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Abstract Using an Ising-based model extended to simulate multiple stock time

series, we perform a large-scale simulation for a financial system with 100 stocks.

We find that the financial system shows fat-tailed return distributions and the system

volatility level measured as an average of absolute-returns changes over time. We

investigate the dynamical properties of cross-correlation matrices among stocks and

find that the eigenvalue distributions of the cross-correlation matrices deviate from

those of the random matrix theory. It is found that the cumulative risk fraction

(CRF) constructed from the largest eigenvalues changes at periods where the

volatility level is high. The inverse participation ratio (IPR) and its higher-power

version, IPR6, also exhibit the changes at the same high volatility periods. There-

fore, the CRF, IPR, and IPR6 are expected to be useful measurements to identify

abnormal states such as high-volatility periods.
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1 Introduction

Asset price returns are known to exhibit some universal properties that are now

classified as the ‘‘stylized facts,’’ see, for example, Cont (2001). The notable prop-

erties included in the stylized facts are the fat-tailed distributions of returns and

volatility clustering, which are not explained by the standard Gaussian process. A

promising explanation on the asset price dynamics is the mixture of distribution

hypothesis by Clark (1973), that is, the price return Rt is described by a Gaussian

process with time-varying volatility, Rt ¼ rt�t, where r2t and �t are the volatility and

standard normal random variable at time t, respectively. Under the mixture of

distribution hypothesis, the volatility changes according to the rate of information

arrival. Since the rate of information arrival is latent in the real markets, Clark uses

volume as a proxy of it. Empirically, the price return dynamics is examined by

checking whether Rt=rt recovers the standard normal random variable, and studies

using the realized volatility claim that the price return dynamics is consistent with

the Gaussian process with time-varying volatility (Andersen and Bollerslev 1998;

Andersen et al. 2000, 2001a, b, 2007, 2010; Takaishi 2012; Takaishi et al. 2012).

To simulate a financial market, Bornholdt proposed an Ising-based model by

including Ising spins that have either of the two states, namely ‘‘buy’’ state and ‘‘sell’’

state (Bornholdt 2001). It is shown that the model successfully captures major stylized

facts such as fat-tailed distributions and volatility clustering (Bornholdt 2001;

Yamano 2002; Kaizoji et al. 2002; Krause and Bornholdt 2013). The model was

extended to a Potts-like model where three spin states are considered, and it is

confirmed that the Potts-like model also exhibits the stylized facts (Takaishi 2005).

Further, the return dynamics of the Ising-based models were checked by testing

whether Rt=rt recovers the standard normal random variable, and it is verified that

the return dynamics is consistent with the Gaussian process with time-varying

volatility same as the real financial markets (Takaishi 2013a, 2014).

The real financial market is a complex system that includes many stocks

correlated with each other. Measuring correlations among stocks is of great

importance to investigate the stability of financial markets, and a considerable

number of studies are devoted to unveil properties of correlations among stocks

(Plerou et al. 1999; Laloux et al. 1999; Plerou et al. 2000, 2002; Utsugi et al. 2004;

Kim and Jeong 2005; Wang et al. 2011). While the original Bornholdt model

simulates only one stock, the model was extended to simulate multiple stock time

series in Takaishi (2015a, b), and simulations including up to three stocks were

done. In this study, we make a large-scale simulation that includes 100 stocks and

investigate the dynamical properties of cross-correlations among stocks. Further, we

apply the principal component analysis and measure the cumulative risk fraction to

monitor the states of the financial system. Finally, we calculate the inverse partition

function (IPR) and its higher power version and claim that they are also useful to

investigate states of the system.
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2 Multiple time series Ising model

The multiple time series Ising model has been introduced in Takaishi (2015a, b) to

simulate a financial system that includes many correlated stocks. Let us consider, a

financial market, where N stocks are traded. We assume that agents locate on sites

of an L� L square lattice and the number of agents is P ¼ L� L. Each agent has a

spin si that takes two states, either þ1 or �1, where i stands for the i-th agent. We

assign ‘‘þ1’’ to the ‘‘buy’’ state and ‘‘�1’’ to the ‘‘sell’’ state. The agents flip their

spin states probabilistically according to a local field. The local field of the i-th spin

h
ðkÞ
i ðtÞ at time t for the k-th stock is defined by

h
ðkÞ
i ðtÞ ¼

X

hi;ji
Js

ðkÞ
j ðtÞ � aðkÞsðkÞi ðtÞjMðkÞðtÞj þ

XN

j¼1

cjkM
ðjÞðtÞ; ð1Þ

where hi; ji stands for a summation over the nearest neighbor pairs, J is the nearest

neighbor coupling, and in this study, we set J ¼ 1. The first term on the right-hand

side of Eq. (1) with J[ 0 introduces the ferromagnetic effect that tends to align the

nearest neighbor spins with the same sign. This effect corresponds to the herd

behavior in financial markets, that is, the majority effect. MðkÞðtÞ is the magneti-

zation that measures an imbalance between ‘‘buy’’ and ‘‘sell’’ states, given by

MðkÞðtÞ ¼ 1
P

PP
l¼1 s

ðkÞ
l ðtÞ and the absolute value of MðkÞðtÞ, that is, jMðkÞðtÞj corre-

sponds to the magnitude of the market bubble. The second term proportional to

jMðkÞðtÞj introduces the effect that promotes a spin-flip, which corresponds to the

minority effect. The third term describes the interaction with other stocks. More

precisely, this interaction couples to the magnetization of other stocks and intro-

duces an effect of imitating the states of other stocks. The magnitude of the inter-

action is given by the interaction parameters that form a matrix clm having zero

diagonal elements, that is, cll ¼ 0. Although the parameter aðkÞ can vary depending

on the stock, in this study, we assume that all aðkÞ have the same value, that is,

aðkÞ � a. As in the Bornholdt model, the states of spins are updated according to the

following probability p:

s
ðkÞ
i ðt þ 1Þ ¼ þ 1 p ¼ 1=ð1þ expð�2bhðkÞi ðtÞÞÞ;
s
ðkÞ
i ðt þ 1Þ ¼ � 1 1� p:

ð2Þ

3 Simulation study

In previous studies (Takaishi 2015a, b), the model for a financial system with up to 3

stocks was simulated. In this study, we make a large-scale simulation for the model.

Specifically, we consider a financial system trading 100 stocks. Each stock is traded

by 14400 agents on a 120� 120 lattice. Thus, in total, 1440000 agents are

introduced in a simulation.
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We perform simulations for two parameter sets. One is set to ðb; aÞ ¼ ð2:0; 35Þ and
all elements of the interaction matrix c are set to zero, that is, in this case, all 100

stocks are simulated independently and no correlation is introduced among stocks.

This parameter set is denoted by ‘‘Set A.’’ The other is set to ðb; aÞ ¼ ð2:0; 55Þ and
twenty percent of off-diagonal elements in c are set to non-zero values drawn from

Gaussian random numbers with an average 0.05 and variance 0.1. The remaining

elements are set to zero. Then, the other parameter set is denoted by ‘‘Set B.’’

Here, note that for the 2-dimensional Ising model, the critical temperature Tc ¼
1=b is 2.269. Thus, the temperature T ¼ 1=b ¼ 0:5 for our simulations is below Tc
and our model with a ¼ 0 is in the ferromagnetic (ordered) phase. However, the a-
term introduces the effect that destroys the ferromagnetic phase and causes the

paramagnetic (disordered) phase. Our model with a[ 0 results in a non-equilibrium

where both the ferromagnetic and paramagnetic phases appear (Bornholdt 2001;

Takaishi 2013a).

The states of spin are updated according to Eq. (2) in random order and the

periodic boundary condition is employed. After discarding the first 5� 103 updates

as thermalization, we collect data from 3� 104 updates for analysis.

Following Kaizoji et al. (2002), the return of the k-th stock is defined by the

difference of the magnetization, RkðtÞ ¼ ðMðkÞðt þ 1Þ �MðkÞðtÞÞ=2, where t is

incremented in units of one update. Since the simulation generates 100 return time

series, which are too many to show, we only show a representative return time series

for SetsA andB in Fig. 1. It is found that themagnitude of returns for both Sets A andB

changes over time, and we observe volatility clustering (Mandelbrot 1963; Fama

1970), which is one of the stylized facts often seen in the real financial markets

(Mantegna and Stanley 1997; Gopikrishnana et al. 1999). To measure volatility

persistency, we apply the exponential GARCH (EGARCH) model (Nelson 1991) for

each representative return time series. The EGARCH model is described as follows:
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Fig. 1 Representative return time series for Sets A and B
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RðtÞ ¼ rtet; ð3Þ

lnðr2t Þ ¼ xþ q lnðr2t�1Þ þ hzt�1 þ cðjzt�1j �
ffiffiffiffiffiffiffiffi
2=p

p
Þ; ð4Þ

where zt�1 ¼ Rt�1=rt�1, and x; q; h and c are EGARCH parameters. We perform

the parameter estimation of the EGARCH model by the Markov chain Monte Carlo

method with the adaptive proposal density (Takaishi 2009a, b, c, 2010, 2013b;

Takaishi and Chen 2012). Table 1 lists the results of the EGARCH parameters.

Parameter q measures the volatility persistency and we find that q is very close to

one for both Sets A and B, which means that volatility is very persistent, that is, the

volatility is long-correlated.

Figure 2 shows the return distributions of Sets A and B. The return distributions are

constructed from the normalized returns, that is, each return time series is normalized

as �RkðtÞ ¼ ðRkðtÞ � avekÞ=rk, where avek is the average value of RkðtÞ and rk is the
standard deviation of RkðtÞ. We find that both the return distributions exhibit the fat-

tailed property. The fat-tailed nature of return distributions in real financial markets

has been investigated in literature, such as in Lux (1996) and Gopikrishnana et al.

(1998, 1999), and the power law behavior for the return distributions is documented.

Our results in Fig. 2 show an exponential behavior for the return distributions rather

than the power law behavior. Appearance of the exponential behavior is not

surprising, because the form of the return distributions may depend on the financial

market we consider, and the exponential behavior for the return distributions has

been found in the Indian stock market (Matia et al. 2004).

To quantify the volatility level of the system, we use jRkðtÞj as a proxy of the

volatility and define a volatility index by an average of jRkðtÞj:

IðtÞ ¼ 1

N

XN

k¼1

jRkðtÞj: ð5Þ

Figure 3 shows the volatility index I(t) for Sets A and B. While the volatility index

of Set A is stable over time, that of Set B varies considerably through time. The

average volatility is high in several periods. We denote such periods by E1–E4 as in

Fig. 3.

4 Properties of cross-correlation

Let RkðtÞ be a return for stock k ðk ¼ 1; . . .;NÞ at time t ðt ¼ 1; . . .; TÞ, where
N ¼ 100 and T ¼ 30000. Further, we define the normalized return mkðtÞ as

Table 1 Results of EGARCH parameters

x q c h

Set A 0.147 (5) 0.9969 (6) -0.044 (9) 0.011 (3)

Set B 0.266 (6) 0.9938 (7) -0.072 (8) 0.090 (38)
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mkðtÞ ¼
RkðtÞ � hRki

rk
; ð6Þ

where h. . .i indicates the time-series average and rk is the standard deviation of

RkðtÞ. Using the normalized return mkðtÞ, an equal-time cross-correlation matrix is

calculated as ckj ¼ hmkmji. To study the dynamical properties of cross-correlation,

the average h. . .i is taken over a period of the rolling window and we consider a

window size of 200. By definition, the elements of the cross-correlation matrix are

restricted to �1� ckj � 1. Further, we do the same analysis for the absolute-return

time series of jRkðtÞj.

-20 -10 0 10 20
1e-05

0.0001

0.001

0.01

0.1

Set A
Set B

Fig. 2 Return distributions of Sets A and B
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Fig. 3 Volatility index for Sets A and B
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Figure 4 shows the dynamical evolution of the average off-diagonal matrix

element hci given by

hci ¼ 2

NðN � 1Þ
XN

k[ j

ckj; ð7Þ

for returns. It seems that the average off-diagonal matrix elements of Set A and

those of B fluctuate around zero. The time-series average of off-diagonal matrix

element for Set A is �3:9 ð70Þ � 10�5 and consistent with zero within the error

range. On the other hand, that for Set B is found to be 7:4 ð11Þ � 10�4 and, thus,

non-zero.

Figure 5 shows the same figure as in Fig. 4 but for absolute returns. Although the

average off-diagonal matrix elements fluctuate around zero for Set A, those of Set B

deviate from zero and have an upward tendency.

5 Cumulative risk fraction

To further investigate the dynamical properties of cross-correlation matrices, the

principal component analysis (PCA) is applied. Billio et al. (2012) suggested to use

the PCA to quantify the systemic risk and introduced the cumulative risk fraction

(CRF) as a risk measure. The CRF has also been studied in Kritzman et al. (2011),

Zheng et al. (2012) and Ren and Zhou (2014). To calculate the CRF, we first

compute the eigenvalues of the cross-correlation matrix, denoted as k1; k2; . . .; kN ,
where all eigenvalues are sorted as k1 [ k2 [ � � � [ kN . Then, we calculate the

CRF defined by Billio et al. (2012):
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Fig. 4 Average off-diagonal elements from returns
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CRFm ¼ xm

X
; ð8Þ

where X is the total variance of the system given by X ¼
PN

j¼1 kj and xm is the risk

associated with the first m principal components, given by xm ¼
Pm

j¼1 kj. The CRF
quantifies the portion of the system variance explained by the first m principal

components (Kritzman et al. 2011). Usually, the first few principal components

explain most of the system variance. In the periods of financial crisis, many stocks

are highly interconnected and their prices easily move together. Therefore, the

volatility of stocks also increases. In such financial crisis periods, the CRF is

expected to increase considerably because the system variance also increases.

Figure 6a shows the CRF1 to CRF5 from the cross-correlation matrices of

returns for Set B. We find that there are four bulges that correspond to E1–E4 as in

Fig. 3. Figure 6b shows the CRF1 to CRF5 of absolute returns for Set B. We also

find that considerable decreases exist in the CRF corresponding to E1–E4. These

findings may suggest that for changes in the CRF, it is more important to locate the

places where the potential risk is high and an empirical study on changes of the CRF

has been already done in Zheng et al. (2012).

6 Comparison with random matrix theory

Let ykðtÞ be an independent, identically distributed random variable with k ¼
1; . . .;N at time t ¼ 1; . . .; T . The normalized variable is defined by
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Fig. 5 Average off-diagonal elements from absolute returns
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wkðtÞ ¼
ykðtÞ � hyki

ryk
; ð9Þ

where ryk is the standard deviation of yk. The equal-time cross-correlation between

variables ykðtÞ is given by Wkj ¼ hwkwji. The matrix W is called the Wishart matrix.

For N ! 1 and T ! 1 with Q ¼ T=N[ 1, an eigenvalue distribution of the

random matrix W is theoretically given by Edelman (1988) and Sengupta and Mitra

(1999):

qðkÞ ¼ Q

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ � kÞðk� k�Þ

p

k
; k� ¼ 1þ 1

Q
� 2

ffiffiffiffi
1

Q

s

: ð10Þ

Figure 7 shows the eigenvalue distribution of the random matrix W with Q ¼
200=100 ¼ 2 and that of the cross-correlation matrix for Set B. The eigenvalue

distributions for Set B deviate from the random matrix theory (RMT), especially at

large eigenvalues. The largest eigenvalue calculated from return (absolute return)

data is 3.46 (10.71), which is beyond the largest eigenvalue, 2.91 from the RMT. It

is known that in the real financial markets, the largest eigenvalue is far beyond that

from the RMT (Plerou et al. 1999; Laloux et al. 1999). Although we find a similar

deviation for Set A, the deviation from the RMT for Set B is more sizeable than that

for Set A.

Next, we dynamically calculate the IPR that characterizes the eigenvectors,

defined by
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Fig. 6 Dynamical evolution of cumulative risk fraction from returns (a) and absolute returns (b) for Set
B
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IPRðlÞ ¼
XN

j¼1;

ðvjlÞ
4; ð11Þ

where v
j
l is the j-th component of the eigenvector for the l-th eigenvalue. In the

RMT, the eigenvector components are de-localized and distributed as a Gaussian

distribution �
ffiffiffiffi
N
2p

q
exp � N

2
ðvjlÞ

2
� �

. In such a case, the expectation of the IPR is 3/N.

On the other hand, when the eigenvector components are localized, for example,

only one component has a non-zero value, the expectation of the IPR would be 1.

Further, one can also extend the IPR to the higher power version such as IPR6

defined by

IPR6ðlÞ ¼
XN

j¼1;

ðvjlÞ
6: ð12Þ

The expectation of the IPR6 in the RMT is calculated to be 15=N2.

Figure 8 shows the IPR(1) and IPR6(1) from the return cross-correlation for Set

B, that is, those for the largest eigenvalue. Although both the IPR(1) and IPR6(1)

deviate from the RMT indicated by the lines of 3/N and 15=N2, no structural change

corresponding to E1–E4 is seen. Thus, in this model, the IPR and IPR6 from the

return cross-correlation are found to be insensitive to the volatility level.

Figure 9 shows the IPR(1) and IPR6(1) from the absolute-return cross-correlation

for Set B. We find that the IPR(1) and IPR6(1) deviate largely from the RMT and

that large increases exist at locations corresponding to E1–E4. Although we also

calculated the IPR(l) and IPR6(l) for l[ 1, that is, for lower eigenvalues, no

structural change corresponding to E1–E4 was seen. Therefore, it seems that only

the IPR and IPR6 for the largest eigenvalue are sensitive to the volatility (risk) level

of the system.
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Fig. 7 Eigenvalue distributions of cross-correlation matrix for Set B and the result from the RMT
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7 Conclusions

Using the multiple time series Ising model, we performed a large-scale simulation

with 100 stocks on a 120� 120 lattice and investigated the dynamical properties of

cross-correlation between stock returns. The simulation with a non-zero interaction

matrix shows that there exist several periods where the volatility is especially high.

Further, we investigated the cumulative risk fraction (CRF) that is expected to

measure the system risk and found that the CRF changes considerably at the high-
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Fig. 8 IPR and IPR6 from return eigenvalues for Set B
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Fig. 9 IPR and IPR6 from absolute-return eigenvalues for Set B

Evolut Inst Econ Rev (2016) 13:455–468 465

123



volatility phases. The inverse partition ratio (IPR) and its higher power version,

IPR6, were also investigated, and we found that the IPR and IPR6 from absolute-

returns change at the same periods where the volatility is high. Our findings suggest

that the CRF, the IPR, and IPR6 are useful measurements to identify abnormal states

such as high-volatility periods.

Our model successfully reproduced major stylized facts such as the volatility

clustering and fat-tailed return distribution. However, there exist some differences

between our model and the real financial markets. For instance, the largest

eigenvalue for the return cross-correlation matrix is only slightly beyond that for the

random matrix theory and not far beyond that in the real financial markets.

Moreover, the IPR and IPR6 from returns seem to have no sensitivity on the market

status, as shown in Fig. 8. Therefore, further studies are needed to clarify the

difference between both and to obtain some insights to improve our model.
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