inverse symmetry · Surface 
openness · Power law

JEL Classification  E0

1  Introduction

In economics, firms are regarded as economic entities that produce goods (Y) 
using capital, labor, and other resources, which are called production factors (
x1, x2,… , xn

)
 . The production activity of firms is modeled as a function that inputs 

production factors and outputs the total production: Y = F
(
x1, x2,… , xn

)
 . This 
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is called a production function. As a simplified model, economists have proposed 
various two-variable production functions in which the production factors are capital 
(K) and labor (L).

A typical example is the Cobb–Douglas production function: Y(K, L) = AK�L� 
(Cobb and Douglass 1928). Here, A is the total factor productivity, which is 
interpreted as a firm’s production efficiency or technological capability that 
cannot be measured by labor or capital. � and � are called the capital share 
(capital elasticity) and labor share (labor elasticity), and represent production’s 
capital or labor dependency. The constant elasticity of substitution (CES) type 
production function, Y(K, L) = A{�K−� + (1 − �)L−�}

−
1

� , is an extension of the 
Cobb–Douglas production function (Solow 1956; Arrow et  al. 1961). Here, � and 
� are the distribution and substitution parameters. The CES production function 
matches the Cobb–Douglas production function at � + � = 1 in the � → 0 limit 
as well as the Leontief production function: Y = Amin{K, L} in the limit of 
� → +∞ . Furthermore, economists proposed a translog-type production function, 
logY(K, L) = logA + � logK + � logL + �1 log

2 K + �2 log
2 L + �3 logK logL , as 

an extended version that explicitly includes the Cobb–Douglas production function 
(Christensen et al. 1973).

In economics, various forms of production functions have been proposed and 
widely used by researchers in microeconomics and macroeconomics. Total factor 
productivity has been applied to industries around the world since the late 1950s as 
an indicator of productivity, and many empirical studies have addressed production 
functions. However, the conventional research is limited to comparisons of the 
superiority of the production function based on the regression’s good fit to the shape 
of several production functions described above. Note that there is only a limited 
argument concerning why a production function takes a functional form, such as 
the Cobb–Douglas type. Among these studies, Houthakker focused on the similarity 
between the Cobb–Douglas production function and the power-law distribution, 
followed by its variables from the microeconomic foundation (Houthakker 1955). 
Unfortunately, however, his argument fails to reach the constant returns to scale 
discussed below.

In this context, as in Houthakker’s work, where the Cobb–Douglas production 
function is a power-law function of variables (K, L, Y) , we argue that the 
Cobb–Douglas production function can be interpreted as an inverse symmetric plane 
and the residual from it in the 3D space of variables (K, L, Y) (Mizuno et al. 2012; 
Ishikawa et al. 2013, 2014). Here, we observed the quasi-inverse symmetry in the 
joint probability density function (PDF) PKLY (K, L, Y) under variable exchange: 
Y ↔ aK�L� , which is deeply related to the power-law distribution in the large-scale 
range of three variables (K, L, Y) and the log-normal distribution in the mid-scale 
range (Gibrat 1932; Sutton 1997). Importantly, the observed fact that each variable 
(K, L, Y) of the production function follows a power-law distribution is uniquely 
concluded from the form of the Cobb–Douglas production function. In previous 
studies, however, the validation of the above analytical arguments with empirical 
data was indirect. We have not confirmed whether our quasi-inverse symmetric 
plane is consistent with the Cobb–Douglas production function, which is treated in 
economics. The possibility that capital share (�) and labor share (�) are different 
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between the quasi-inverse symmetric plane and the multiple regression plane cannot 
be denied.

In this study, we directly observed a Cobb–Douglas symmetric plane using the 
index of surface openness, which is used in geography, and successfully identified 
it. Based on this observation, we measured the capital share (capital elasticity) 
and labor share (labor elasticity), compared our results with the results of multiple 
regression analysis used in economics, and confirmed consistent agreement in seven 
countries: Japan, Germany, France, Spain, Italy, the UK, and The Netherlands. Thus, 
we showed that the Cobb–Douglas production function can be clearly captured in 
empirical data as a geometric entity with a quasi-inverse symmetry of variables. 
Our previous research was limited to indirect observation of the power-law region of 
the variables, but this current research is characterized by direct observation of the 
Cobb–Douglas symmetric plane in the whole region other than the power-law one. 
Based on the above discussion, we theoretically clarified why the Cobb–Douglas 
production function is better fitted to empirical data in economics.

The rest of this paper is structured as follows. Section 2 describes the data that 
we used in our analysis. Section 3 briefly reviews our previous work. In Sect. 4, we 
explain the method to measure the Cobb–Douglas symmetric plane using an index 
called surface openness. In Sect. 5, we identify the Cobb–Douglas symmetric plane 
by identifying a ridge in Sect. 4’s analytical preparation and measuring the capital 
share (capital elasticity) and labor share (labor elasticity). In addition, we measure 
the capital share (capital elasticity) and labor share (labor elasticity) by multiple 
regression analysis and confirm that both shares are consistent in seven countries: 
Japan, Germany, France, Spain, Italy, the UK, and The Netherlands. Finally, in 
Sect. 6, we summarize the main points of this paper and present future perspectives.

2 � Analysis data

We used the 2016 version of the ORBIS database provided by Bureau van Dijk 
(2020). It is the world’s largest corporate financial database with approximately 
200 million listed and unlisted firms collected worldwide from more than 120 
local credit bureaus and information vendors, including from Asia, the Americas, 
Europe, the Middle East, and Africa. This database is characterized not only by the 
huge amount of data but also by the fact that its data are arranged in a standardized 
format and can be compared internationally. It includes the corporate financial data 
for 1,831,481 firms in Japan (JP), 3,458,922 firms in Italy (IT), 1,953,140 firms in 
France (FR), 1,204,584 firms in Germany (DE), 5,070,698 firms in the UK (GB), 
1,  604,  553 firms in Spain (ES), and 3,213,808 firms in The Netherlands (NL). 
This study focuses on firms in these countries that have sufficient data for statistical 
analysis. Although the number of firms collected in the US is sufficient, we did not 
include it in this analysis because of an unnatural bias that may be attributable to 
the method of data collection by local credit bureaus or information vendors. Since 
there are about 1–2 million active firms in Japan (Statistics Bureau 2020), the data 
analyzed here are highly comprehensive. This situation is probably the same in other 
countries.
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To make the most of the features of this database, we use sales as Y, assets 
as K, and number of employees as L. When economists consider a production 
function, they generally use Y for added value, K for fixed assets in manufacturing, 
K for liquid assets in non-manufacturing, and L for total labor hours or wages. On 
average, however, only around 1/10 of the firms in our database have detailed data 
to calculate added value, etc. If we use the same amount as economists, we lose 
the completeness of the data, and have to filter out firms that have detailed data to 
calculate value added, etc. What is most important in this study is that K, L, and Y 
follow power-law distributions in the large-scale ranges. This property is common 
to both the (K, L, Y) used in economics and the simple (K, L, Y) we use (Aoyama 
et al. 2008). If the argument of directly observing a quasi-inversion symmetric plane 
is self-consistent, either quantity may be used. Therefore, to ensure a statistical 
advantage with a sufficient amount of data, this study will proceed with the analysis 
using the quantities mentioned above.

3 � Previous research

Such variables as sales (Y) , assets (K) , and number of employees (L) , all of which 
represent a firm’s size, follow a power-law distribution in the large-scale range 
(Pareto 1897; Newman 2005; Clauset et al. 2009):

Here, P is a PDF, and power-law exponent � is also called a Pareto’s index.
 Fujiwara et al. (2003, 2004) showed that these power distributions (1)–(3) can 

be derived from the inverse symmetry observed between the variables of 1 year 
(
x1
)
 

and those of the next 
(
x2
)
:

and Gibrat’s law, where growth rate distribution Q
(
R|x1

)
 conditioned by first-year 

size 
(
x1
)
 does not depend on the first-year variables (Gibrat 1932; Sutton 1997):

Here, x1 represents (K, L, Y) in 1 year, and x2 represents (K, L, Y) in the next year. P12 
is the joint PDF, and R = x2∕x1 is the growth rate. In inversion symmetry, note that 
joint PDF P12 has the same shape on both sides of Eq. (4) under the permutation of 
variables x1 ↔ x2 . The derivation by Fujiwara et al. is effective when the power-law 
index does not change. This derivation is described in Appendix 1.

(1)PK(K) ∝ K−�K−1,

(2)PL(L) ∝ L−�L−1,

(3)PY (Y) ∝ Y−�Y−1.

(4)P12

(
x1, x2

)
dx1dx2 = P12

(
x2, x1

)
dx2dx1,

(5)Q
(
R|x1

)
= Q(R).
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We extended the argument by introducing an extended growth rate of R = x2∕ax
�
1
 

in quasi-inverse symmetry under the permutation of ax�
1
↔ x2 variables:

We also showed that the power-law distribution can be derived from quasi-inverse 
symmetry (6) and Gibrat’s law (5) even when the power-law index varies quasi-
statically. Here, a and � are parameters of quasi-inverse symmetry and are related 
with power exponents 

(
�1,�2

)
 of variable 

(
x1, x2

)
 as follows:

This derivation is described in Appendix 2.
First, we confirmed this relation by the temporal change of power-law index � , 

which can be observed in Japanese land prices (Ishikawa 2006, 2009). We then 
showed that this quasi-inverse symmetry can be similarly observed among such 
different firm size variables as assets, number of employees, and sales (K, L, Y) 
at the same time and confirmed the relation (7) among their power-law indices 
(Mizuno et al. 2012; Ishikawa et al. 2013, 2014). In this case, we consider 

(
x1, x2

)
 to 

be (K, L), (K, Y) , and (L, Y).
We extended the concept of quasi-inverse symmetry and the growth rate to three 

simultaneous variables (K, L, Y) and introduced growth rate R = Y∕aK�L� into a 
system with quasi-inverse symmetry under the variable substitution of aK�L� ↔ Y:

The quasi-inverse symmetry (8) of the three variables and Gibrat’s law of the three 
variables:

lead to power-law distributions of K, L, and Y, as in the case of two variables. The 
derivation of this conclusion is described below.

Note here that from the definition of the three-variable growth rate, if total factor 
productivity A is residual aR from the following quasi-inverse symmetric plane:

then we can interpret the Cobb–Douglas production function as the quasi-inverse 
symmetry in the three-variable space (K, L, Y) . In the course of its derivation, we 
discussed the following in our previous work (Ishikawa et al. 2014).

(6)P12

(
x1, x2

)
dx1dx2 = P12

((x2
a

) 1

�

, ax�
1

)
d

((x2
a

) 1

�

)
d
(
ax�

1

)
.

(7)� =
�1

�2

.

(8)

PKLY (K, L, Y)dKdLdY

= PKLY

((
Y

aL�

) 1

�

,
(

Y

aK�

) 1

�

, aK�L�

)

d

((
Y

aL�

) 1

�

)
d

((
Y

aK�

) 1

�

)
d
(
aK�L�

)
.

(9)Q(R|K, L) = Q(R)

(10)log Y = � logK + � logL + log a,
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Three-variable quasi-inverse symmetry (8) is rewritten in three variables (K, L,R) 
as follows:

This idea can be expressed as follows:

From the definition of a conditional PDF, Q(R|K, L) = PKLR(K, L,R)∕PKL(K, L) , this 
equation can be modified:

In the modification from the 2nd to the 3rd equation, we used a three-variable 
Gibrat’s law (9). Since the right-hand side of Eq. (13) is only a function of R, if we 
express it as G(R) , the expression (13) can be written:

Expanding the right-hand side of Eq.  (14) by R = 1 + 𝜖 (0 < 𝜖 ≪ 1) , the zeroth 
order of � is an obvious expression, and the first order becomes the following 
differential equation:

Here, G�

(⋅) represents the differential of G(⋅) by R. Also, no more useful information 
is available than the 2nd-order of �.

The two variables (K, L) are strongly correlated and are not independent. 
Therefore, the differential equation (15) cannot be solved as it is. In our previous 
study (Ishikawa et al. 2014), we converted variables (K, L) into normalized variables 
(k, l):

and rotated them as −�∕4 and finally obtained orthogonal independent variables (
z1, z2

)
:

(11)
PKLR(K, L,R)dKdLdR

= PKLR

(
R

1

� K,R
1

� L,R−1
)
d
(
R

1

� K
)
d
(
R

1

� L
)
d(R−1).

(12)PKLR(K, L,R) = R
1

�
+

1

�
−2
PKLR

(
R

1

� K,R
1

� L,R−1
)
.

(13)

PKL(K, L)

PKL

(
R

1

� K,R
1

� L
) =R

1

�
+

1

�
−2
Q
(
R−1|R

1

� K,R
1

� L
)

Q(R|K, L)

=R
1

�
+

1

�
−2Q

(
R−1

)

Q(R)
.

(14)PKL(K, L) = G(R)PKL

(
R

1

� K,R
1

� L
)
.

(15)
[
G

�

(1) +
K

�

�

�K
+

L

�

�

�L

]
PKL(K, L) = 0.

(16)log k =
logK − mK

�K
, log l =

log L − mL

�L
,
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Here, 
(
mK ,mL

)
 and 

(
�K , �L

)
 are the mean and standard deviation of (logK, log L) 

in the power-law region of variables (K, L) . In Eq. (16), the distribution’s width is 
normalized by dividing it by 

(
�K , �L

)
 after subtracting the average 

(
mK ,mL

)
 from 

(logK, log L) . In our previous study (Ishikawa et al. 2014), we numerically showed 
that this operation yields orthogonal independent variables 

(
z1, z2

)
 . We rewrote 

the differential equation (15) with the independent variables 
(
z1, z2

)
 and solved it 

to analytically show that variable 
(
z1, z2

)
 obeys the power-law distribution and 

numerically confirmed the result in empirical data.
Finally, we analytically derived the distribution function followed by variable 

(K, L) by the above inverse transformation and confirmed it numerically. This 
discussion is based on the fact that the Cobb–Douglas production function is a 
quasi-inverse symmetric plane in (K, L, Y) space. Therefore, the above numerical 
consistency indirectly confirms our interpretation of the Cobb–Douglas production 
function.

4 � Analytical preparation for direct observation of the Cobb–Douglas 
quasi‑inverse symmetric plane

In the previous section, variables (K, L) were normalized by dividing them by 
logarithmic standard deviations, which are indicators of the width of the distribution 
in the large-scale range where the distribution follows the power law. On the 
other hand, the width of the distribution of the variables following the power-law 
distribution of exponent � is also given as 1∕� on a logarithmic scale. Thus, the 
normalization of (logK, log L) divided by distribution width 

(
�K , �L

)
 in Eq. (16) is 

equivalent to the operation of dividing by 
(
1∕�K , 1∕�L

)
 or multiplying by 

(
�K ,�L

)
:

Here, the origin is shifted by subtracting the logarithm of the power-law ranges’ 
upper limits (logKup, log Lup).

We first consider the quasi-inverse symmetry of two variables (K, L) . Because 
the normalized widths of the k and l distributions are equal, a two-variable quasi-
inverse symmetric line, logL = � logK + log a (where x1 = K, x2 = L ), is converted 
to a slope 1 inverse symmetric line: log l = log k + log a� . This is consistent with 
Eq. (7) where the relationship between slope � of the quasi-inverse symmetric line 
and exponents �K and �L is given:

Here �1 = �K , and �2 = �L.

(17)log z1 =
1
√
2
(log k + log l), log z2 =

1
√
2
(− log k + log l).

(18)log k = �K

(
logK − logKup

)
, log l = �L

(
logL − log Lup

)
.

(19)
1

�L

= �
1

�K

.
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Extending this concept to three variables (K, L, Y) , the following relationship is 
established between the capital and labor share ( � , � ) of the three-variable quasi-
inverse symmetric plane (10) and the power-law exponents 

(
�K ,�L,�Y

)
:

This is an extension of the constant returns to scale:

Using the following normalized notation:

Equation (20) is simply expressed as:

In Fig. 1, we compared the accuracy of Eqs. (21) and (23) using �M , �M , �′
M , and 

�′M evaluated by multiple regression analysis used in economics in Japanese firms 
from 2010 to 2014. The database that we used was created using a collection method 
that reduced the number of firms in the past. Therefore, Fig. 1 shows data from 2014 
to the previous five years. Data for 2015 were not included, because they were still 
being collected when we obtained the database. From Fig. 1, we can confirm that the 
accuracy of the constant returns to scale, normalized by the power-law index (23), 

(20)
1

�Y

= �
1

�K

+ �
1

�L

.

(21)1 = � + �.

(22)�� = �
�Y

�K

, �� = �
�Y

�L

.

(23)1 = �� + ��.

2014 2013 2012 2011 2010

0.9

1.0

1.1

1.2

1.3

Year

α+β
α’+β’

Fig. 1   Comparison of constant returns to scale ( � + � = 1 ) of Japanese firms from 2014 to 2000 and 
standardized one ( �� + �� = 1)
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and is higher than the conventional one (21). Results similar to those of Japanese 
firms can be confirmed for firms in the countries that we analyzed.

More interestingly, the normalized capital share (capital elasticity) �′ and the labor 
share (labor elasticity) �′ can be directly estimated by observing the Cobb–Douglas 
symmetric plane, as described below.

In the previous section’s discussion, we rewrote the quasi-inverse symmetry of the 
(K, L, Y) space to the quasi-inverse one of the (K, L,R) space and limited the discussion 
to the power-law region of (K, L) where Gibrat’s law holds, and derived a differential 
equation for (K, L) by expanding growth rate R around “1”. In this discussion, we only 
investigate the neighborhood of the quasi-inverse symmetric plane. To directly observe 
the Cobb–Douglas symmetric plane, the entire space of the three variables must be 
observed without adopting this method.

Thus, in addition to Eq. (18), we consider the standardization of Y:

For the two variables (K, L) , the direction vector of the quasi-inverse symmetric axis 
is 
(
1∕�K , 1∕�L

)
 , and the normalized direction vector is (1, 1) in two-variable space 

(k, l). Using Eq. (17), we rotated it to be 
�√

2, 0
�
 , resulting in independent variables 

(
z1, z2

)
 . For the three variables (K, L, Y) , the densest direction vector in the quasi-

inverse symmetric plane is 
(
1∕�K , 1∕�L, 1∕�Y

)
 . The rotation of normalized direction 

vector (1, 1, 1) in three-variable space (k, l, y) to 
�√

3, 0, 0
�
 is given by:

This rotation caused the densest directional vector in the Cobb–Douglas quasi-
inverse symmetric plane to overlap the z1 axis, as shown in Fig. 2.

To align a Cobb–Douglas quasi-inverse symmetric plane with the w3 = Const. 
plane, we need to rotate it further about the z1 axis. The rotation, expressed using 
parameter � , is as follows (see Fig. 3):

(24)log y = �Y (logY − log Yup).

(25)log z1 =
1
√
3
(log k + log l + log y),

(26)log z2 =
1
√
2
(− log k + log l),

(27)log z3 =
1
√
6
(− log k − log l + 2 log y).

(28)logw2 =
1

√
�2 + 1

�
log z2 + � log z3

�
,

(29)logw3 =
1

√
�2 + 1

�
−� log z2 + log z3

�
.
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Fig. 2   The rotation (25)–(27) causes the densest directional vector in the Cobb–Douglas quasi-inverse 
symmetric plane to overlap the z1-axis

Fig. 3   The rotation (28), (29) aligns a Cobb–Douglas quasi-inverse symmetric plane with the w3 = 
Const. plane. For clarity, the figure is written as Const. = 0
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Due to the above rotations in Eqs.  (25)–(29), the Cobb–Douglas quasi-inverse 
symmetric plane overlaps the w3 = Const. plane. Here, if the w3 = Const. plane 
is expressed by the quasi-inverse symmetric plane in the (k, l, y) space by inverse 
transformation, it can be expressed:

From the above equation, using parameter � that represents the slope of the 
Cobb–Douglas quasi-inverse symmetric plane, normalized capital share (capital 
elasticity) �′ and labor share (labor elasticity) �′ can be expressed:

5 � Direct observation of the Cobb–Douglas quasi‑inverse symmetric 
plane

In the previous section, we analytically discussed the following procedures to 
simplify observing the Cobb–Douglas quasi-inverse symmetric plane in three-
variable space (K, L, Y) . First, we converted three variables (K, L, Y) into variables 
(k, l, y) , which are normalized, such as the values of the power-law exponents in the 
power-law region to be “1”. Next, we consider a rotation (25)–(27) that converts the 
densest direction vector (1, 1, 1) in a Cobb–Douglas quasi-inverse symmetric plane 
into a vector of only the first component and obtain variables 

(
z1, z2, z3

)
.

If 3D data are projected onto the z1z2 plane in the z3 direction, then the densest 
direction vector should overlap the z1 axis. If 3D data are projected onto the z1z3 
plane in the z2 direction, the densest direction vector should still overlap the z1 axis. 
When 3D data are then projected onto the z2z3 plane in the z1 direction, the densest 
direction vector is observed, and its slope is given as � . In this section, we first 
confirm the above analytical discussions by directly observing empirical data. In 
direct observation, identifying the densest directional vector in a 2D plane is critical. 
We observed a dense directional vector as a ridge using the geographical index of 
surface openness, as in previous studies (Ishikawa et al. 2014). The method is briefly 
described below.

z1 and z2 data points are scattered in the z1z2-plane. For example, Fig. 4 is a scatter 
plot of Japanese firms in 2014. To clearly comprehend the density, we divided it 
into logarithmically equal-sized cells and expressed the amount of data points in the 
cells by different shades. For example, Fig. 5 is a diagram of Japanese firms in 2014 
created in this way. The logarithm of a cell’s density is its height. Then, as stated 
above, the ridge must be observed horizontally in the z1z2 plane. As the steepest-
ascent line in the profit space, a ridge was previously discussed (Souma 2007; 
Aoyama et al. 2008). In our previous study (Ishikawa et al. 2014), we determined 
the cells that constitute the ridge using the surface openness defined as follows 
(Yokoyama et al. 1999, 2002; Prima et al. 2006).

(30)log y =
1 −

√
3�

2
log k +

1 +
√
3�

2
log l + Const.

(31)�� =
1 −

√
3�

2
, �� =

1 +
√
3�

2
.



90	 Evolutionary and Institutional Economics Review (2021) 18:79–102

1 3

Figure 6 depicts the grid linked by the center points of the cells. From grid point 
A in Fig.  6, we counterclockwisely represent each azimuth as D = 1, 2,… , 8 . As 
shown in Fig. 7, the minimum zenith and nadir angles at grid point A within distance 
L in azimuth D are represented by D�L and D�L . Positive openness �L is defined 
by the mean value of D�L along the eight azimuths, and negative openness �L is 
the corresponding mean of D�L . The surface openness is defined by the following 
difference:

The surface openness takes a negative value at the depressions and the valleys, zero 
at the level surface, the saddle point, and the uniform slope, and positive values at 
the ridge (see Fig. 8) and the summit (see Fig. 9). The shading in Fig. 5 shows only 
absolutely high and low points. However, using the surface openness, points that 
are relatively higher than the circumference (a ridge or a summit) or points that 
are relatively lower than the circumference (a valley or a depression) can be easily 
extracted. This is the advantage of the surface openness.

In this analysis, by setting L = 5 , we estimate the surface openness for each cell 
and extract the cells of the openness that exceed 0.9, the value of which appropriately 
determines the ridge in this data set. In Fig. 5, the cells are expressed by black dots. 
As expected, the series of densest cells observed as a ridge overlap the z1 axis.

(32)�L − �L =
1

8

8∑

D=1

D�L −
1

8

8∑

D=1

D�L.

Fig. 4   Scatter plot of 
(
z1, z2

)
 with Japanese firm data for 2014 projected on z1z2-plane in z3 direction
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Fig. 5   Data points in scatter plot of Fig. 2 are placed in cells separated at equal logarithmic intervals, and 
amount of data in each cell is represented by shading. In addition, cell’s center, judged to form a ridge by 
surface openness, is indicated by black circles

Fig. 6   Grid linked by center points of cells: From a grid point, we counterclockwisely represent each 
azimuth as D = 1, 2,… , 8
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A scatter plot in which 3D data are projected onto the z1z3 plane in the z2 direction 
is similarly processed to obtain Fig.  10, which also shows that, as expected, the  
series of densest cells observed as a ridge overlap the z1-axis.

A scatter plot in which 3D data are projected onto the z2z3 plane in the z1 direction 
is similarly processed to obtain Fig.  11, which shows that the ridge, which is 
a series of the densest cells, is located from the upper right to the lower left. The 
angle between this ridge and the z2 axis is � , which we measured, assuming that 
a ridge is a straight line that regresses the center of cells with a surface openness 
greater than 0.9, which was appropriately determined to be a ridge cell. For 
example, for Japanese firms in 2014, � = 0.39 ± 0.04 . In this case, using Eq. (31), 
we can estimate ��

R = 0.16 ± 0.03 and ��R = 0.84 ± 0.16 . On the other hand, with 
the same data and multiple regression analysis, we also estimate ��

M = 0.16 ± 0.0 
and ��M = 0.84 ± 0.0 ; both values are in good agreement. Figure  12 shows 

Fig. 7   Dots represent height of cells within distance L in azimuth D. From grid point A within distance 
L, we estimate zenith angles and denote minimum as D�L . Similarly, minimum nadir angle is expressed 
by D�L

Fig. 8   A schematic illustration 
of a ridge. In the ridge indicated 
by the thick lines, the surface 
openness is positive, because the 
surrounding area is often lower 
than the height of the ridge
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measurements taken by Japanese firms from 2014 to 2010 and by firms in Germany, 
France, Spain, Italy, and The Netherlands during the 5-year period for which data 
were available (from 2013 to 2009). Among the measurements, those in the year 
with the largest number of firms in each country are plotted in Fig. 13.

From Figs. 12 and 13, we confirmed that capital elasticity �R′ , measured by the 
ridge specified by the surface openness and capital elasticity �M ′ measured by the 
multiple regression analysis used in economics, are in good agreement with the 
5-year firm data of the seven countries.

6 � Conclusion and discussion

Our previous study argued that the Cobb–Douglas production function, which 
is the core concept of economics, uniquely derived power-law distributions of its 
variables. In this study, we show that the Cobb–Douglas production function can 
be directly observed using empirical data. If firms’ assets, labor, and production are 
expressed as a set of points in a 3D space, the Cobb–Douglas production function 
can be interpreted as a quasi-inverse symmetric plane in 3D space and a residual 
from it. From this viewpoint, we rotated the Cobb–Douglas quasi-inverse symmetric 
plane in 3D space to simplify observation and projected the data in 3D space onto 
the 2D plane. With the geographic index of surface openness, we identified the 
densest axis in the plane as the ridge.

Fig. 9   A schematic illustration of a summit. At the summit, the surface openness is positive, because all 
the surroundings are lower than the summit
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Identifying this axis is difficult when the dispersion is large in the 2D plane. 
For example, by dividing the data on a 2D plane into equally spaced bins in a 
certain direction and calculating the average value or the logarithmic average 
value in the vertical direction for each bin, we can combine them and find the 
axis. However, since the average value or the logarithmic average value varies 
depending on the selection method in a certain direction, the axis obtained by 
combining the average value or the logarithmic average value is not fixed to one 
axis. What is not affected by such arbitrariness is the advantage of the index of 
surface openness adopted in this paper. Using it, we successfully and directly 
observed the Cobb–Douglas production function as a quasi-inverse symmetric 
plane.

The approach proposed by Hildenbrnad (1981) and developed by Dosi 
et  al. (2016) shares our arguments and perspectives on firms’ productivity, but 
uses a very different approach to measuring it. They theoretically showed that 
measurement of productivity is possible without depending on the shape of the 
production function by the volume of a polyhedron composed of points in 3D 
space and the angle formed with the axis by the main diagonal, and confirmed 
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Fig. 10   Japanese firms’ data for 2014 in database are projected on z1z3 plane in z2-direction. 
(
z1, z3

)
 data 

points are placed in logarithmically evenly spaced cells, and amount of data is represented by shading. In 
addition, cell’s center, judged to form a ridge by surface openness, is indicated by black circles
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it by actual data. Their approach to measuring productivity is very innovative. 
The advantage of our study, on the other hand, is that it geometrically identifies 
the form of the production function that they avoided. This makes it possible to 
discuss specifically how production relates to assets and labor as follows.

Interestingly, the capital and labor elasticities of the Cobb–Douglas production 
function can be expressed using the slope of a quasi-inverse symmetric plane in 
3D space. By comparing the measured values of the capital elasticity observed 
in this way with those by the multiple regression analysis conventionally used in 
economics, we showed that the accuracy of these measured values agrees with the 
accuracy using the data for 5 years of seven countries with sufficient data quantity, 
including Japan.

It is not obvious that the planes of the multiple regression analysis and the 
quasi-inverse symmetry become identical. If all the data in the 3D space exist on 
a plane, they coincide. In practice, however, the data are widely dispersed. If they 
are spread vertically about the plane based on a log-normal distribution and are not 
concentrated on the symmetry plane, clearly identifying the ridge is difficult where 
the data are concentrated, even if with quasi-inverse symmetry. This paper clarified 
that such a ridge exists in empirical data using the index of surface openness in 2D 
distribution in which 3D distribution is projected.

The fact that these observations are consistent in the seven countries with 
sufficient data means that the 3D space composed of capital, labor, and production 
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Fig. 11   Japanese firms’ data for 2014 in database are projected on z2z3 plane in z1-direction. 
(
z2, z3

)
 data 

points are placed in logarithmically evenly spaced cells, and data amount is represented by shading. In 
addition, cell’s center, which is judged to form a ridge by surface openness, is indicated by black circles
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has a ridge where the data are concentrated as a distinct entity. This idea can 
probably be applied to countries other than the seven countries surveyed in this 
paper. Therefore, if sufficient data exist, the results in this paper can be reproduced. 
As a result, we clarified from empirical data that the Cobb–Douglas production 
function, which has been discussed in economics, can be interpreted as the quasi-
inverse symmetry of three variables and the residual from it. This study theoretically 
clarified why the Cobb–Douglas production function fits the empirical data better 
than a simple comparison of candidate production functions due to the goodness of 
fit of the data.

In the process, we also carried out the following new consideration on the 
constant returns to scale, which is a feature of the Cobb–Douglas production 
function. In economics, when the variables of the production function (K and L 
in this case) are multiplied by � and production (Y) is also multiplied by � such 
as � + � = 1 , the production function is called the constant returns to scale. The 
increasing returns if it exceeds � times such as 𝛼 + 𝛽 > 1 , and the diminishing 
returns if it is less than � times, such as 𝛼 + 𝛽 < 1 . These three cases of returns 
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Fig. 12   Normalized capital elasticity ( �M ′ ), calculated by multiple regression analysis for firms of  
each country in database of Japan, Italy, the UK, and The Netherlands from 2010 to 2014 and France,  
Germany, and Spain from 2009 to 2013, is compared with normalized capital elasticity ( �R′ ) calculated  
from ridge judged by surface openness
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to scale are easy to understand by considering the following simple examples. 
When the number of factories is multiplied by � , the assets and labor of a firm 
are each multiplied by � if the increased factories are the same size. The case 
where there is no change in the production efficiency and the production quantity 
becomes � times is called the constant returns to scale; the case where the 
production efficiency improves and the production quantity becomes larger than 
� times is called the increasing returns; the case where the production efficiency 
deteriorates and the production quantity becomes smaller than � times is called 
the diminishing returns. Economic arguments often assume constant returns to 
scale in the production function, and in fact, this is often observed approximately 
in various empirical data analyses.

These observations indicate that, on average, a constant return to scale is 
achieved in firm production. In this study, we showed by direct observation that 
the Cobb–Douglas production function can be understood as a quasi-inverse 
symmetric plane in the space created by three variables (K, L, Y) and the residual 
from it. We concluded that the constant returns to scale is strictly satisfied with 
�′ and �′ normalized by the power-law indices. Since the values of power-law 
exponents �K , �L , and �Y are all close to “1”, the constant returns to scale was 
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Fig. 13   Comparison between �M ′ and �R′ in Fig. 8 for Japan, Italy, the UK, and The Netherlands in 2014 
and France, Germany, and Spain in 2013
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approximately observed even in the non-standardized capital share (capital 
elasticity) � and labor share (labor elasticity) �.

In this study, as in our previous study, we did not limit the data area in 
which the Cobb–Douglas production function was observed to the large-scale 
region where the power law holds. As our previous study showed, there is also 
quasi-inverse symmetry in the mid-scale region. The collapse of the power-law 
distribution observed in the large-scale region reflects that Gibrat’s law does 
not hold in the mid-scale region. This concept is independent of quasi-inverse 
symmetry. On the other hand, serious questions remain about the completeness 
of the data in the small scale. The current study did not exclude small data. If 
it can be implemented in a reliable way, the numerical consistency between our 
proposed method and multiple regression analysis may be higher. This is a future 
issue.

In our method, a firm’s assets (K),  number of employees (L),  and production (Y) 
are regarded as one point in three-variable space (K, L, Y),   and we focus on how 
those several million groups are distributed. This is an approach to microfoundations 
that attempts to derive the macroscopic properties of their distribution from the 
microscopic objects of individual points. This is an important issue that has been 
studied in economics for many years. Finally, we describe the relationship between 
our discussion and Aoki et  al., a pioneering study as a physical approach to this 
problem.

Aoki and Yoshikawa hypothesized a multisystem in which the total number of 
employees and the total amount of production of a company are fixed, and found 
that the randomness (entropy) is greatest in a society in equilibrium. In that case, 
they used physics methodologies to claim that the average number of employees in 
firms follows the Boltzmann distribution (Aoki and Yoshikawa 2007). Aoyama et al. 
noticed that there is actually a large fluctuation in the total amount of production and 
incorporated the effect by superimposing the Boltzmann distribution. As a result, 
it was theoretically shown that labor productivity of (Y/L) follows the power-law 
distribution in the large-scale range and the Boltzmann distribution with negative 
temperature in the middle- and low-scale ranges, and this was confirmed by the 
empirical data (Aoyama et  al. 2009, 2009, 2010, 2015, 2017; Souma et  al. 2009; 
Iyetomi 2012).

This can be described geometrically as follows. First, consider the 2D plane 
of the logarithmic axes of labor productivity (Y/L) on the horizontal axis and 
number of employees (L) on the vertical axis. The horizontal axis is divided into 
logarithmically equal-sized bins, and the vertical average of the data in the bins is 
plotted. The distribution followed by these points can be described by superposition 
of the Boltzmann distribution.

In this paper, we show the following. Total factor productivity (Y∕K�L�) is divided 
into logarithmically equal-sized bins, and the distribution of the number of data in the 
bins is observed. We can determine (�, �, a) , so that the distribution is symmetric with 
respect to a constant a. Thus, our observations differ from those of Aoki et al. To unite 
the two, we need to extend the discussion of Aoyama et al. to total factor productivity, 
including capital (K) . If this can be carried out, it will be possible to discuss the 
distribution of productivity that firms’ capital as well as labor, and to analyze firms in 
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various industries in terms of both labor and capital. This is a major challenge for the 
future.
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Appendix 1

Here, we show that under the inverse symmetry (4), according to Fujiwara et al. (2003, 
2004), the power laws of x1 and x2 with the same Pareto index are derived from Gibrat’s 
law (5). Using growth rate R = x2∕x1 , (4) is rewritten by variables x1,R as follows:

Using conditional PDF Q(R|x1) = P12(x1,R)∕P(x1) and Gibrat’s law (5), this can be 
reduced:

Since the system has inverse symmetry, Gibrat’s law (5) is also established 
under the inverse transformation of x1 ↔ Rx1 (= x2) . The right side of Eq.  (34) 
is only a function of R, and so, we signify it by G(R) and expand Eq.  (34) by 
R = 1 + 𝜖 (𝜖 ≪ 1) in � . The zeroth order term of � is trivial, and the first-order term 
yields the following differential equation:

Here, G�(⋅) means the R differentiation of G(⋅) . No more useful information can be 
obtained from the second-order and higher order terms of � . The solution to this 
equation is uniquely given:

(33)P12(x1,R) = R−1 P12(Rx1,R
−1).

(34)
P(x1)

P(Rx1)
=

1

R

Q(R−1|Rx1)
Q(R|x1)

=
1

R

Q(R−1)

Q(R)
.

(35)G�(1)P(x1) + x1
d

dx1
P(x1) = 0.

(36)P(x1) ∝ x1
−G�(1).
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This solution satisfies Eq.  (34) even if R is not near R = 1 , when 
Q(R) = R−G�(1)−1 Q(R) holds (this is called a reflection law). Reflection law has  
been confirmed with various actual data (Fujiwara et  al. 2004). Finally, if we set 
G�(1) = � + 1 , Eq.  (36) matches the power laws (1), (2), and (3) described by 
variables at 1 year x1 . Since this system has symmetry x1 ↔ x2 , the power laws holds 
for the same Pareto index � even at time 2.

Appendix 2

Here, we show that according to Ishikawa (2006, 2009), Mizuno et al. (2012), and 
Ishikawa et al. (2013, 2014), under the quasi-inverse symmetry (6), the power laws 
of x1 and x2 with different Pareto indices are derived from Gibrat’s law (5). Using 
extended growth rate R = xT+1∕axT

� , (6) is rewritten by variables x1,R as follows:

Equation (37) is reduced to Eq.  (33) at � = 1 . Using the conditional PDF Q(R|xT ) 
and Gibrat’s law (5), this is reduced to:

Here, we assume that Gibrat’s law (5) holds under a transformation: 
x1 ↔ R1∕�x1 (= (x2∕a)

1∕�) . This is valid in a system that has quasi-inverse symmetry. 
Since the last term in Eq. (38) is only a function of R, we signify it by G�(R) and 
expand Eq. (38) to R near 1 as R = 1 + 𝜖 (𝜖 ≪ 1) . The zeroth order of � is trivial, 
and the first-order term yields the following differential equation:

Here, G�
�(⋅) denotes the R differentiation of G�(⋅) . No more useful information can 

be obtained from the second-order and higher order terms of � . The solution to this 
equation is uniquely given:

Similar to Appendix 1, this solution satisfies Eq. (38) even if R is not near R = 1 , 
when Q(R) = R−G�

�(1)−1 Q(R) holds.
Next, in quasi-static system (x1, x2) , we identify distribution P(x2) . Actually, we 

should write Px1
(x1) , Px2

(x2) ; however, because function forms are complicated, they 
are collectively written as P. From Eq. (40) and P(x1)dx1 = P(x2)dx2 , P(x2) can be 
expressed:

(37)P12(x1,R) = R1∕�−2 P12(R
1∕�x1,R

−1).

(38)
P(x1)

P(R1∕�x1)
= R1∕�−2

Q(R−1|R1∕�x1)

Q(R|x1)
= R1∕�−2Q(R

−1)

Q(R)
.

(39)G�
�(1)P(x1) +

x1

�

d

dx1
P(x1) = 0.

(40)P(x1) ∝ x1
−�G�

�(1).

(41)P(x2) = P(x1)
dx1

dx2
∝ x2

−G�
�(1)+1∕�−1.
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Here, we signify Pareto indices at year 1, 2 by �1 , �2 and represent P(x1) , P(x2) as 
follows:

Comparing Eqs.  (40) and (41) to Eq.  (42), we obtain �G�
�(1) = �1 + 1 , 

G�
�(1) − 1∕� + 1 = �2 + 1 and conclude the relation among �1 , �2 , and � as follows:
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