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ABSTRACT Electrochemical carbon dioxide reduction
(ECO2R) is an attractive pathway to store carbon and renew-
able energy as chemical bonds in multi-carbon products.
However, the complex multi-step reaction processes set huge
obstacles for the direct conversion of CO2 to C2+ products. A
strategy that uses carbon monoxide (CO) as a “transfer sta-
tion” to produce C2+ at improved selectivity and reaction rates
via the tandem ECO2R to CO and electrochemical CO re-
duction (ECOR) has attracted a lot attention. In this review,
we focus on the design strategy of Cu-based electrocatalysts
toward the formation of specific C2+ products in ECOR. Re-
presentative design strategies for catalysts engineering are
summarized in various aspects, and the most recent research
in the improvement of electrolysis reactor is included. Finally,
the main challenges and the future prospects in this research
field are expounded. These insights and perspectives offer
meaningful guidance for designing Cu-based electrocatalytic
system with enhanced C2+ product selectivity.

Keywords: CO electroreduction, Cu-based catalysts, multi-car-
bon products

INTRODUCTION
To alleviate the greenhouse effect and energy crisis [1–13],
electrochemical CO2 reduction (ECO2R) is a carbon-neutral
route for the transformation of CO2 into marketable multi-
carbon hydrocarbons and oxygenates (C2+) using renewable
energy [4,14–24]. However, the direct reduction of CO2 to C2+
products is significantly affected by severe carbonation in alka-
line conditions and hydrogen evolution in acidic conditions,
both of which impact reaction activity and selectivity [25–31]. It
is well established that the CO2-to-CO conversion has achieved
remarkable selectivity close to 100% [32–38]. The conversion of
CO to C2+ products can be achieved through Fischer-Tropsch

(F-T) synthesis [39–41], which currently still suffers from high
reaction temperatures (230–450°C) and huge demand for
hydrogen [42–44]. Recently, a cascade reduction approach,
where CO2 is reduced to CO in the first step followed by CO
electroreduction, results in much higher C2+ selectivity and
carbon efficiency [32,45–47]. Furthermore, the electrochemical
CO reduction (ECOR) technique is usually conducted in a
water-based electrolyte at ambient temperature, with water
acting as the proton source [48–51]. For a long time, ECOR has
followed the research paradigm established by ECO2R. There-
fore, using ECOR as a downstream technique of ECO2R presents
a promising approach for the resource utilization of CO2
(Fig. 1).
To accomplish selective and efficient ECOR, electrocatalysts

are required to reduce the reaction energy barrier in the for-
mation of C2+ products and improve the kinetics of the C–C
coupling process [52,53]. Thence, mechanism-oriented design of
catalysts becomes paramount in order to augment the CO-to-
C2+ performance. So far, considerable research efforts have been
devoted to developing catalytic materials in ECOR [54,55].
Among various kinds of electrocatalysts, copper (Cu)-based
catalysts, which exhibit suitable binding energy for *CO and *H,
facilitate C–C coupling and thus generate C2+ products [56].
Typical methods of catalyst engineering, such as doping and
alloying [57–59], morphology control [60], surface modification
[61,62], in-situ reconstruction [63,64], and defect engineering
[65], have been applied to improve the performance of ECOR on
the Cu-based catalysts. Moreover, since ECOR is sensitive to the
reaction environment, it is also crucial to mediate the transport
and coverage of reacting species by designing the electrodes and
catalyst supports, which can influence the reaction pathway [66–
68].
Thus far, only a handful of review papers on ECOR have been

published, which primarily provide an overview of Cu-based
designs from a product formation perspective, rather than
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emphasizing the clear and effective design strategies of Cu-based
catalysts [45,69]. This review zooms in on the recent develop-
ment of highly efficient Cu-based catalysts in the ECOR process.
Firstly, the fundamental aspects will be discussed from the
performance evaluation factors to the formation mechanisms of
various C2+ products. Next, the most representative upgrade
strategies for Cu-based catalysts in terms of catalyst engineering
and system design will be summarized. Finally, based on the
main challenges and the future prospects in this research
direction, this review offers meaningful guidance for perfor-
mance optimization of ECOR through the rational design of Cu-
based catalysts.

PERFORMANCE EVALUATION FOR ECOR
For lab-scale evaluation of ECOR technologies, the selectivity for
a single product, the activity and the stability of overall system
are typically reported as performance indicators. All of the
ECOR standard potentials here are calculated via the Gibbs free
energy of reaction [4]. A typical commercial catalyst would
require a Faradaic efficiency of more than 90% with a stability of
thousands of hours, which is cost-competitive with fossil fuel-
derived sources [70]. The overpotential should be less than 0.4 V
vs. reversible hydrogen electrode (RHE) with a current density of
higher than 200 mA cm−2 [71,72]. To date, considerable research
has led to progress in selectivity, activity, and stability. Even so,
there is still a lack of excellent work to integrate these advan-
tages. The quest for commercialization continues to be a great
impetus to optimize the catalytic transformations, and the cur-
rent state of ECOR to target products is presented in Table 1.

Selectivity
For complex reactions that produce different products, the aim
is to maximize yield and purity of the target product. The
selectivity of ECOR is usually assessed based on the Faraday
efficiency (FE) of the reduction products, which reflects the
proportion of electrons transferred to the desired product. The
FE for products is calculated using the following equation:

z n F QFE= × × / ,
where z, n, F and Q are the electron transfer number (Table 1),

the mole fraction of the product, the Faraday’s constant and the
total charge during the reaction, respectively. The high selec-
tivity conversion of carbon monoxide can effectively reduce the
subsequent product separation costs.

Activity
The electrocatalytic activity is the degree to which an electro-
catalyst accelerates a reaction, which can be evaluated by the
overpotential value at a specified current density, or the current
density at a specified overpotential. The current density is
usually defined as the electrical current flow per geometric area
of the electrode. High current density means high formation rate
of the target product, which is desirable for lowering capital
costs. From industrial consideration, industrially relevant cur-
rent densities of several hundreds of mA cm−2 (>200mA cm−2)
are required to be applied with catalyst loadings as high as
1–2 mg cm−2 [76,77]. The overpotential can be termed addi-
tional potential to drive a certain reaction due to kinetic acti-
vations, limited mass transport and ohmic resistances between
the anode and the cathode [72]. A low overpotential reduces the
total electrical energy input and minimizes the electricity cost.

Stability
Stability usually refers to the duration for which the catalyst
performance is maintained at a certain level of activity and
selectivity. Notably, under commercially relevant current den-
sities of >200 mA cm−2, catalysts often undergo particle
agglomeration, active-phase change, and/or element dissolution,
making the long-term operational stability a considerable chal-
lenge [78,79]. In the current ECOR research, most of the stability
tests are completed in the membrane electrode assembly (MEA),
where results show significant improvement over those obtained
from the H-cell and the flow cell. However, the evaluation of
stability is subject to laboratory test conditions, and the current
test duration is typically less than 100 h. This is far below the
level required for achieving a large-scale electrocatalytic process
[80].

MECHANISMS INVESTIGATION
The conversions of CO to C2+ products, including ethanol,

Figure 1 Schematic illustration of the cascade reduction and the comparison of F-T synthesis and ECOR.
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ethylene, acetate, and propanol, all involve various reaction
pathways that include a carbon–carbon (C–C) coupling step.
However, it is still controversial how the C1 intermediates (such
as *CO, *COH and *CHO) perform C–C coupling reactions
(Fig. 2). After the initial activation of CO on the active surface to
form *CO (where * denotes a binding site), the intermediate
proceeds through the hydrogenation reaction to give *CHO or
*COH, representing as a C-pathway or an O-pathway [73],
respectively. Xiang et al. [81] proposed that the C-pathway to
yield the *CHO intermediate is thermodynamics-controlled,
while the O-pathway to produce the *COH intermediate is
kinetics-controlled. In addition, the dimerization of *CO species
was also proposed to form the C–C bond. Montoya et al. [82]
calculated the barriers of C–C coupling on Cu(111) and (100)
and found them to be sufficiently low for CO dimerization to
proceed before CO reduction. Generally, there is consensus that
the C–C coupling reaction is structure-sensitive, pH-dependent,
and potential-dependent, which aligns with the ongoing debates
in the vast body of theoretical research and experimental results
[83–85].

Ethanol and ethylene
It has been suggested that there is a shared pathway for the
formation of ethanol and ethylene, both of which are formed
through a certain oxygen-containing intermediate [86,87]. *CO–
COH is known to be a common intermediate proposed in the

literature to give C2+ products [88,89]. Koper’s group [90] pro-
posed that *CO–CHO is less stable than *CO–COH by 0.16 eV,
suggesting a more favorable initial hydrogenation of the O
atoms in *C2O2. Deriving from *CO–COH, *CHCOH is sug-
gested to participate in the formation of ethanol and ethylene.
The hydrogenation and the dihydroxylation of *CHCOH form
CHCHOH* and CCH*, respectively (Fig. 3a) [73]. Density
functional theory (DFT) calculations in terms of the adsorption
energy of key intermediates in Fig. 3b show that CCH* forma-
tion is thermodynamically more favorable than CHCHOH*
formation by 0.32 eV on Cu(100), which therefore results in the
higher selectivity towards C2H4 than EtOH. On Cu(111), the two
competitive steps have equivalent ΔG, suggesting similar selec-
tivity towards C2H4 and CH3CH2OH. However, on Cu(110),
CHCHOH* is preferred over CCH* for formation (by 0.17 eV),
indicating a higher selectivity towards EtOH [91]. Besides, Lum
et al. [92] proposed that oxygen in the product might arise from
water rather than from CO. As shown in Fig. 3c, *(16OH)C–CH
contributes to either (16O)ethanol or (18O)ethanol formation.

Acetate
Recently, acetate has emerged as a prominent product in ECOR,
particularly in the multi-component system [93]. Starting from
CO, acetate is produced through the ethenone intermediate
(Fig. 4a) [94]. Koper and Calle-Vallejo [90] first proposed the
possibility of the *C=C=O intermediate, postulating it as an

Table 1 ECOR half-reactions for C2+ products and the current state of electrocatalytic performance

Possible ECOR half-reactions toward C2+
Electrode potentials

(vs. RHE) FE (%) Current density (mA cm−2) Stability (h) Ref.

2CO (g) + 8H+ + 8e− → C2H4 (g) + 2H2O (l) 0.28 72 >800 2 [73]

2CO (g) + 8H+ + 8e− → C2H5OH (l) + H2O (l) 0.30 68.8 111 100 [74]

2CO (g) + 4H+ + 4e− → CH3COO− (l) 0.34 91 ± 2 112 820 [57]

3CO (g) + 12H+ + 12e− → C3H7OH (l) + 2H2O (l) 0.43 47 ± 3 38 110 [75]

Figure 2 Possible reaction pathways for the formation of C2+ products based on the key intermediates.
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intermediate in the ethylene pathway. However, later extensive
works proposed that *(OH)C=COH → *C=C=O possesses a
one-to-one mapping to acetate [57,95].
Jiao’s group [95] proposed that *C=C=O prefers high pH and

less negative potential. As shown in Fig. 4b, the proposed
pathways assumed that acetate forms through direct reaction of
OH− with *C=C=O to form *C=C(OH)O− (ΔG = 0.72 eV), in
agreement with the experimental observation that highly alka-
line environments favor the formation of acetate [95,96].
Moreover, Wei et al. [97] proposed that the switch in selectivity
from ethylene to acetate is primarily driven by the coverage of
absorbed CO (*CO) (Fig. 4c). According to the DFT calculation
results, CO preferentially adsorbs on terrace sites at low CO
pressure and inclines to generate ethylene, whereas step sites are
provided with more CO at high CO pressure, and thus, acetate
production is substantially improved.

Propanol
The underlying mechanism of propanol production via ECOR is
complex. It is generally accepted that the reduction of CO to C3
products first requires a C1–C1 coupling step, followed by a C1–
C2 coupling step [98,99]. Therefore, it is essential to prevent the
individual conversion of C1 and C2 intermediates directly into
final products. The confinement effect has been applied to boost
C3 production via the nanocavity strategy [100,101]. According
to DFT calculations, CO is abundant on the surface due to its

strong adsorption energy compared that that of CO2. Conse-
quently, the coupling of C2 and CO is assumed to be one of the
most likely pathways for C3 formation (Fig. 5a). In subsequent
research, Pang et al. [98] proposed that the interface between Cu
(111) and Cu(100) lowers the barriers of both the CO–CO and
CO–OCCO coupling steps compared with the individual facets
(Fig. 5b). More recently, the successive proton coupled electron
transfer (PCET) reactions from the CCO* species were investi-
gated by Fontecave and coworkers [59]. The formed CHCO*,
CHCHO*, CH2CHO*, and CH3CHO* intermediates can
undergo a coupling reaction with CO* to form different C3
surface intermediates and produce propanol in subsequent steps
(Fig. 5c).
In summary, a range of intermediates is primarily produced

through hydrogenation or dihydroxylation of specific key
intermediates. The reaction barrier varies depending on different
conditions, including factors of catalysts engineering (such as
exposed facets) or system design (such as pH and CO coverage),
resulting in distinct pathways stemming from a shared inter-
mediate. Further discussion on these two aspects provides
insight into the formation mechanism of propanol and other
multi-carbon products, thus offering effective guidance for the
development of high-performance ECOR catalysts.

Cu-BASED CATALYSTS ENGINEERING
In this section, we will introduce several strategies aimed at

Figure 3 (a) Schematic plot of the reaction mechanism where the last oxygen-containing group in *CHCOH (IM) is removed, forming *CCH (IM-C), and
an alternative pathway to *CHCHOH (IM-O), as well as the geometries of IM, IM-C and IM-O on Cu(100) surfaces. Yellow, copper; grey, carbon; red,
oxygen; white, hydrogen. Reprinted with permission from Ref. [73], Copyright 2019, Springer Nature. (b) The adsorption energies of key intermediates that
affect activity (upper panel) and free energies of competitive pathways for C2H4 and EtOH formation (lower panel) on Cu(100), Cu(111), and Cu(110).
Reprinted with permission from Ref. [91], Copyright 2020, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim. (c) Mechanistic pathways for CO reduction
predicted from full-solvent quantum mechanics (QM)-based molecular metadynamics to obtain free energy reaction barriers at 298 K. Reprinted with
permission from Ref. [92], Copyright 2018, American Chemical Society.
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improving the performance of Cu-based catalysts in ECOR,
including doping and alloying, morphology control, surface
modification, in situ reconstruction and defect engineering.

Doping and alloying
For heterogeneous metal catalysts, compositions are engineered

via doping or alloying to maximize the catalytic performance
[102–105]. Doping involves introducing a trace of impurities
into a pure metallic sample, while maintaining the crystalline
structure of the metal [106]. Alloying does modify this structure
forming chemical bonds between the host and guest metals
[107]. But when the dopants tend to be metal elements, doping

Figure 4 (a) Proposed mechanism for the electroreduction of CO to acetate. Reprinted with permission from Ref. [94], Copyright 2023, American Chemical
Society. (b) Mechanism for CO-to-acetate via OH− attack. Reprinted with permission from Ref. [95], Copyright 2019, Springer Nature. (c) Activation free-
energy barriers of ethylene as well as acetate via H attack and –OH dissociation on Cu(100). Reprinted with permission from Ref. [97], Copyright 2023,
Springer Nature.

Figure 5 (a) Energy profile of the C3 formation intermediates. The geometries of intermediate states and transition states are shown as insets (only the CO
species in the reaction are illustrated). Red, oxygen; grey, carbon; orange, copper. Reprinted with permission from Ref. [100], Copyright 2018, Springer Nature.
(b) The energy profiles of CO–CO and CO–OCCO dimerizations on Cu(111), Cu(100) and the interface. Reprinted with permission from Ref. [98], Copyright
2019, Springer Nature. (c) Selected elementary steps of the mechanism for the reduction of CO to C3 products. Reprinted with permission from Ref. [59],
Copyright 2023, Wiley-VCH GmbH.
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and alloying strategy are frequently used in modifying the
electronic properties of catalysts without highlighting the dif-
ference.
Since foreign atoms are incorporated into the host material,

the interaction between the valence orbital of the transition
metal and the electron orbital of the adsorbate will cause surface
strain, thus affecting the adsorption energy for the catalyst to the
key intermediates [108,109]. At present, several M-doped Cu
systems (M = Ag, Au, Ru, and Pd) have attracted much attention
in ECOR. Sargent’s group [110] carried out DFT calculations to
reveal the barrier of C–C coupling of different bimetallic cata-
lysts (Fig. 6a). They found that Ag-doped Cu possesses the
lowest activation energies for C–C coupling. Although Pd-doped
Cu exhibits relatively high activation energies, Pd, when used as
a dopant, exhibits appropriate hydrogenation reaction free
energies of HOCCH* and H-absorption abilities, as shown in
other work (Fig. 6b) [111]. In addition, as shown in Fig. 6a, Au
and Ru are suitable dopants for C1–C1 coupling and C1–C2
coupling, respectively.
The introduction of Ag mainly affects the C–C coupling step

and the adsorption configuration of reaction intermediates.
Sargent’s group [112] reported that the Ag-Cu2O catalysts syn-
thesized via a kinetically restricted galvanic replacement between
Cu2O and Ag+ ions (Fig. 7a) reached an acetate FE of 70% and a
full-cell energy efficiency of 25% at the optimal Ag:Cu loading
(Fig. 7b). The presence of new active sites promoted the surface
CO dimerization by suppressing the competing HER reaction,
and the preferential destabilization of intermediates along the
ethylene and ethanol pathway promoted acetate selectivity
through the *CCO intermediate, as supported by the DFT study.
Similarly, Lu’s group [113] proposed that the Ag-modified,
oxide-derived (OD) Cu catalysts, prepared via high-energy ball
milling, exhibited near 80% FEs for C2+ liquid products (Fig. 7d).
The optimal selectivity for C2+ liquid products was achieved with
atomic ratio of Cu:Ag of 0.8:0.2. Representative surface-
enhanced infrared absorption (SEIRA) spectra of Cu(OD) and
Cu(OD)0.8Ag0.2 are shown in Fig. 7c. This substantial difference
suggests that the introduction of Ag in the sample decreases the
average binding strength of CO likely by introducing weak
binding sites that are distinct from sites on the Cu surface. More
recently, Pang’s group [57] examined a series of Cu-in-N dilute
alloys (DAs; N = Ag, Au, Pd, Pt, Ni) for the reaction energies of
*(HO)C=COH → *C=C=O and *(HO)C=COH → *C=COH. It
was found that the use of Ag as Cu hosts favors monodentate-
binding *C=C=O over bidentate-binding *C=COH, thus pro-

moting the selective formation of acetate (Fig. 7e). They
achieved a CO-to-acetate FE of 91% with CO gas at 10 atm
(1 atm = 1.01 × 105 Pa, Fig. 7f), as well as an FE of 85% with an
820-h operating time (Fig. 7g), which were the highest known
selectivity and stability for acetic acid to date.
When Pd as a dopant is introduced to Cu-M system, it is very

likely that the hydrogenation step can significantly affect the
reaction pathway [114]. Li et al. [111] proposed that incorpor-
ating Pd in Cu can moderate hydrogen adsorption and assist the
hydrogenation of C2 intermediates, thereby providing an
approach to favor alcohol production and suppress ethylene.
Given the composition-dependent electrocatalytic performance,
the CuPd0.007 catalyst delivered a peak FEalcohol of 40%, at −0.62 V
vs. RHE (Fig. 8a). According to extended X-ray absorption fine
structure (EXAFS) spectra of different CuPd catalysts, a pure Pd-
Cu contribution from CuPd0.007 was observed; whereas, an
additional Pd–Pd bond formation was observed for the CuPd0.011
(Fig. 8b). The results indicated that an optimal loading of Pd on
Cu may be the decisive factor for achieving a desirable reaction,
because the aggregation of Pd leads to excessive H adsorption,
thus promoting the formation of H2 rather than C2+ products. It
also confirms the role of atomic-level doping in steering post
C–C coupling reactions toward C2+ products. In subsequent
research, Shen et al. [115] reported Cu-Pd bimetallic electro-
catalysts exhibiting high selectivity toward acetate. They pro-
posed the reaction pathway with *CO–*CHO following a CO
hydrogenation step, in agreement with the argument of Pd-
induced lower hydrogenation free energy (Fig. 8c). Moreover,
the Cu49Pd51 catalyst produced acetate dominantly throughout
the investigated potential range (Fig. 8d). The composition
dependence can be attributed to the excess Pd aggregation in the
Pd-rich catalyst. Zheng’s group [116] proposed an atomically
ordered copper-palladium intermetallic compound (Fig. 8e) to
enhance the adsorption and coverage of surface *CO, and
achieve a 500-h CO-to-acetate conversion at 500 mA cm−2 with
a stable acetate FE of ~50%. The ordered Cu-Pd sites can avoid
excessive binding with carbonic species, thereby maximizing the
effect of adsorption enhancements. This is in agreement with the
report that Pd binds carbon-based species more strongly than
Cu [117]. According to the DFT calculation, the *H binding
energy on CuPd(110) was lower than that on Pd(111). This
decreased *H adsorption was attributed to the occupation of
hollow sites consisting of Cu and Pd atoms by *CO, which sank
*H below the surface and thus inhibited H2 evolution.
In addition to Ag and Pd, Au and Ru are also used as dopants

Figure 6 (a) DFT calculated reaction barriers (Ea) for C1–C1 and C1–C2 couplings on screened M-doped Cu systems. Reprinted with permission from Ref.
[110], Copyright 2019, The Author(s). (b) Plot of the calculated hydrogenation reaction free energies of HOCCH* against the H adsorption energies of
different dopants. Reprinted with permission from Ref. [111], Copyright 2020, The Author(s).
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to improve C2+ activity and selectivity. Zhao’s group [94] fab-
ricated Cu-Au alloys with atomically isolated Au atoms on the
Cu host by a one-step reduction (Fig. 9a). Gold is an effective
electrocatalyst to enhance the *CO coverage on Cu and accel-
erate C–C bond formation [118]. As a result, 1% Au-doped
Cu(111) exhibited superior activity of the reduction of CO to
acetate on the microporous layer (MPL) with 2 mg cm−2 carbon
black (Fig. 9b). Sargent’s group [119] prepared a Ag-Ru-Cu
catalyst (Fig. 9c, d) via a two-step galvanic replacement. In
contrast to Ag-Cu catalyst system, the introduction of Ru further
increases the average *CO adsorption energy and thus results in
higher *CO coverage on the surface. As a result, a high n-pro-
panol (n-PrOH) FE of 36% ± 3% was achieved using a Ag-Ru-
Cu catalyst (Fig. 9e).

Morphology control
The morphology of electrocatalysts can play a role in their cat-
alytic performance for ECOR [120,121]. One the one hand,
catalysts with various morphologies expose specific facets to

enhance activity and selectivity of specific products [122,123].
One the other hand, the confinement effect produced by the
cavity structure leads to the local enrichment of intermediates to
promote C–C coupling reactions in a confinement space
[124,125]. To date, it has been found that Cu-based nanowires,
nanosheets, nanoparticles (NPs), and nanocavities show differ-
ent product distributions in the performance of CO-to-C2+
electroreduction.
Cu-based nanowires were synthesized to investigate the rela-

tionships between the surface structures and the catalytic per-
formance, on the basis of which DFT calculations were
conducted to elucidate possible reaction pathways on different
facets of Cu nanowires. Wang’s group [126] reported that the
coordinately unsaturated (110) surface sites on the Cu nanowires
were responsible for the selective reduction of CO to C2+ species
at low overpotential. In terms of the free energy of CO-to-C2+
via CHO–CHO or C–C coupling mechanism, Cu(110) is more
thermodynamically favored than (211), (100), and (111). Kang’s
group [127] reported a two-dimensional triangular-shaped Cu

Figure 7 (a) Synthetic scheme for the AgCu DA bimetallic catalyst materials through a galvanic replacement reaction. (b) Comparison of the performance
metrics of Ref. [112] and other relevant references. Reprinted with permission from Ref. [112], Copyright 2023, Springer Nature. (c) Representative time
evolution of the infrared bands that result from CO bound to the Cu surface recorded after removing CO in bulk solution by pulsing Ar-saturated electrolyte
and subsequently delivering CO-saturated electrolyte at 45 s. (d) Ball milling time-dependent FE of multi-carbon liquid products. Reprinted with permission
from Ref. [113], Copyright 2023, The Author(s). (e) Schematic illustration of design matrix considering both CO pressure and host metal for Cu/M-DA
materials. (f) Effect of CO partial pressure with a potential of −0.57 V vs. RHE in 5 M KOH. (g) Demonstration of stable operation: Cu/Ag-DA in a 10-atm
MEA cell during 820 h of electrolysis at 100 mA cm−2 current density in 2.5 M KOH. Reprinted with permission from Ref. [57], Copyright 2023, Springer
Nature.
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nanosheet, which selectively exposed Cu (111) facets
(Fig. 10a, b). The extraordinarily stable (111) surface enhanced
acetate formation while suppressing ethylene and ethanol for-
mation (Fig. 10c). Sargent’s group [98] reported NPs consisting
of highly fragmented copper structures with a mixture of Cu
(111) and Cu(100) facets (Fig. 10d–f). Since the Cu(111) facet is
C1 selective and the Cu(100) facet is C2 selective, additional

opportunities for C1 and C2 intermediates to become coupled are
created. As a representative work, Zhao’s group [60] proposed a
morphology-controlled synthesis strategy without any capping
agents (surfactants, polymers, small adsorbates, or biomolecules)
to present the intrinsic catalytic performance of catalysts. They
synthesized a series of Cu2O nanocrystals by combining the
concentration depletion effect and the oxidation etching process

Figure 8 (a) Productions on Cu, CuPd0.004, CuPd0.007 and CuPd0.011 catalysts at various applied potentials (vs. RHE) in 1 M KOH. (b) Simulated coordination
numbers of CuPd0.007 (left) and CuPd0.011 (right). Reprinted with permission from Ref. [111], Copyright 2020, The Author(s). (c) Relative hydrogenation
energies for *CO on the various catalyst surfaces. (d) FEs and geometric current densities measured for the electroreduction of CO on Cu49Pd51. Reprinted
with permission from Ref. [115], Copyright 2022, American Chemical Society. (e) Crystal structure of CuPd with ordered, body-centred cubic structure and its
projection in the [1 10] direction. Reprinted with permission from Ref. [116], Copyright 2022, Springer Nature.

Figure 9 (a) Schematic illustration of CuAu1% and CuAu30% preparation. (b) X-ray computed tomography of CuAu1% on homemade gas diffusion layers with
2 mg cm−2 carbon black. Reprinted with permission from Ref. [94], Copyright 2023, American Chemical Society. (c) Bright-field scanning transmission
electron microscopy (STEM) image and (d) high-angle annular dark-field STEM (HAADF-STEM) image of the Ag-Ru-Cu catalyst. (e) n-PrOH FEs and
partial n-propanol current densities on different electrodes at various current densities. Reprinted with permission from Ref. [119], Copyright 2022, Springer
Nature.
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(Fig. 10g), and enhancing the electrocatalytic performance for
the conversion of CO to n-propanol. They found the Cu2O
branching cubic framework derived catalyst (BCF-Cu2O) pre-
sents the highest n-propanol current density among the series
(Fig. 10h), which may be attributed to its exposed facets.
According to DFT calculations, it is easier to form OCCO*
intermediates on the (100) facet and the exposure of the (110)
facet would facilitate the coupling of the OCCO* dimer with a
third CO*. Therefore, the coexistence of clean Cu(100) and Cu
(110) is more conducive to the formation of C3 products.
Catalysts with a confinement space appear to be more efficient

in promoting the generation of C3 products. Zhuang et al. [100]
reported that Cu2O NPs were synthesized into three-dimen-
sional nanocavity Cu catalysts by an in situ electroreduction
strategy, and the results showed that the higher C3 production
had a correlation with the morphology-driven confinement
effect (Fig. 11a, b). According to the finite-element method
(FEM) simulations, they found that the cavity restricts the out-

flow of locally produced C2 species, which leads to higher local
C2 intermediate concentration inside the cavity, and ultimately
generates a heightened C3 production rate inside the cavity
(Fig. 11c, d). More recently, Du et al. [128] conducted an
investigation of the multi-shell structured Cu catalysts (Fig. 11e).
They demonstrated that the enrichment of C1 and C2 inter-
mediates by nanoconfinement space led to the possibility of
further coupling. Notably, the Raman peaks (Fig. 11f) of Cu-CO
stretching over the Cu2O@)2Cu2O catalyst were stronger in
comparison to those with other catalysts under the same con-
ditions, which indicated that the catalyst with a multi-shell
structure possessed a stronger Cu-CO adsorption ability, thus
contributing to the subsequent C1–C1 and C1–C2 coupling
(Fig. 11g).

Surface modification
The adhered organic molecules with different electronic prop-
erties can influence the local environment of catalyst surface by

Figure 10 (a) TEM image of triangular Cu nanosheets. (b) XRD pattern of Cu nanosheets assembled on a Si wafer, which preferentially shows the (111)
peak. Inset: selected area electron diffraction (SAED) pattern of Cu nanosheets. (c) Total current densities and cumulative FEs vs. applied potentials for CO
electroreduction on Cu nanosheets in 2M KOH. Reprinted with permission from Ref. [127], Copyright 2019, Springer Nature. (d) The catalyst with highly
mixed nanofragments of the Cu(200) and Cu(111) facets may bring the optimal C1 and C2 sites into physical proximity, contributing with one another to the
coupling of C1–C2 and then the coupling into C3 products. (e) The dark-field-TEM image highlights the Cu(111) and Cu(100) facets of catalysts HF-Cu. Scale
bar: 100 nm. (f) The high-resolution TEM image shows facet information for the catalysts HF-Cu. Scale bar: 10 nm. Reprinted with permission from Ref. [98],
Copyright 2019, Springer Nature. (g) Illustration of concentration depletion and oxidation etching effects between different morphologies of Cu2O nano-
crystals. (h) FEs of C2+ products of COR for the catalysts derived from surfactant-free Cu2O nanocrystals at −0.45 V vs. RHE. Reprinted with permission from
Ref. [60], Copyright 2022, American Chemical Society.
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tuning interactions among reactants and intermediates, thereby
favoring the stabilization of key intermediates for more selective
ECOR to C2+ products [129,130]. Ji and coworkers [131]
reported a copper NP/polypyrrole (Cu-Ppy) nanowire, which
was fabricated by the assembly of metallic Cu NPs with Ppy
nanowires (Fig. 12a, b). The Cu-Ppy composite catalyst enabled
selective CO electroreduction toward C2H4, with an FE of 69% at
−0.78 V vs. RHE. As the Ppy coating stabilizes OCCO*, a key
intermediate to produce C2H4, both the activity and selectivity of
Cu-Ppy for CO-to-C2H4 were enhanced (Fig. 12c). Moreover, a
coordination polymer (CP) catalyst containing Cu(I)-imidazole
coordination bonds for CO-to-acetate conversion was reported
by Luo and coworkers (Fig. 12d) [62]. From DFT calculations,
the catalytic sites of the CP structure are the isolated Cu site,
where the enthalpy changes of HOCCOH* to OCC* are more
negative than that of HOCCOH* to HOCC*, suggesting the
high selectivity toward acetate. As a result, the CP catalyst
enabled a 61% FE toward acetate at a current density of
400 mA cm−2 (Fig. 12e). In subsequent research, Wang et al.
[132] reported an amino functionalized Cu surface (Cu@NH2)
and elucidated the effect of the amino groups on the Cu surface
based on a combination of in situ spectroscopy studies and DFT
calculations (Fig. 12f, g). The authors found that the presence of
surface amino groups could stabilize the *CHO intermediate
through hydrogen bonding, thereby increasing the coverage of
*CHO on the catalyst’s surface to facilitate the process of *CO–
*CHO coupling to acetate with an FE of 51.5% and an acetate
partial current density of around 150 mA cm−2 (Fig. 12h).

In-situ reconstruction
By designing metal oxides and complexes precursors, which will
undergo substantial atomistic reconstruction under reducing
conditions, the electrocatalyst properties can be affected [133–
136]. Generally, the reconstruction strategy for Cu-based com-
pounds leads to a significant structure evolution during the

ECOR process. The in situ generated interface, the oxygen
species and ligands on the catalyst surface will create new active
centers to decrease the energy barrier of the C–C coupling
reaction for C2+ products [137,138].
OD-Cu has been proven as a group of efficient electrocatalysts

for ECO2R, which derives from reconstructed Cu oxide such as
CuO and Cu2O (CuxO) [139]. The in situ generated CuxO/Cu
interface plays a key role in ECOR, rather than the initial copper
oxide [140,141]. OD-Cu catalysts have been shown to yield a
high selectivity toward oxygenates vs. hydrocarbons [142,143].
Pioneer development of OD-Cu in ECOR was demonstrated by
Kanan and coworkers [144]. The nanocrystalline Cu prepared
from Cu2O produced C2+ products with 57% FE, which out-
performed Cu NPs. Higher surface roughness factor and density
of grain boundaries (GBs) are attributed to the enhanced CO
reduction activity and selectivity [145,146]. Long et al. [147]
presented a directed reconstruction strategy by introducing Au
NPs to steer the formation of abundant undercoordinated Cu
sites. In the presence of Au NPs, the Cu atoms tend to rearrange
into a disordered surface, bearing more disordered Cu atoms
around Au NPs (Fig. 13a). Furthermore, it is highly desirable to
investigate stable Cu compounds as alternatives to CuxO as
starting materials for electrochemical in situ reconstruction and
its effect on ECOR performance. For example, Schmid and
coworkers [148] reported 92% FE for CO reduction to C2+ at
600 mA cm−2 using Ag2Cu2O3 as a catalyst template to in situ
form CuAg bimetallic material. The surface valence band X-ray
photoelectron spectroscopy (XPS) spectra of the mentioned
materials are shown in Fig. 13b, where the position of the d-
band center is shifted significantly away from a monometallic
Cu surface. By analyzing the mass spectrometry data in Fig. 13c,
they proposed that the available electrons were exclusively used
to drive the reduction of Ag2Cu2O3 in the first 75 s.
Besides, copper-based catalysts derived from metal-organic

complexes also demonstrated good performance for ECOR. Du

Figure 11 (a) TEM and (b) scanning electron microscopy (SEM) images for the cavity structure. (c) The schematic shows how the cavity confinement effect
promotes C2 species binding and further conversion to C3. *: the surface species. (d) FEs of C2 products (acetate, ethanol and ethylene) (blue) and C3 propanol
(orange) on the nanocavity Cu catalysts under a range of applied potentials. Reprinted with permission from Ref. [100], Copyright 2018, Springer Nature.
(e) TEM images of Cu2O@Cu2O yolk–shell nanoparticles (YSNPs). (f) Operando Raman spectroscopy of Cu2O NPs/GDE, Cu2O@Cu2O YSNPs/GDE, and
(Cu2O@)2Cu2O YSNPs/GDE under CO conditions. (g) ECOR product distribution of (Cu2O@)2Cu2O YSNPs at each given current density in 1.0 M KOH
under ambient conditions. Reprinted with permission from Ref. [128], Copyright 2023, American Chemical Society.
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et al. [63] employed cuprous 7,7,8,8-tetracyanoquinodimethane
(CuTCNQ) as the precursor to form N-containing Cu NPs (N-
Cu NPs) catalyst. They found the occurrence of structure evo-
lution and the existence of residual organic ligands in the
reconstructed catalysts under reductive conditions according to
the Fourier transform infrared (FTIR) spectrum (Fig. 13d). The
XPS spectra in the Cu 2p and C 1s regions for N-Cu NPs and
CuTCNQ show the changes in the local electronic environment
during the CO reduction process. More electrons are transferred
from C atoms to N atoms as the enhanced C–N binding energy
is observed in the C 1s regions. Then, as expected, the electron
cloud densities of Cu atoms increased due to the connection
with N atoms. Thus, the formed N-Cu NPs acted as the active
center and it can be anticipated that the reconstructed N-Cu NPs
with unique structural features would present enhanced ECOR
performance. Impressively, the electrocatalyst presented the
highest FE of 81.31% towards multi-carbon products at −0.69 V
vs. RHE (Fig. 13e). Similarly, Rong et al. [149] reported a
strategy for highly selective production of acetate from CO
electrolysis by constructing metal-organic interfaces, which were
constructed by in situ reconstruction of Cu complexes. The
reconstructed copper phthalocyanine (CuPc) catalyst achieves a
high FE of 84.2% for acetate production and an acetate partial

current density as high as 605 mA cm−2 (Fig. 13f). The time-
dependent X-ray diffraction (XRD) shows the gradual dis-
appearance of characteristic peaks of the crystal structure of β-
phase CuPc (Fig. 13g). In addition, they prepared a control
electrode with the absence of organic ligands (CuPc-after-wash),
possessing a similar Cu loading to the CuPc electrode. Conse-
quently, that Raman peak is invisible over the CuPc-after-wash
electrode, while a very broad Raman peak appears at
1800–2100 cm−1 assigned to the adsorption of *CO in CuPc
electrode, pointing out the vital role of newly-formed metal-
organic interfaces in facilitating *CO adsorption on Cu.

Defect engineering
Structural defects have been extensively used to tune the cata-
lytic activity [150–152]. So far, point defects and planar defects
have been introduced to Cu-based catalysts for ECOR. The
defects can change the surface properties thus optimizing the
binding energy or adsorption energy of reaction intermediates,
regulating the reaction pathway [153]. In addition, defects can
change the reaction environment and increase the number of
active sites to promote the reduction reaction [154]. In this
section, several kinds of defects, including vacancy, GBs and
stacking faults (SFs), are presented.

Figure 12 (a) TEM image of Cu NPs. (b) Energy-dispersive X-ray spectroscopy elemental mappings of Ppy NWs. (c) FE values for all products vs. applied
potentials of Cu-Ppy composite. Reprinted with permission from Ref. [131], Copyright 2021, Elsevier. (d) Schematic of the synthesis process for CP catalyst.
(e) Current density and FE as a function of the applied potential for ECOR on CP catalyst in 3 M KOH. Reprinted with permission from Ref. [62] , Copyright
2022, Wiley-VCH Verlag GmbH. (f) TEM image of Cu@NH2. (g) In situ attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR-
SEIRAS) recorded during CO electroreduction on Cu@NH2. (h) Acetate FE and partial current density vs. the applied potential for CO electroreduction on
Cu@NH2 in CO-saturated 1.0 M KOH solution. Reprinted with permission from Ref. [132], Copyright 2023, American Chemical Society.
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Vacancy is a point defect where atoms are missing at lattice
junction positions. Oxygen vacancy (Ov) is the most common
anion vacancy exhibiting low formation energy and significantly
affects the surface electronic structure [155,156]. Huang’s group
[157] sprayed Cu atoms onto CeO2 nanorods and found that Cu
atoms at the interface coordinate with Ce atoms due to the
formation of Ov (Fig. 14a–c). According to DFT calculations,
the Ov promoted the activation and dissociation of H2O, which
may lead to a H-rich surface and thus enhance the selectivity of
C2+ products through the hydrogen-assisted coupling mechan-
ism (Fig. 14d).
GB refers to the interface between crystal grains with different

crystal orientations, a two-dimensional planar defect [158].
Introducing GBs to Cu-based catalysts can change the surface
properties and reduce the reaction barrier [159,160]. Quantify-
ing the role of GBs in Cu-catalyzed CO reduction is essential for
establishing a firm design principle. As a typical work, Kanan’s
group [161] reported Cu NPs on carbon nanotubes (Cu/CNT)
with different average GB densities (Fig. 14e), which exhibited a
direct correlation between the activity of CO reduction to C2+
and GB densities. They used vapor deposition and thermal
annealing to prepare Cu NPs on CNTs with different GB den-
sities, and the GB densities were quantified by the length of the
GBs and the particle area. With the increase in annealing tem-
perature, a gradual decline in the GB densities was observed by
TEM, leading to decrease of CO reduction activities and the FEs
of C2+ products. The strong correlation between GB surface
density and CO electroreduction activity suggests that GBs alter
the surface properties of the particle to lower the barrier for this
reaction. More recently, Niu et al. [75] reported a synthesis of
Pb-Cu NPs with numerous Pb-concentrated GBs (Fig. 14f). It
has been proposed that the “atomic size misfit” strategy can
promote intra-lattice stress to induce and stabilize low-coordi-

nated sites [162,163]. The Pb-Cu catalyst possesses abundant
GBs compared with the Cu catalyst and a higher density of the
Pb atoms are concentrated in the GBs zone, which reveals that
the Pb-doping might be the main reason of the GB formation.
SFs is another type of planar defect that frequently manifests

in metallic materials [164]. Wu et al. [65] reported a laser
irradiation synthesis of Cu2(OH)3NO3, as a precursor to make
gerhardtite-derived Cu (GD-Cu) NPs with abundant SFs. It was
discovered that the low coordination environment of SFs would
upshift the Cu d-band center, leading to an increase d-electron
back-donation to the CO 2π* antibonding orbital, thereby
enhancing CO adsorption. An FE of 56% in CO-to-acetate
electroreduction was achieved by regulating the *CO coverage in
the GD-Cu with numerous defects. During the formation of SFs,
there was a structural reconstruction of Cu2(OH)3NO3 according
to ab initio molecular dynamic (AIMD) simulations. The
dynamic evolution of SFs was tracked in Fig. 14g, which exhibits
disordered domains at 0.5 ps, and then these Cu atoms removed
or inserted part of a close-packed layer of atoms forming SFs in
the Cu crystal at 2 ps.

SYSTEMS DESIGN
Apart from catalyst materials, reaction environments also play
an important role in modulating the ECOR performance
[165,166]. The basic idea of system design is to create solid-
liquid-gas triple-phase interfaces, which influences on the mass
transport process in the gas-involved reaction [167]. In general,
the improvement of ECOR system warrants consideration of
catalyst support, cell configuration and gas diffusion electrode
(GDE).

Catalyst support
At odds with electrocatalysts simply based on active compo-

Figure 13 (a) Snapshots of the simulated reconstruction processes from CuO to R-Cu and CuO/Au to R-Cu/Au. Reprinted with permission from Ref. [147],
Copyright 2024, American Chemical Society. (b) Ex situ surface valence band XPS spectra belonging to reference copper and silver foils, and the fully reduced
post-electrolysis catalyst samples which were characterized after being exposed to reaction conditions for 10 min and 48 h. (c) The applied current density
(45 mA cm−2), measured potentials at the cathode and resulting signals for ethylene and hydrogen are shown vs. time. Reprinted with permission from Ref.
[148], Copyright 2020, Royal Society of Chemistry. (d) FTIR spectra of CuTCNQ/GDL and N-Cu NPs/GDL. (e) C2 FE and the corresponding partial current
density of N-Cu NPs/GDL at each given potential in 1.0 M KOH. Reprinted with permission from Ref. [63], Copyright 2022, Royal Society of Chemistry.
(f) Performance comparison for CO electrolysis to acetate. (g) Time-dependent XRD patterns of the CuPc electrode after CO electrolysis at 500 mA cm−2.
Reprinted with permission from Ref. [149], Copyright 2023, Wiley-VCH Verlag GmbH.
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nents, they might be highly dispersed on a support featured by
adequate porosity and strong hydrophobicity for efficient mass
transport and interface building [168,169]. By properly reg-
ulating the catalyst support, a superior catalytic performance
could be achieved.
The hydrophobicity of the catalyst support is key in forming

triple-phase boundaries and achieving high reaction rates
[170,171]. Li et al. [49] prepared supported polycrystalline
copper powder electrocatalysts by depositing those onto poly-
tetrafluoroethylene (PTFE)-treated carbon fiber paper (Fig. 15a).
Compared with that on non-PTFE-treated carbon fiber paper
and glassy carbon, the Cu powder deposited on the PTFE treated
hydrophobic carbon support showed the merit in improving the
performance of CO electroreduction (Fig. 15b). More recently,
Sargent’s group [172] reported a carbon reservoir catalyst (CRC)
(Fig. 15c), which incorporated Cu NPs into a microporous CO-
capturing support to facilitate CO transport and distribution.
Furthermore, by controlling the ratio of pyridinic and pyrrolic N
atoms doped in the CRC, high ECOR selectivity to C2+ alcohols
had been achieved at high carbon efficiency (Fig. 15d).
Besides, conductive polymers can be used to cover the surface

of electrocatalysts to enrich intermediates, thereby promoting
the selectivity toward C2+ products (Fig. 15e) [173]. Duan et al.
[174] prepared the core-shell poly (ionic liquid)-Cu hybrids
(Cu@PIL) by in-situ radical polymerization. As a result, Cu@PIL
exhibited high C2+ selectivity and excellent tolerance across a
broad range of CO concentrations. Remarkably, a high FE C2+

of
71.1% was achieved by feeding as less as 5.0 vol% CO (Fig. 15f).
The performance was mainly attributed to the local enrichment

of CO by the interaction with functionality at the PIL layer and
the abundant porous structure of the skeleton enhancing the
supply of CO to the active Cu@PIL interface, thereby enabling a
specific CO-to-C2+ transformation.

Cell configuration
The ECOR is usually performed in flow cells, MEA cells, and H-
cells. In a conventional H-cell (Fig. 16a), catalysts are deposited
on carbon paper immersed in non-flowing electrolyte. Since
feedstock gas is supplied from the bulk electrolyte, the reaction is
mass transport limited, and the diffusion of gaseous reactants to
the electrocatalyst is insufficient. More importantly, CO has low
aqueous solubility, which further delays the reaction rate. Con-
sequently, there are virtually no reports of employing H-cell in
the research of ECOR.
In recent years, studies have switched to using flow-cells with

GDEs, which allow for increased contact between the electrolyte,
catalyst, and gas [175–177]. Jouny et al. [96] constructed a three-
compartment CO flow cell where CO was directly fed on one
side to the surface of catalyst while KOH electrolyte was fed on
the other (Fig. 16b). The well-engineered triple-phase interface
allowed remarkable CO-to-C2+ selectivity at high reaction rates.
Furthermore, the MEA cell is an emerging platform that com-
bines cathode:membrane:anode in a zero-gap configuration and
reduces ohmic loss, liquid product losses and salt formation
[178]. The cathode of an MEA cell does not need an electrolyte
during operation, which results in better operational stability
than that of a flow cell [179]. More recently, Hasa et al. [180]
examined the role of membrane on product selectivity and cell
stability in an MEA cell (Fig. 16c). They found that the prop-

Figure 14 (a) Aberration-corrected HAADF-STEM (AC-HAADF-STEM) image, (b) colored AC-HAADF-STEM image, and (c) schematic model of Cu-
CeO2. (d) FEs of products on Cu-CeO2. Reprinted with permission from Ref. [157], Copyright 2023, American Chemical Society. (e) TEM characterization of
Cu NPs in the as-deposited Cu/CNT electrodes annealed under N2 at 200, 300, 400 and 500°C. Reprinted with permission from Ref. [161], Copyright 2016,
American Chemical Society. (f) Scheme of the synthesis of the Pb-Cu and the Cu electrocatalysts. Reprinted with permission from Ref. [75], Copyright 2023,
The Author(s). (g) Dynamic evolution of SFs during the AIMD process. Part of atoms are numbered to track their movements. Reprinted with permission
from Ref. [65], Copyright 2023, American Chemical Society.
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erties of the membrane significantly impacted the selectivity of
the liquid product but had no impact on the gas products,
because a high ethanol crossover through the membrane tuned
the selectivity toward C2+ products.

GDE
The electrode structure plays the principal role in the reaction

rate by supplying adequate gaseous reactants to the hetero-
geneous electrocatalyst surface [181]. The improvement of the
ECOR reactor through electrode structure design based on GDE
has been a hotpot in this field [182,183]. GDEs are high-surface-
area, porous electrodes, consisting of catalyst layers and gas
diffusion layer (GDL) supports [184]. The composition and
structure of GDE can influence the transport of reactants and

Figure 15 (a) CO mass transport at the carbon-supported electrode vs. the conventional electrode. (b) CO electrolysis results for different carbon supports.
Reprinted with permission from Ref. [49], Copyright 2019, American Chemical Society. (c) CO availability in the gas phase electrolyzer when CO distribution
is promoted at the catalytic active sites, CORR to desired C-products can occur at the diluted CO conditions. (d) Scheme of the different nitrogen groups in N-
doped carbon support. Reprinted with permission from Ref. [172], Copyright 2023, Elsevier. (e) Scheme of a PIL-supported Cu-based catalyst. Reprinted with
permission from Ref. [173], Copyright 2022, Wiley-VCH Verlag GmbH. (f) FEC2+

during CORR over Cu NPs and Cu@PIL with different concentrations of
CO gas. Reprinted with permission from Ref. [174], Copyright 2023, Elsevier.

Figure 16 (a) Schematic illustration of H-cell. (b) Schematic illustration of flow cell. Reprinted with permission from Ref. [96], Copyright 2018, The Author
(s). (c) Schematic illustration of MEA cell. Reprinted with permission from Ref. [180], Copyright 2023, Elsevier.
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products. For example, Xu et al. [185] proposed that cathodic
GDE flooding and Ir contaminants are two main issues causing
excessive HER during the testing period. PTFE is a hydrophobic
polymer used to wet-proof GDLs and catalyst layers, which can
effectively mitigate flooding. By increasing the PTFE content in
the GDEs and using an alkaline stable Ni-based anode, these
issues can be partly alleviated (Fig. 17a, b). However, high PTFE
loadings (>15 wt%) might electrically insulate the catalyst layer
and increase ohmic losses [186]. Therefore, methods that enable
fine control over the hydrophobicity of GDEs are critical for
striking this balance. On the other hand, the structure of GDE
might influence the local environment of ECOR. Rabiee et al.
[187] used hollow fiber GDEs (HFGDEs) with a nanocube
copper layer for ECOR to C2+ products (Fig. 17c, d). Pushing CO
through the hollow fiber porous wall into the electrolyte side
likely led to a higher local CO concentration, more use of the
catalytic active sites, and the formation of a triple-phase
boundary.

SUMMARY AND OUTLOOK
The electroreduction of CO to value-added chemicals is an
attractive technique to supplement the current FT synthesis and
ECO2R reaction. Through a cascade strategy to realize the uti-
lization of CO2, ECOR presents a higher selectivity to C2+ pro-
ducts. In this review, we have summarized the performance
evaluation and the formation mechanisms of C2+ chemicals for
ECOR reaction with focus on the Cu-based catalyst engineering
and system design. A summary of the ECOR performance of

various Cu-based electrocatalysts under different reaction con-
ditions is given in Table 2. Although remarkable advances in the
ECOR on Cu-based catalysts toward C2+ products have been
achieved, several challenges are yet to be overcome and corre-
sponding suggestions are listed in the following in terms of
catalyst engineering and system design.

Catalyst engineering
In the plethora of research work reported at present, researchers
often employ a trial-and-error synthesis strategy to screen effi-
cient catalysts from a pool of candidate materials [188–192]. To
address this issue, it is worth considering a theory-guided
rational design. As of today, the application of DFT technology
has shown great advantages in ECOR catalyst scrutiny and
screening. Based on reaction descriptors such as binding
strength, adsorption energy and Gibbs free energy, using DFT
calculations can help to quantitatively describe and evaluate the
performance of the catalyst [193–196]. Meanwhile, the reliability
of the descriptors would require further research experimentally
[197]. Such an approach enhances the efficiency of catalyst
design, leading to greater selectivity, activity and stability.
Further effort is required to establish a good “structure-per-

formance” correlation for efficient and real catalysts design. In
addition to DFT calculations, with the joint help of various in
situ characterization techniques, comprehensive studies can be
carried out to disclose the complicated change in a real chemical
environment, ranging from reaction intermediates to the
structure, morphology and composition evolution at the elec-

Figure 17 (a) Schematic diagram of the potential degradation mechanism of the MEA during ECOR. (b) Operando wide-angle X-ray scattering (WAXS)
mappings at the region of MPL. Reprinted with permission from Ref. [185], Copyright 2023, The Author(s). (c) Schematic of CO delivery mechanisms in GDE
and non-GDE mode. In GDE mode the HFGDEs are dead-end, and therefore CO diffuses through the hollow fiber walls under pressure. (d) Partial current
density of ethylene formation on CuCube HFGDE as a function of the applied potentials in GDE and non-GDE mode. Reprinted with permission from Ref.
[187], Copyright 2023, Elsevier.
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trode scale. Advanced in situ characterization technology such as
operando scanning tunneling microscope, operando TEM,
operando SEM, and operando XRD, would provide helpful
information for revealing the reaction pathways under realistic
reaction conditions. These days, in situ surface-enhanced Raman
spectroscopy (SERS) and in situ SEIRAS are used to provide
direct evidence substantially enhanced intermediates enrichment
on Cu-based catalysts [198–200]. From the perspective of
practical application, catalysts often cannot be directly scaled up
for production. Therefore, developing advanced catalyst pre-
paration techniques is also a crucial direction for the future.

System design
To date, the formation of the C2+ products is still far from
commercialization [36,142,201–205]. Due to the insufficient
intrinsic activity of catalyst materials, as well as the competition
for protons with hydrogen evolution reaction in aqueous sol-
vents, there still remains a demand for a large overpotential to
deliver appreciable current. Therefore, the effective modification
of catalyst materials and the reaction environment will help

improve the kinetics of the ECOR process. Catalyst development
strategies of increasing both intrinsic activity and number of
active sites can be further explored based on that mentioned in
this review. Moreover, CO2 electroreduction in strongly acidic
medium has been demonstrated to have lower overall cell vol-
tage than that with the near-neutral and alkaline media [206–
208]. However, there is a dearth of research on electrochemical
reduction of carbon monoxide under acidic conditions, and
there is significant scope for improvement in this field [209]. If
low overpotential, high current density, and long-term stability
can be achieved in the ECOR reaction, and if it can work in
cooperation with ECO2R, the utilization of CO2 driven by
electrocatalysis will accelerate its approach to carbon-neutral
applications.
Another huge barrier for commercialization is the lower car-

bon efficiency. Although ECOR can address carbon losses from
carbonate formation in alkaline solution, only a small portion of
feedstock gas is converted to desirable products, while a large
amount of unreacted CO gas escapes. Accordingly, the devel-
opment of gas circulating system is necessary to enhance the

Table 2 Summary of relevant Cu-based catalysts with doping and alloying, morphology control, surface modification, in situ reconstruction, or defect
engineering for ECOR

Catalysts Electrolyte Applied
conditions

FE (%)
Ref.

C2H4 C2H5OH CH3COO− n-C3H7OH C2+

Ag-Cu2O 1.0 M KOH 200 mA cm−2 ~25 ~2 ~70 – – [112]

Cu(OD)0.8Ag0.2 1.0 M KOH −0.56 V vs. RHE 13.3 – – – 76.9 [113]

Cu/Ag-DA 5.0 M KOH −0.57 V vs. RHE 5.2 1.8 91.2 – – [57]

Cu-Pd 1.0 M KOH −1.0 V vs. RHE – – 65 – ~72 [115]

Pd-doped Cu 1.0 M KOH −0.62 V vs. RHE 37 39.5 – – – [111]

CuPd 1.0 M KOH −0.84 V vs. RHE ~18 ~8 ~54 ~5 – [116]

Cu-Au 1.0 M KOH 700 mA cm−2 6.97 7.02 31.01 – 45 [94]

Ag-Ru-Cu 1.0 M KOH 300 mA cm−2 28.9 16 6.6 37 90 [119]

Cu nanowire 0.1 M KOH −0.3 V vs. RHE 0.66 49.79 14.50 – – [126]

Triangular Cu
nanosheets 2.0 M KOH −0.63 V vs. RHE 16.3 2.4 48 2.0 68.7 [127]

Fragmented Cu 1.0 M KOH −0.45 V vs. RHE ~23 ~17 ~5 20.3 ~65 [98]

Cu nanocavity 1.0 M KOH −0.56 V vs. RHE 21 12.5 7.8 21 62.3 [100]

(Cu2O@)2Cu2O 1.0 M KOH 50 mA cm−2 ~20 ~15 ~10 22.22 ~73 [128]

BCF-Cu2O 1.0 M KOH −0.45 V vs. RHE 24 13 26 15 84 [60]

Cu-Ppy 1.0 M KOH −0.78 V vs. RHE 69 ~10 ~12 – – [131]

Cu CP 3.0 M KOH −0.59 V vs. RHE ~10 – 61 – ~70 [62]

Cu@NH2 1.0 M KOH −0.75 V vs. RHE ~20 ~18 51.5 – ~70 [132]

R-Cu/Au 1.0 M KOH −0.58 V vs. RHE ~15 ~20 – 46.6 – [147]

Ag2Cu2O3 1.0 M CsHCO3 −0.83 V vs. RHE ~25 ~34 ~25 ~8 ~92 [148]

CuTCNQ 1.0 M KOH −0.69 V vs. RHE ~28 ~12 39.9 – 81.3 [63]

CuPc 1.0 M KOH 700 mA cm−2 ~20 ~10 ~50 ~8 – [149]

Cu-CeO2 1.0 M KOH 50 mA cm−2 ~20 – ~60 – – [157]

Cu/CNT 0.1 M KOH −0.3 V vs. RHE – 37 35 – – [161]

Pd-Cu 1.0 M KOH −0.68 V vs. RHE 13.4 20 10 46.6 – [75]

GD-Cu 3.0 M KOH 400 mA cm−2 ~16 ~14 ~56 – ~85 [65]
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feedstock gas usage. By reducing the carbon monoxide content
in the feed gas, carbon efficiency can be significantly improved.
Unfortunately, almost all ECOR systems reported in current
research employ pure CO as their feedstock. This is grossly
incompatible with practical application scenarios and further
restricts the utilization of mixed gas produced by a single-pass
ECOR process. Therefore, more efforts should be devoted to the
research of impure CO process feeds theoretically and experi-
mentally.
ECOR technology is an emerging platform for artificial carbon

fixation, and there are many challenges and opportunities in the
development of this field. This review offers guidance for the
rational design of Cu-based catalysts for ECOR. From industrial
consideration, we also expect to develop more copper-based
catalysts with superior performance to facilitate the transition
from lab-scale discoveries to industrial-scale set-up in the future.
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铜基催化剂用于一氧化碳电还原为多碳产品
赵雯1, 刘娟1, 王光滔1, 王新天1, 杨传举1, 李剑2, 王鋙葶1, 孙晓莲3,
林日琛4, 左淦丞1,5, 朱文磊1*

摘要 电化学二氧化碳还原(ECO2R)是一种将碳和可再生能源的能量
储存在多碳产品(C2+)的化学键中的有效途径. 然而, 反应涉及的复杂步
骤为CO2直接转化为C2+设置了巨大的障碍. 一种利用CO作为“中转站”,
通过串联ECO2R和电化学CO还原(ECOR)以提高生产C2+的选择性和反
应速率的策略引起了人们的广泛关注 . 本文总结了铜基电催化剂在
ECOR中催化特定C2+生成的设计策略. 其次, 从各个方面总结了催化剂
工程的代表性设计策略, 并介绍了电解反应器改进方面的最新进展. 最
后, 阐述了该研究领域面临的主要挑战和未来前景. 这些见解和观点将
为铜基电催化剂的设计提供有益指导.
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