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SPECIAL TOPIC: Advanced Energy Catalytic Materials

Stabilization of MOF-derived Co3S4 nanoparticles via graphdiyne coating
for efficient oxygen evolution

Mengyu Lu†, Xin Zhao†, Shifu Zhang, Hengxin Jian, Mei Wang* and Tongbu Lu*

ABSTRACT Developing a facile approach to fabricate robust
electrocatalysts for the oxygen evolution reaction (OER) is
essential for water electrolysis for hydrogen production.
Transition metal-organic frameworks (MOFs), with their di-
verse coordination geometries, offer a promising avenue for
deriving materials with excellent electrocatalytic properties.
Leveraging the distinct controllable synthesis features of two-
dimension graphdiyne (2D-GDY), we herein present a novel
strategy: Loading GDY in situ onto a MOF-derived Co3S4/
nickel foam (NF) material to create a self-supported electrode,
GDY/Co3S4/NF, exhibiting significantly enhanced electro-
catalytic performances for OER. Our comprehensive in-
vestigation reveals that GDY/Co3S4/NF demonstrates superior
performance, with a low overpotential of 223 mV at a current
density of 10 mA cm−2 and a small Tafel slope of
46.5 mV dec−1. Notably, it showcases exceptional stability over
45 h of continuous electrolysis at a high current density of
100 mA cm−2 under alkaline conditions, highlighting its pro-
mising practical applicability. These results validate that the
unique acetylene bonds and macroporous structure of 2D-
GDY enable strong electronic interactions with Co3S4, thereby
tuning the electronic configuration, facilitating efficient
charge transport channels, increasing active surface areas, and
enhancing durability. Furthermore, in-situ attenuated total
reflection surface-enhanced infrared spectroscopy (in-situ
ATR-SEIRAS) analysis reveals that the synergistic effect be-
tween GDY and Co3S4 promotes the adsorption of crucial
intermediate species such as OOH*, thereby significantly im-
proving the electrocatalytic activity for OER. This work pre-
sents a facile and efficient strategy for constructing advanced
nanomaterials with extraordinary electrocatalytic perfor-
mance, offering promising prospects for various practical
applications.

Keywords: GDY, cobalt-based sulfides, MOF-derived Co3S4,
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INTRODUCTION
Amidst the escalating challenges posed by energy crises and
environmental degradation, there is a pressing need for con-
certed efforts towards the development of cleaner and sustain-

able energy alternatives to supersede traditional fossil fuels [1–
3]. Hydrogen, renowned for its high energy density and zero
carbon emissions, emerges as a promising candidate for various
crucial applications in the quest for sustainable energy solutions
[4]. Electrocatalytic water splitting, powered by renewable
energy sources, is widely considered as the most promising
method for scalable hydrogen production [5–7]. However, the
sluggish reaction kinetics and high thermodynamic potentials of
the oxygen evolution reaction (OER), which serve as the half-
reaction in water splitting, significantly hinder the efficiency of
hydrogen production. To date, noble-metal oxides, particularly
RuO and IrO, are widely acknowledged as the most efficient
electrocatalysts for OER [8–10]. Nevertheless, their high cost,
scarcity, and poor stability have posed significant obstacles to
their practical applications. Therefore, the quest for efficient,
robust, and economical electrocatalysts for OER has become a
compelling and critical research pursuit [11].
In recent years, substantial efforts have been directed towards

the rational exploration of non-precious transition metal-based
electrocatalysts through the manipulation of electronic config-
urations for OER. Specifically, integrating cobalt ions with
unfilled d orbitals in the valence layer and sulfide elements with
lower electronegativity has the potential to significantly tune the
electronic structure of the catalyst, thereby enhancing its cata-
lytic reactivity towards OER [12–15]. However, the precise
engineering of the electronic and geometric structures of cobalt-
based sulfide catalysts to achieve optimal performance for OER
remains a significant challenge.
Metal-organic frameworks (MOFs) have shown immense

promises in the design of cutting-edge catalysts for OER, owing
to their tailored compositions, intricate structures, and adjus-
table pore sizes [16–18]. However, several limitations such as
poor stability under harsh electrochemical conditions and low
conductivity hinder their widespread practical use. To address
these issues, researchers have devised various strategies to
develop MOF-derived materials with exceptional properties,
opening new avenues for the efficient development of OER
electrocatalysts [19,20]. For instance, various earth-abundant
transition metal phosphide like CoP [21], transition metal oxides
like CoFe2O4 [22], and transition metal chalcogenides like Fe2
NiSe [23] derived from MOF precursors, have demonstrated
high catalytic reactivity for OER. Among these derivatives,
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cobalt-based sulfides derived from MOFs have garnered sig-
nificant attention due to their tunable structure, abundant active
sites, enhanced electrical conductivity, and efficient mass
transfer properties, all contributing to their outstanding per-
formances in electrocatalytic OER. To further boost the OER
performances of cobalt-based sulfides, numerous strategies have
been implemented to optimize their electronic structure, ranging
from coatings, metal doping, to loading onto supports [24–27].
Despite these advancements, cobalt-based sulfides still encounter
challenges in electrocatalytic OER, including relatively low long-
term stability, sluggish charge transfer rates, and high over-
potentials. Addressing these challenges remains a crucial task in
order to fully harness the potential of cobalt-based sulfides for
efficient OER.
Utilizing carbon-based nanomaterials in tandem with transi-

tion metal electrocatalysts to optimize interfacial interactions has
proven to be an innovative approach for enhancing catalytic
performance of OER [28–30]. Among these carbon-based
materials, graphdiyne (GDY), a novel all-carbon allotrope,
stands out. It possesses a unique 2D honeycomb lattice structure
comprising alternating triple and single bonds between sp- and
sp²-hybridized carbon atoms [31,32]. This unique –C≡C–C≡C–
arrangement offers exceptional properties such as high electrical
conductivity, tunable active sites, chemical stability, vast surface
area, and sustainability. These remarkable properties have led to
significant advancements in various research areas, particularly
in energy storage and electrocatalysis [33–37]. Specifically, the
unique –C≡C–C≡C– structure of GDY enables effective inter-
actions with transition metal nanomaterials through a strong
metal-support interaction (SMSI) effect. This interaction sig-
nificantly enhances charge transfer between GDY and transition
metal centers, optimizing the electronic configuration of the
catalysts and stabilizing them [37–40]. Furthermore, GDY
exhibits remarkable stability in both acidic and alkaline envir-
onments, providing exceptional protection for catalysts and
ensuring robust catalytic durability [41–45]. Unlike other carbon
materials, GDY can be synthesized through a cross-coupling
reaction under mild conditions, facilitating its coating onto
diverse nanomaterials to enhance their catalytic properties [46–
48]. For instance, Li et al. [49] developed an efficient OER
electrocatalyst, NW-MnCoO/GDY, by layering GDY onto
MnCoO nanowires through an in-situ growth strategy. This
work demonstrates the synergistic interaction between MnCoO
and GDY, which significantly improves the catalytic perfor-
mance of the electrocatalyst for OER. Moreover, our design of
ultra-small quasi-core/shell RuO-Ru nanoparticles, when loaded
onto GDY, yielded an outstanding catalyst, RuO-Ru/GDY, for
the OER. This remarkable performance is attributed to the
precise regulation of the electron density of Ru in the RuO shell
by the unique interaction with GDY [50]. These advancements
illustrate that, decorating transition metal nanomaterials with
GDY to finely tune their electronic structures, presents sig-
nificant opportunities for enhancing their electrocatalytic per-
formances in the OER.
In this study, we introduce a pioneering approach, pioneering

the creation of an advanced OER catalyst by decorating cobalt
sulfides derived from MOFs with GDY. We utilize nickel foam
(NF) as the foundation, directly growing cobalt-based MOFs,
ZIF-67, onto its surface. Subsequently, through sulfurization, we
achieve a uniform distribution of blade-shaped Co3S4/NF. Next,
we coat GDY onto the surface of Co3S4 via an in-situ growth

technique, yielding GDY/Co3S4/NF, which exhibits remarkably
improved electrocatalytic performance for OER. The self-sup-
ported electrode, GDY/Co3S4/NF, demonstrates outstanding
characteristics, including a low overpotential of 223 mV at a
current density of 10 mA cm−², a minimal Tafel slope of
46.5 mV dec−¹, and stable electrolysis for over 45 h at a sig-
nificant current density of 100 mA cm−² under alkaline condi-
tions. This underscores its significant potential for industrial
applications. In-situ attenuated total reflection surface-enhanced
infrared spectroscopy (in-situ ATR-SEIRAS) analysis reveals that
the modification of Co3S4/NF with GDY enhances the adsorp-
tion of the crucial intermediate OOH*, thereby bolstering its
catalytic properties. Our findings confirm that the exceptional
electrocatalytic performance primarily stems from the SMSI
effect between GDY and Co3S4, profoundly modulating its
electronic properties, thus optimizing charge transfer and
increasing active sites during the catalytic process. Furthermore,
the exceptional chemical and physical properties of GDY sig-
nificantly bolster the stability of our designed GDY/Co3S4/NF
catalyst for OER.

EXPERIMENTAL SECTION

Synthesis of ZIF-67/NF
ZIF-67/NF was synthesized using an in-situ growth approach.
Initially, NF pieces (1 × 2 cm²) were cleaned by sonication in 3
M hydrochloric acid for 10 min to eliminate the oxide layer from
the surface. Subsequently, they were rinsed sequentially with
deionized water, ethanol, and acetone, followed by vacuum
drying. Next, the dried NFs were vertically immersed in a pre-
pared mixed solution containing 0.58 g of Co(NO3)2·6H2O and
1.313 g of 2-methylimidazole dissolved in deionized water. After
48 h of undisturbed reaction, ZIF-67 grew directly on the NF,
resulting in ZIF-67/NF. The resulting material was washed with
water, ethanol, and acetone successively, followed by vacuum
drying at 50°C for 2 h.

Synthesis of Co3S4/NF
Co3S4/NF was synthesized using a simple sulfurization method.
Initially, 0.25 g of thioacetamide was dissolved in 35 mL of
ethanol. Subsequently, a piece of ZIF-67/NF obtained from the
previous steps was immersed in the solution, which was then
transferred to a hydrothermal reactor and heated to 130°C for
12 h in an oven. After the system was cooled to room tem-
perature, the resulting Co3S4/NF material was washed with water
and ethanol several times, followed by vacuum drying at 60°C
for several hours.

Synthesis of GDY/Co3S4/NF
The precursor of GDY, hexaethynylbenzene (HEB), was syn-
thesized under an argon atmosphere following previously
reported traditional methods [33,51]. Subsequently, the obtained
Co3S4/NF was placed inside a rounded copper foil, which was
then immersed in a mixed solution containing 5 mL of pyridine,
100 mL of acetone, and 1 mL of tetramethylethylenediamine
(TMEDA). HEB dissolved in a 50 mL acetone solution was then
added dropwise to the above system. The mixture was heated at
55°C for 12 h to obtain GDY/Co3S4/NF, which was rinsed with
deionized water, ethanol, and acetone, and then dried in a
vacuum at 60°C for 8 h.
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RESULTS AND DISCUSSION

Synthesis and characterization of the GDY/Co3S4/NF
electrocatalysts
As outlined in Scheme 1, the fabrication of the self-supported
electrode GDY/Co3S4/NF comprises three pivotal steps. Initially,
through a refined process, ZIF-67 is directly deposited onto NF
to obtain the precursor ZIF-67/NF, by precisely controlling the
ratio of Co2+ ions and 2-methylimidazole ligands at ambient
temperature [52]. Subsequently, the ZIF-67/NF is transformed
into Co3S4/NF via a conventional hydrothermal route using
thioacetamide as the sulfur source [53,54]. Lastly, GDY is syn-
thesized in-situ through a coupling reaction, effectively coating
the surface of Co3S4, ultimately yielding the final product, GDY/
Co3S4/NF.
The surface morphologies of various samples, including ZIF-

67/NF, Co3S4/NF, and GDY/Co3S4/NF, were thoroughly char-
acterized using scanning electron microscopy (SEM) (Fig. 1a and
Fig. S1). SEM analysis reveals that ZIF-67 exhibits a distinct
three-dimensional (3D) leaf-like morphology, which undergoes

significant alterations after undergoing high-temperature car-
bonization and etching, resulting in a noticeably roughened
surface (Fig. 1b). Upon the in-situ growth of GDY nanowalls
onto the surface of Co3S4, forming GDY/Co3S4/NF, the original
structure of Co3S4 is beautifully preserved. However, a new layer
of wrinkle-like GDY nanowall emerges on the surface
(Fig. 1c, d), significantly enhancing the roughness compared
with both ZIF-67/NF and Co3S4/NF. This observation provides a
compelling evidence of the successful and uniform coating of
GDY onto Co3S4/NF, which is crucial for its outstanding elec-
trocatalytic performance towards OER. High-resolution trans-
mission electron microscopy (HRTEM) analysis further delves
into the morphological nuances of GDY/Co3S4/NF. As depicted
in Fig. 2b, distinct lattice fringes with a d-spacing of 0.238 nm
are observed, corresponding to the (311) facet of Co3S4. Addi-
tionally, the selected area electron diffraction (SAED) pattern
(inset in Fig. 2a) exhibits a series of diffraction rings with bright
spots, indicative of the polycrystalline nature of the catalyst.
Furthermore, energy dispersive X-ray spectroscopy (EDS)
mapping images (Fig. 2d–h) reveal the uniform distributions of

Scheme 1 The synthesis process of the material.

Figure 1 SEM images of (a) ZIF-67/NF, (b) Co3S4/NF, (c, d) GDY/Co3S4/NF.
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Co, S, and C elements within the GDY/Co3S4 composite, thus
confirming the robust integration of GDY and Co3S4. Powder X-
ray diffraction analysis (PXRD) is also performed to elucidate
the structural characteristics of the synthesized samples (Fig. 3a).
Notably, all samples exhibit three prominent peaks at 44.5°, 51.8°
and 76.4°, corresponding to the (111), (200) and (220) planes of
NF (JCPDS NO. 87-0712), respectively. In the case of ZIF-67/
NF, the ZIF-67 peaks are faintly observable due to the over-
lapping diffraction peaks with NF. However, after the sulfidation
process, both Co3S4/NF and GDY/Co3S4/NF exhibit distinct
characteristic peaks at 31.5°, 38.2°, 50.4° and 55.2°, corre-
sponding to the (311), (400), (511) and (440) crystal planes of
Co3S4 (JCPDS NO. 73-1703), respectively, thereby affirming the
successful synthesis of the target materials.
Raman spectroscopy is utilized to gain further insights into the

chemical composition and structural features of the prepared
samples. As depicted in Fig. 3b (bottom), the Raman shifts at
293, 498 and 641 cm−1 are ascribed to Co3S4 [55]. Meanwhile, for
the GDY/Co3S4/NF composite (Fig. 3b, top), peaks at 293, 323
and 393 cm−1 in the low-frequency region correspond to Co3S4.
In the high-frequency region, peaks centered at 1376 and
1586 cm−1 are associated with the breathing vibration (D band)
and in-phase stretching vibration (G band) of sp²-hybridized
carbons in the benzene rings of GDY, respectively. Additionally,
peaks located at 1933 and 2174 cm−1 are attributed to the
vibrational modes of conjugated diyne groups (–C≡C–C≡C–)
within the GDY structure of GDY/Co3S4/NF. These compre-
hensive findings provide unequivocal evidences for the suc-
cessful synthesis of our designed self-supported electrode, GDY/
Co3S4/NF. Furthermore, X-ray photoelectron spectroscopy
(XPS) analyses are conducted to probe the chemical states and
composition of the synthesized materials (Fig. 3c–f and Fig. S2).
The comprehensive XPS spectra at the top of Fig. 3c clearly
exhibit the presence of Co, S, and C elements in the GDY/Co3S4/
NF composite, which aligns well with the findings from EDS.
The oxygen detected is likely due to atmospheric exposure.
Specifically, the Co 2p spectrum in Fig. 3d reveals characteristic
peaks of Co 2p3/2 and Co 2p1/2 centered at 781.0 and 796.0 eV,
respectively, accompanied by satellite peaks. These main peaks
can be further decomposed into two groups, namely 778.9 and

780.2 eV for Co3+ and 793.9 and 795.7 eV for Co2+, confirming
the coexistence of cobalt ions in two distinct valence states [56].
Additionally, a slight shift in the binding energy of the main
peaks when comparing GDY and Co indicates a robust elec-
tronic interaction between GDY and Co3S4, thus validating the
successful coating of GDY on Co3S4/NF. In the high-resolution S
2p spectra depicted in Fig. 3e, peaks centered around 162.3 and
164.1 eV correspond to S 2p3/2 and S 2p1/2, respectively, repre-
senting the Co–S bond in Co3S4. The peak at 169.7 eV likely
originates from sulfur oxides resulting from surface sulfur oxi-
dation upon air exposure [57]. For the C 1s XPS spectrum of
GDY/Co3S4/NF (Fig. 3f), four deconvoluted peaks are observed,
corresponding to sp2-hybridized C=C (284.3 eV), sp-hybridized
C≡C (285.1 eV), C–O (286.6 eV), and C=O (288.9 eV), respec-
tively. These XPS results provide further confirmation of the
successful synthesis of the GDY/Co3S4/NF composite. When
compared with pure GDY, the GDY/Co3S4/NF composite exhi-
bits a slight shift in the binding energies of the four characteristic
C 1s peaks. This observation signifies the existence of a robust
electronic interaction between GDY and Co3S4, thereby vali-
dating the successful integration of GDY onto the Co3S4/NF
catalyst. This interaction is particularly beneficial for enhancing
the electrocatalytic OER, indicating that the GDY/Co3S4/NF
composite is a promising candidate for promoting efficient
electrocatalysis.

Electrocatalytic OER performance
The electrocatalytic performances of the synthesized samples
towards water oxidation are rigorously evaluated in a standard
three-electrode cell under alkaline conditions (1 M KOH) at a
scan rate of 5 mV s−1. All reported potentials are referenced to
the reversible hydrogen electrode (RHE). The working electro-
des consist of our self-supported GDY/Co3S4/NF electrode,
alongside two comparative samples: Co3S4/NF and ZIF-67/NF.
The counter electrode is a carbon rod, and the reference elec-
trode is Hg/HgO. The polarization curves and subsequent ana-
lyses in Fig. 4a, b reveal that GDY/Co3S4/NF exhibites
remarkable electrocatalytic activities, achieving overpotentials of
just 223 and 407 mV at current densities of 10 and
100 mA cm−2, respectively. These values are significantly lower

Figure 2 (a) TEM images of GDY/Co3S4/NF, the inset is SAED pattern. (b, c) HRTEM images of GDY/Co3S4/NF. (d–h) EDS elemental mapping images of
GDY/Co3S4/NF.
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than those observed for Co3S4/NF (230 and 463 mV) and ZIF-
67/NF (359 and 529 mV), and they outperform numerous pre-
viously reported electrocatalysts (Table S1 and Fig. 4f). These
findings underscore the superior OER performance of GDY/
Co3S4/NF compared with the other catalysts [13,26,27,58–60].
To further elucidate the reaction kinetics of the electrocatalytic
OER, Tafel slope analyses and electrochemical impedance
spectroscopy (EIS) are performed. As shown in Fig. 4c, GDY/
Co3S4/NF exhibites a substantially lower Tafel slope of
46.5 mV dec−1 compared with Co3S4/NF (78.9 mV dec−1) and
ZIF-67/NF (132.9 mV dec−1). It indicates that our GDY/Co3S4/
NF electrode possesses higher conductivity and faster reaction
kinetics during the electrocatalytic O2 evolution reaction.
Additionally, the EIS Nyquist plots (Fig. 4d) demonstrate that
the GDY/Co3S4/NF electrode exhibits the smallest semicircle
diameter among the three samples, suggesting enhanced charge
transfer efficiency between the electrode and the electrolyte
interface during the OER process. Moreover, to quantify the
electrochemical active surface area (ECSA), double-layer capa-
citance (Cdl) is evaluated through cyclic voltammetry (CV)
measurements conducted at varying scan rates from 10 to
100 mV s−1 within the non-Faradaic voltage window of
0.6–0.7 V vs. RHE (Fig. S3). Linear regression analysis of the
scan rate and the corresponding current density derived from
the CV data (Fig. 4e) reveal that GDY/Co3S4/NF possesses the
highest Cdl of 6.09 mF cm−2, surpassing Co3S4/NF
(4.28 mF cm−2) and ZIF-67/NF (3.28 mF cm−2). This substantial
increase in Cdl suggests a notable expansion of the active surface
area achieved by coating porous GDY onto Co3S4/NF. These
collective findings convincingly demonstrate that the integration
of GDY onto Co3S4/NF significantly optimizes the intrinsic
properties of the catalyst, leading to enhanced OER perfor-
mance. The enhancement is primarily attributed to the robust

electronic interaction between GDY and Co3S4, which facilitates
the regulation of the catalyst’s electronic structure and geometry.
Furthermore, to evaluate the practical applicability of the

catalyst, its long-term stability is assessed through chron-
opotentiometry measurements. As illustrated in Fig. 4g, GDY/
Co3S4/NF demonstrates exceptional stability, maintaining a
constant potential for over 45 h at a high and consistent current
density of 100 mA cm−2 during the OER. This remarkable sta-
bility outperforms numerous recently reported catalytic mate-
rials, with Co3S4/NF, for instance, exhibiting stability for only
17.5 h [13,61]. To gain further insights into the microscopic
morphology and chemical composition of the catalyst after
prolonged OER testing, we conduct SEM, XRD, and XPS ana-
lyses (Figs S4–S6). The SEM images reveal that the morphology
of GDY/Co3S4/NF remains well-preserved even after the exten-
ded catalysis period (Fig. S4). Moreover, the XRD and XPS
measurements conducted post-electrocatalysis for OER are in
alignment with the pre-catalysis results (Figs S5, S6), further
affirming the exceptional stability of our designed OER elec-
trocatalyst, GDY/Co3S4/NF. This stability can be attributed to
the acid- and alkali-resistant, corrosion-resistant GDY nano-
material coating outside Co3S4, which effectively stabilizes the
electrocatalyst.
To gain a deeper understanding of the catalytic mechanism of

GDY/Co3S4/NF for OER, we conduct in-situ ATR-SEIRAS
experiments (Fig. S7). These measurements are performed at
varying potentials ranging from 1.25 to 1.70 V vs. RHE in a 1 M
KOH solution to identify the intermediates involved in the
electrocatalytic OER process. As shown in Fig. 5, at the open
circuit potential (OCP), neither GDY/Co3S4/NF nor Co3S4/NF
exhibits any prominent peaks. However, for GDY/Co3S4/NF
(Fig. 5 right), a distinct peak at 1013 cm−1 is observed, which
exhibits an increasing trend as the potential increases from 1.25

Figure 3 (a) XRD patterns of Co3S4/NF and GDY/Co3S4/NF. (b) Raman spectra of Co3S4/NF and GDY/Co3S4/NF. (c) XPS spectra of Co3S4/NF and GDY/
Co3S4/NF. (d) Co 2p XPS spectra of Co3S4 and GDY/Co3S4/NF. (e) S 2p XPS spectra of Co3S4/NF and GDY/Co3S4/NF. (f) C 1s XPS spectra of GDY and GDY/
Co3S4/NF.
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to 1.70 V. This peak is attributed to the stretching vibration of
the OOH* species [62–65], indicating its formation and accu-
mulation during the OER process. Under alkaline conditions,
the OER catalyzed by GDY/Co3S4/NF likely follows the tradi-
tional adsorbate evolution mechanism (AEM). This mechanism
involves the rate-determining step of O–O bond formation
through the nucleophilic attack of OH− to produce the key
intermediate OOH*, followed by the desorption of oxygen

through the deprotonation of OOH* [66,67]. In contrast, for
Co3S4/NF (Fig. 5 left), a potential-dependent peak at 1019 cm−1

corresponding to the OOH* species is observed, albeit at a higher
energy level compared to GDY/Co3S4/NF. This suggests that the
key intermediate OOH* is adsorbed more strongly on the active
sites of GDY/Co3S4/NF than on Co3S4/NF. It results in a lower
free energy of OOH* adsorption on GDY/Co3S4/NF, leading to
significantly higher catalytic reactivity. The observed differences

Figure 4 (a) LSV diagrams of ZIF-67/NF, Co3S4/NF and GDY/Co3S4/NF. (b) Overpotential bar diagrams of three materials, left 10 mA cm−2, right
100 mA cm−2. (c) Tafel of three materials. (d) EIS maps of three materials. (e) Cdl diagrams of three materials. (f) Comparison of overpotential of GDY/Co3S4/
NF with similar catalysts at a current density of 10 mA cm−2. (g) Constant current stability tests of GDY/Co3S4/NF and Co3S4/NF.
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in OOH* adsorption can be attributed to the unique interaction
between the acetylene carbon in GDY and the Co metal centers
in Co3S4. This SMSI effect facilitates charge transfer between
GDY and Co3S4, optimizing the electronic configuration of the
catalyst and facilitating the binding of the crucial intermediate
OOH* with a lower energy. Consequently, GDY/Co3S4/NF
exhibits superior OER performance compared with Co3S4/NF.
The insights gained from the in-situ ATR-SEIRAS measure-
ments underscore the superiority of the GDY-decorated Co3S4/
NF catalyst for electrocatalytic oxygen evolution compared to
Co3S4/NF. These findings align perfectly with the previously
mentioned results of the electrocatalytic performance tests,
further validating the enhanced reactivity exhibited by the GDY/
Co3S4/NF composite. Specifically, the unique interaction
between the acetylene carbon in GDY and the Co metal centers
in Co3S4 results in a stronger adsorption of the crucial OOH*

intermediate on the active sites of GDY/Co3S4/NF, leading to a
lower free energy of adsorption and thus significantly higher
catalytic reactivity for oxygen evolution.

CONCLUSIONS
In summary, we have developed an innovative method for the
precise fabrication of an advanced self-supported electrode for
OER through the in-situ deposition of 2D-GDY onto MOF-
derived CoS/NF. The resulting GDY/CoS/NF catalyst exhibits a
distinct 3D morphology and exceptional catalytic performance
for water oxidation. Specifically, it achieves a remarkable low
overpotential of 223 mV at a current density of 10 mA cm−² and
a small Tafel slope of 46.5 mV dec−¹. Impressively, it sustains
stable electrolysis for over 45 h, even at a high current density of
100 mA cm−², under alkaline conditions. Our in-depth in-situ
ATR-SEIRAS spectroscopic analysis reveals that the integration
of GDY onto CoS/NF significantly enhances the adsorption of
the crucial intermediate OOH*, leading to improved catalytic

properties.
The introduction of GDY to CoS promotes strong interactions

with cobalt ions through its alkynyl carbon, which modulates the
electronic configuration and increases the number of active sites,
thereby bolstering the electrocatalytic OER performance.
Moreover, the incorporation of porous 2D-GDY optimizes the
structure, greatly facilitating mass and charge transfer. Fur-
thermore, the remarkable chemical stability of GDY ensures
enhanced durability of the catalyst when coated onto CoS. This
study underscores the powerful potential of decorating MOF-
derived transition metal nanomaterials with GDY as a promising
approach for developing highly effective and stable catalysts.
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石墨炔涂层稳定MOF衍生物Co3S4纳米材料用于高效
电催化析氧反应
陆梦玉†, 赵欣†, 张士福, 蹇恒欣, 王梅*, 鲁统部*

摘要 制备高效的OER电催化剂对水裂解制氢至关重要.具有丰富配位
构型的MOFs可以衍生出各种优良的电催化材料. 由于石墨炔(GDY)具
有独特的可控合成特性, 我们将其原位复合在MOF衍生的Co3S4/NF材
料上, 获得了自支撑电极GDY/Co3S4/NF, 大大提高了其OER催化性能.
研究表明, GDY/Co3S4/NF在10 mA cm−2电流密度下表现出223 mV的低
过电位, 在100 mA cm−2的大电流密度下, 能够稳定电解45小时左右, 该
材料显示出了巨大的实际应用潜力. 结果表明, 由于GDY独特的炔键和
大孔结构, 它可以通过强电子相互作用与Co3S4相互作用, 从而调节电
子结构并提供有效的电荷转移通道, 从而大大提高了其电催化OER的
性能.
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