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SPECIAL TOPIC: High-performance Structural Materials

Progress of high-entropy alloys prepared using selective laser melting

Xinfang Song and Yong Zhang*

ABSTRACT The multi-component characteristics of high-
entropy alloys (HEAs) endow them with excellent perfor-
mance that many traditional alloys cannot match. However,
there are still some limitations in the preparation of HEAs
using traditional methods. Selective laser melting (SLM)
technology can achieve the precision formation of complex
components through layer-by-layer deposition. It has been
found that the performance advantages of HEAs can be fully
utilized by combining SLM technology with HEAs. The mi-
crostructures and properties of SLM-prepared HEAs are re-
viewed in this study. It has been observed that due to the high-
temperature gradients and high cooling rates of SLM pro-
cesses, complex microstructures are usually formed in SLM-
prepared HEAs, including cellular substructures, precipitates,
stacking faults, and nanotwins. This study also determines
that those unique microstructures bring excellent mechanical
and functional properties to HEAs, indicating that the pre-
paration of HEAs using SLM technology has major develop-
ment potential. In addition, this study briefly introduces the
microstructural defects and potential applications of SLM-
prepared HEAs. The results obtained in this investigation
provide useful guidance for the future designs of high-per-
formance HEAs.

Keywords: high-entropy alloys, selective laser melting, micro-
structure characteristics, performance characteristics, potential
applications

INTRODUCTION
High-entropy alloys (HEAs) are also referred to as multi-com-
ponent alloys or multi-principal element alloys. HEAs are a new
type of materials with high configurational entropy that intro-
duce “chemically disordered” structures into alloys by mixing a
variety of main elements [1,2]. High configurational entropy is
conducive to the random occupancy of different atoms. This
makes HEAs more inclined to form simple solid solutions of
face-centered cubic (FCC), body-centered cubic (BCC), or
hexagonal close-packing (HCP) structures [3,4], thereby avoid-
ing the formation of brittle intermetallic compounds [5,6]. With
the development of the concept of “high entropy” in recent
years, the constituent elements of HEAs have gradually expan-
ded from the initial five-element system to four- and three-
element systems. Consequently, the concept of “high entropy”
has gradually expanded to “medium entropy”/“low entropy” [7].

Therefore, the term “high entropy” no longer refers to the value
of entropy, but reflects the degree of chemical disorder of a
certain alloy system [8]. The design concepts of multi-principal
elements bring many excellent properties to HEAs and break
through the performance limitations of traditional alloys, such
as overcoming strength–ductility trade-offs [9,10], good soft
magnetic properties [11,12], and oxidation resistance [13–15].
At present, the traditional preparation methods of HEAs

mainly include arc-melting methods [11,16], powder-metallurgy
methods [17–20], and magnetron-sputtering methods [21,22].
However, it has been found that the HEAs prepared by such
methods usually have large numbers of metallurgical defects. For
example, the HEAs prepared by arc-melting methods tend to
have uneven compositions and large numbers of shrinkage
cavities [23], which require complex subsequent processes to
achieve excellent properties, such as forging [24,25] and rolling
[26–28]. Therefore, there is an urgency to actively explore new
preparation methods to achieve fast and efficient preparation of
HEAs.
Additive manufacturing (AM) is a technology based on a

computer-aided design (CAD) mode [23]. Metal powders or
wires are utilized as raw materials, and objects are constructed
by successive deposition in a layer-by-layer manner [29–31].
AM technology has high design freedom and can realize the
direct formation of complex components [32,33]. AM technol-
ogy has been widely used in aerospace, medical equipment,
automobile manufacturing, and other fields due to those unique
advantages. At present, AM technology mainly includes selective
laser melting (SLM), laser melting deposition (LMD), and
selective electron beam melting (SEBM). SLM is a powder bed
fusion technology that can selectively melt powder bed regions
with laser beams. The elevated-temperature gradients and high
cooling rates during SLM processes [34] are beneficial for pro-
moting the formation of solid solutions, thereby indicating that
SLM has major development potential in preparing HEAs with
highly saturated solid solutions [35]. In addition, due to its high
precision and good surface quality, SLM has been widely used in
the preparation of complex components [36,37]. Its schematic
diagram is shown in Fig. 1a [38]. Prior to the focused laser
beams commencing the scanning process, a horizontal scraper is
used to scrape metal powders onto substrates in the processing
chamber. Then, according to the preset data information of the
current layer, high-energy laser beams selectively melt the metal
powders onto the substrate. When the current layer is finished,
the horizontal scraper continues to lay a new layer of metal
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powders, and the high-energy laser beams continue to selectively
melt powders according to the preset data of the next layer until
the entire component is manufactured. When the metal powders
are in contact with the high-energy laser beams, melt pools will
be instantly formed. The sizes and shapes of melt pools can be
adjusted by controlling the laser processing parameters [39].
Fig. 1b shows three different types of melt pools.
The preparation methods of HEAs via the SLM technology

have attracted increasing attention of researchers in recent years.
However, there are currently few relevant research reviews
available. This paper focuses on the unique microstructures and
performance characteristics (including mechanical and func-
tional properties) of HEAs prepared using the SLM technology.
In addition, a brief introduction is given to the microstructural
defects and potential applications of SLM-prepared HEAs, as
well as a look forward to possible future development directions.

MICROSTRUCTURAL CHARACTERISTICS
SLM-prepared HEAs have very unique microstructures. In
general, there are many special structures inside ultra-fine
grains, such as cellular substructures, precipitates, and nanot-
wins [40–42]. These abundant features make the microstructures
of HEAs appear to be both diverse and complex.

Grain features
The grains of SLM-prepared HEAs present typical columnar
grains morphology, and those columnar grains usually grow
epitaxially through fusion lines during the layer-by-layer con-
struction processes. Some previous studies [43–45] have shown
that the formation of columnar grains is related to the direction

of the heat flow conduction, which is usually along the deposi-
tion direction. Generally speaking, the melting, solidification,
and cooling of the powders during SLM processes are carried
out quickly, resulting in elevated temperature gradients
(~107 K m−1) inside the molten pools. In addition, during the
layer-by-layer deposition processes, the deposited layers will be
remelted and combined with the newly deposited layers as a
whole. This results in the columnar grains throughout the
molten pool lines [46,47].
The grains can effectively be refined via SLM, which is mainly

related to the high solidification and nucleation rates during the
SLM processes. As detailed in Fig. 2, Lin et al. [48] successfully
prepared FeCoCrNi HEA using the SLM technology and
obtained ultrafine columnar grains. The grains grew epitaxially
along the deposition direction. In addition, it is known that the
introduction of nano-ceramic phases (such as carbides and
nitrides) into HEAs prepared using SLM can further refine the
grains [49,50]. Li et al. [49] introduced 12 wt% nano-sized TiN
particles into CoCrFeNiMn HEA. The results revealed that those
nano-sized TiN particles were uniformly dispersed in the HEA
matrix, strongly pinning the grain boundaries. A review of the
statistics revealed that the average grain size was refined to less
than 2 μm.

Cellular substructures
Cellular substructures are composed of many high-density dis-
location networks, which are special structures commonly found
in SLM-processed HEAs. During SLM processes, the powders
are melted and solidified layer by layer. HEAs undergo multi-
cycle thermal history and intense heating and cooling of micro-

Figure 1 (a) Schematic diagram of the SLM process. Reprinted with permission from Ref. [38], Copyright 2022, Elsevier. (b) Three types of melt pools with
growth type Ι (balled melt pool), type ΙΙ (discontinuous and fragmented melt pools), and type ΙΙΙ (continuous melt pool columns). Reprinted with permission
from Ref. [39], 2018, the authors.
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regions. These repeated and non-equilibrium construction pro-
cess promote the formation of tension-compression cycles inside
HEAs [51], as shown in Fig. 3a, which results in the generation
of high-density dislocations. Mu et al. [52] studied the micro-
structure evolutions of Fe28.0Co29.5Ni27.5Al8.5Ti6.5 HEA prepared
using SLM at different plastic strain stages (4% and 9.5%) under
room-temperature conditions. As can be seen in Fig. 3b–d, the
results revealed that as the strain increased from 0 to 9.5%, the
cellular substructures did not undergo obvious deformation.
Those findings indicated that the cellular substructures could
still maintain good structural stability under high strain condi-
tions. In addition, some studies [53] have shown that the exis-
tence of cellular substructures renders HEAs in a high-energy
metastable state. After high-temperature treatments, the cellular
substructures with high distortion energy almost disappear and
transform into regular lattice structures with low-energy states,
resulting in significant reductions in dislocation densities.

Precipitates
Nano-scale precipitates, such as intermetallic compounds or
oxides, are usually in-situ generated in SLM-produced HEAs and
uniformly distributed in the grain boundary and sub-grain
boundary regions [48,54]. This is the results of the redistribution
of solute atoms, which is facilitated by the abundance of high-
energy state interfaces during the repeated heating-cooling
cycles. Chen et al. [55] prepared CoCrFeMnNi HEA using SLM
technology by mixing CoCrFeNi pre-alloyed powders and Mn
elemental powders. It was found that the in-situ alloying of Mn
atoms with oxygen atoms from the powders and the printing
atmosphere had formed spherical Mn2O3 and MnO nano-oxides
with a volume fraction of 7%. Luo et al. [36] used the SLM
technology to design AlCrCuFeNi3.0 HEA with FCC + B2 dual-
phase structures. As can be seen in the TEM images in Fig. 4, the
B2 phase contained abundant coherent A2 nano-scale pre-
cipitates that were mainly composed of Cr and Fe elements. In
addition, similar to the traditional preparation methods, the
generation of precipitates could be further promoted by
appropriate heat treatments for the SLM-processed HEAs
[56,57]. However, the difference is that SLM-processed HEAs
only need to undergo short heat treatments due to the existence
of abundant high-energy state interfaces which promote the

atomic diffusion rates.

Stacking faults (SFs) and nanotwins
During SLM processes, local ultrafast heating and cooling cycles
often lead to high thermal stress that can promote the formation
of SFs and nanotwins. The SLM-prepared CoCrFeMnNi HEA
proved that nano-twins can be formed without plastic defor-
mation [58], and the existence of SFs was detected near nano-
twins. The HRTEM images are shown in Fig. 5a, b. The results
demonstrated that the low SF energy of the CoCrFeMnNi HEA,
along with the rapid solidification, were conducive to the for-
mation of SFs and nanotwins. In addition, as shown in Fig. 5c, d,
the C-containing CoCrFeNi HEA prepared using SLM had both
many SFs and a small number of nano-twins [59], which has
rarely been reported in HEAs directly prepared using traditional
processes [60,61].

MICROSTRUCTURAL DEFECTS
Some microscopic defects may exist in SLM-processed HEAs,
such as pores, microcracks and residual stress, which could
seriously damage the properties of HEAs and result in pre-
mature failure during service [62–64]. Therefore, minimizing the
occurrences of metallurgical defects can greatly help improve
performance results. Furthermore, optimizing the process
parameters, such as laser powers, scanning speeds, and layer
thicknesses, can help realize the control of the quality of HEAs
and reduce the influencing effects of defects on performance
results [65–67]. Therefore, with the goal of assisting in the
preparation of high-performance HEAs, this study focuses on
several typical metallurgical defects and their elimination
methods.

Pores
During SLM processes, molten pools undergo rapid melting,
cooling, and solidification stages, resulting in large numbers of
metallurgical defects [68,69]. An abundance of pores is one of
the most common metallurgical defects in SLM-fabricated HEAs
[70]. High porosity will shorten the fatigue life of alloys and has
major influence on mechanical properties [71,72]. The types of
pores mainly include unfused pores and metallurgical pores, as
shown in Fig. 6 [73]. Unfused pores are commonly caused by

Figure 2 Micromorphology of the FeCoCrNi HEA: (a) scanning electron microscopy (SEM) image; (b) inverse pole figure. Reprinted with permission from
Ref. [48], Copyright 2020, Elsevier.
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insufficient laser energy density, resulting in the incomplete
melting of powder particles. The unfused pores are mainly dis-
tributed in the interlayer regions and display an irregular poly-
gonal shapes, with sizes ranging up to 50 μm, or even larger [74].
The formation of metallurgical pores is due to the fact that alloy
powders are hollow powders, and high energy density causes
large fluctuations and instability in the molten pools, leading to
spheroidization and splashing. Subsequently, gases entering the
molten pools in the printing chambers will not be removed in a
timely manner, resulting in the formation of circular pores
inside the alloys [75,76]. The elimination of pores is a very
challenging task. However, since the generation of pores is
closely related to the process parameters of the SLM, optimizing
the process parameters can realize the control of the porosity of
HEAs. In particular, optimizing such parameters as laser powers
and scanning speeds, which directly determine the sizes, shapes,
and dynamics of the molten pools, can be very effective.
Moreover, reasonable parameter matching can also effectively
promote interlayer remelting, overlapping of adjacent molten
pools, and changes in the growth directions of the grains in the
molten pools, thereby reducing metallurgical defects, such as
pores [77,78]. Song et al. [79] studied the porosity evolution of
Co47.5Fe28.5Ni19Si3.4Al1.6 HEA under different SLM processes. It
was found that the laser powers had a greater effect on porosity.
The porosity increased rapidly when the scanning speeds were
increased from 800 to 1400 mm s−1. However, the changes in the
laser powers had less effect on the porosity. The comparison

results indicated that the alloy produced with 200 W,
800 mm s−1 in SLM had the lowest porosity (0.019%). Guo et al.
[80] obtained low-porosity AlCoCrFeNi2.1 HEA by optimizing
the process parameters. The maximum relative density reached
99.73% at the volumetric energy density (VED) of
131.87 J mm−3. In addition, further follow-up treatments for
SLM-processed HEAs, such as hot isostatic pressing (HIP), can
also reduce the sizes and numbers of pores to a certain extent,
thereby improving performance [81]. Li et al. [58] found large
numbers of circular metallurgical pores in SLM-printed CoCr-
FeMnNi HEA. After HIP, the majority of the micropores closed
and disappeared. It was observed that the relative density
increased from 98.2% before HIP to 99.1% after HIP. In order to
reduce the porosity, Gan et al. [82] proposed two heat treatment
approaches based on annealing and HIP for SLM-printed
CoCrFeNiMn HEA. The results showed that both heat treatment
methods increased the density to more than 98% and achieved
almost full density, with the HIP achieving the optimal micro-
structure and performance results.

Residual stress
Residual stress is another key defect that seriously affects the
formation and service performances of HEAs. During SLM
processes, the regions near the molten pools are rapidly heated
at rates much higher than that of the deposited layers, resulting
in local melting [83,84]. Those regions tend to expand due to the
effects of heating, but are geometrically constrained by the

Figure 3 (a) A schematic diagram of the tension-compression cycle. Reprinted with permission from Ref. [51], Copyright 2021, Elsevier. (b–d) Transmission
electron microscopy (TEM) bright-field images of the evolutions of cellular substructures of Fe28.0Co29.5Ni27.5Al8.5Ti6.5 HEA at different plastic strain stages.
Reprinted with permission from Ref. [52], Copyright 2022, Elsevier.
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cooler, deposited layer regions, resulting in compressive stresses
within them. However, when the molten pools cool, those
regions will shrink, resulting in tensile stress conditions [85].
The repeated heating and cooling of the deposited layers give
rise to alternating tensile and compressive stress inside HEAs,
with residual stress accumulating. The existence of residual
stress can easily lead to premature fracturing due to load
instability during use. As a result, components could be
destroyed and the service life of the molded components shor-
tened [86,87]. Therefore, in order to avoid premature fracturing,
the generation of residual stress should be controlled and
reduced as much as possible.
Currently, the optimization of the process parameters of SLM

can effectively reduce the residual stress of HEAs. Gu et al. [88]
examined the residual stress in VNbMoTaW samples prepared
using different laser scanning speeds. The results showed that
the tensile residual stress was the highest when the laser scan-
ning speed was 400 mm s−1, reaching 380 MPa. Then, as the
scanning speed increased, the dissipated heat in the deposited
layers decreased, resulting in reductions in the temperature
gradients and relative decreases in the residual stress. When the
laser scanning speeds were further increased to 600 and

800 mm s−1, the extracted values of the surface residual stress
decreased to 280 and 210 MPa, respectively. Wang et al. [89]
analyzed the distribution patterns of residual stress in SLM-
printed AlCoCrCuFeNi HEAs via electron back scatter diffrac-
tion (EBSD). It was found that the residual stress of all the
examined samples exhibited uneven distribution patterns with a
maximum residual stress of 500 MPa. The larger the volumetric
energy density, the more obvious the inhomogeneity of the
distribution of the residual stress. In addition, further annealing
processes for SLM-printed HEAs can also effectively release the
residual stress generated during SLM processes. In order to
reduce residual stress in SLM-printed FeCoCrNi HEA, Lin et al.
[90] studied the effect of annealing temperature on residual
stress by heat treating the alloy at different temperatures. It was
found that the rapid solidification and cooling during SLM
processes caused large residual stress of 323 ± 15.23 MPa in the
sample. However, after annealing, the residual stress decreased.
The higher the annealing temperature, the more obvious resi-
dual stress decreased, as shown in the Fig. 7. When the annealing
temperatures were higher than 1173 K, the residual stress
dropped below 200 MPa. In the studies conducted by Zhang et
al. [91], part of the residual stress was also successfully released

Figure 4 SLM-processed AlCrCuFeNi3.0 HEA. (a) TEM bright-field image, showing nano-precipitates inside B2 lamella; (b) high-resolution TEM (HRTEM)
image of nano-precipitate inside B2 phase and fast Fourier transform (FFT) patterns corresponding to the B2 phase and A2 nano-precipitate, respectively;
(c) TEM bright-field image and corresponding TEM-X-ray energy dispersive spectroscopy (EDS) maps. Reprinted with permission from Ref. [36], Copyright
2020, Elsevier.
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after heat treatments at 900 and 1000°C for SLM-printed
AlCoCuFeNi HEAs.

Cracks
The presence of residual stress tends to cause microcracks in the

HEAs. Microcracks are the most common and destructive
defects that occur during the formation processes of SLM, which
has a fatal impact on components [92–94]. Once cracks occur in
components, they can only be scrapped. Previous studies [95–
97] have shown that the cracks generated during SLM processes

Figure 5 (a, b) HRTEM of the SLM-processed CoCrFeMnNi HEA, showing the nanotwins coupled with SFs. Reprinted with permission from Ref. [58],
Copyright 2018, Elsevier. (c, d) TEM bright-field image and HRTEM of the SLM-processed C-containing CoCrFeNi HEA, respectively, showing nanotwins
and SF structures (the red arrows represent SFs). The inset is the corresponding SAED pattern. Reprinted with permission from Ref. [59], Copyright 2018,
Elsevier.

Figure 6 (a) Unfused pores; (b) metallurgical pores. Reprinted with permission from Ref. [73], Copyright 2022, Elsevier.
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mainly occur during the repeated heating, melting, and cooling
stages of the deposited layers. When internal thermal stress is
generated during the cooling stage, internal cracks can easily be
induced [98–100].
Microcracks can be eliminated by reasonably adjusting the

composition of HEAs. Luo et al. [36] promoted the transfor-

mation of the alloys from the BCC (B2) phase to the FCC phase
by increasing the Ni content in AlCrCuFeNix (2.0 ≤ x ≤ 3.0)
HEAs, thereby improving the formability of the as-built AlCr-
CuFeNix (2.0 ≤ x ≤ 3.0) HEAs. The microstructures of the alloys
were observed, and it was found that the number of cracks
decreased significantly with the increase of Ni content. Only a
few micro-cracks appeared in AlCrCuFeNi2.75 HEA. Finally,
when x increased to 3.0, the micro-cracks were completely
eliminated. Scanning strategies can effectively regulate grain
morphology, texture, and the distribution of residual stress to
control the density and morphology of cracks. In the studies
conducted by Zhang et al. [101], three scanning strategies of 0-
scan, 67-scan, and 90-scan were adopted to prepare CoCr-
FeMnNi HEA. The influencing effects of the scanning strategies
on crack formation, as well as the formation mechanism of the
cracks during the SLM processes, were systematically revealed.
The results indicated that the 0-scan strategy exhibited the lar-
gest crack density, while the 67-scan strategy showed the least.
The cracks formed at right-angle-shaped high angle grain
boundaries (HAGBs) without elemental segregation or pre-
cipitate. The upper parts of the cracks exhibited features of hot
cracking. Meanwhile, the lower parts of the cracks were more
likely to be formed by the propagation of the upper parts in solid
states during thermal shrinking and contraction. Sun et al. [102]
used two different scanning strategies (chessboard and stripe/bi-
directional) to reduce cracks. As can be clearly seen in Fig. 8,
with the same scanning parameters but different scanning
strategies, the number of cracks in the stripe sample was fewer

Figure 7 Variation in the residual stress on the upper surface. CA-773,
CA-973, CA-1173, and CA-1373 indicated that SLM-printed FeCoCrNi HEA
was annealed at 773, 973, 1173, or 1373 K for 2 h, respectively. Reprinted
with permission from Ref. [90], Copyright 2020, Elsevier.

Figure 8 Optical microscopy images of SLM-built CoCrFeNi with (a) chessboard (denoted as C) and (b) stripe (denoted as S) scanning strategies. EBSD
inverse pole figure (IPF) color maps with respect to the build direction of the selected areas for (c) C sample and (d) S sample. Lack-of-fusion cracks and
spherical pores are highlighted in black and red circles, respectively. (e, f) Enlarged EBSD band contrast images and IPF color maps showing intergranular
cracks within C and S samples, respectively. (g, h) Schematics of the chessboard and stripe scanning strategies for SLM process, respectively. Reprinted with
permission from Ref. [102], Copyright 2019, Elsevier.
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compared with the chessboard sample. Also, the distribution
pattern of the cracks in the stripe sample was more random,
which is a common phenomenon for SLM-fabricated parts.
However, it was noted that the cracks in the chessboard sample
aligned themselves along the build direction. Heat treatments
can relieve thermal residual stress, which also helps reduce the
chances of cracking. Due to the high residual stress in the as-
printed CoCrFeMnNi HEA, in order to prevent cracking during
the cold rolling process, Miao et al. [103] annealed samples at
673 K for 2 h before cold rolling. As a result, the residual stress
was almost completely eliminated. Furthermore, no cracks
appeared during subsequent processing. It has also been deter-
mined that preheating substrate can reduce the temperature
gradients between the printed layers and the deposited layers,
which can also reduce cracking.

PERFORMANCE CHARACTERISTICS

Mechanical properties
The unique microstructures shaped by SLM technology bring
excellent mechanical properties to HEAs. The equiatomic
FeCoCrNi HEA with a single FCC structure was the earliest
SLM-processed HEAs [104]. The performance results confirmed
that SLM technology has great development potential for the
preparation of HEAs. The yield strength was 600 MPa,
approximately three times higher than that of the cast FeCoCrNi
HEA, and could be maintained at 32% of its excellent tensile
plasticity. In addition, AlCoCrFeNi2.1 HEA with FCC + B2 dual-
phase structures was prepared using SLM and ultrafine eutectic
lamellae (300–500 nm) were obtained [105]. The strength and
ductility of the alloy were simultaneously improved. The yield
strength was 1040 MPa, and the ultimate tensile strength was
1220 MPa, with an elongation of ~24%. This was significantly
higher than that of the as-cast alloy with yield strength of
595 MPa, ultimate tensile strength of 1168 MPa, and total
elongation of 15.8%, respectively.
Heat treatments are also effective methods for improving the

mechanical properties of SLM-produced HEAs. The precipita-
tion-strengthened (FeCoNi)86Al7Ti7 HEA prepared using the
SLM technology was aged at 500 and 780°C for 2 h, respectively
[106]. The results showed that the coherent L12 nano-pre-
cipitates produced by the aging treatments contributed to the
yield strength of the alloy increasing from an initial 710 MPa to
934 and 1203 MPa, respectively. The results confirmed that this
process was an effective strengthening method for SLM-pro-
cessed HEAs. However, high temperatures can also destroy the
unique microstructures of HEAs prepared via SLM, resulting in
a decreased strength [57]. Therefore, the heat treatments tem-
peratures should not be too high.
In addition, it has been discovered that the introduction of

nano-ceramic phases into SLM-processed HEAs (such as car-
bides and nitrides) can further enhance the strength of HEAs.
Chen et al. [107] obtained mixed powders by the mechanical ball
milling of CoCrFeMnNi prealloyed powders and 1 wt% nano-
TiC particles. Then, they successfully manufactured nano-TiC
reinforced CoCrFeMnNi HEA composites using SLM processes,
as shown in Fig. 9. These TiC particles were uniformly dis-
tributed in the grain boundaries and within the grains, effec-
tively hindering dislocation movement and promoting the alloy
to exhibit excellent mechanical properties. For example, the yield
strength was 779 MPa, tensile strength was 940 MPa, and

elongation was 30%. After introducing 5 wt% NbC nanoparticles
into the SLM-processed CoCrFeMnNi HEA, NbC precipitates
were formed at the cell boundaries, thereby exhibiting high
thermal stability [108]. Similarly, 12 wt% nano-TiNP-reinforced
CoCrFeMnNi HEA composites obtained ultra-fine grains with
average grain sizes of less than 2 μm, giving the alloy both high
mechanical strength and good sliding-wear resistance [49].

Functional performances

Magnetic properties
Soft-magnetic materials with high saturation magnetization MS
(or saturation induction intension BS) and low coercivity HC
have been widely applied in electronic devices, rotating electrical
machines, and wind turbines [109]. Traditional soft magnetic
materials (such as Fe-Si alloys and Permalloy) have excellent soft
magnetic properties, but their poor mechanical properties limit
their application potential under mechanically highly loaded
conditions [110–112]. Therefore, in many engineering applica-
tions, advanced soft magnetic materials not only require excel-
lent soft magnetic properties, but also high strength and good
ductility. Since HEAs contain many ferromagnetic elements (Fe,
Co, and Ni), they generally exhibit excellent soft magnetic
properties [12,113,114]. Some previous studies have shown
[115,116] that SLM technology has major influencing effects on
the microstructures, and also the magnetic and mechanical
behaviors of soft magnetic HEAs. For example, it has been found
that when compared with their conventionally processed
counterparts, SLM-fabricated soft-magnetic HEAs often exhibit
poor soft-magnetic properties. This is mainly caused by the
pinning of magnetic domains via defects that are generated
during SLM processes, such as holes, internal stress, and sub-
structure interfaces [117,118]. However, as shown in Fig. 10, it
was interesting to note that Song et al. [79] successfully prepared
Co47.5Fe28.5Ni19Si3.4Al1.6 HEA with excellent mechanical and soft
magnetic properties by optimizing the process parameters of
SLM. By comparison, the sample produced with 200 W,
800 mm s−1 in SLM had achieved optimum comprehensive
properties, with BS, HC, and μmax (maximum permeability) of
1.479 T, 188.3 A m−1, and 1171.8, respectively. The tensile yield
strength and elongation were 417.0 MPa and 33.9%, respectively.
Furthermore, CoFeNi alloy prepared using SLM also exhibited a
good combination of soft magnetic and mechanical properties
[119]. The saturation magnetization and coercivity were
observed to be the same as those of conventional cast and
thermo-mechanically processed samples. In addition, the SLM-
processed CoFeNi alloy had higher yield strength and slightly
lower ductility than conventionally processed alloys.

Corrosion resistance
The majority of the constituent elements of HEAs contain one
or more corrosion-resistant elements (such as Al, Cr, and Mo)
that can improve the corrosion resistance of the HEAs [120,121].
Relevant research results have shown that SLM-processed HEAs
have better corrosion resistance. It was found that higher soli-
dification rates can promote the SLM-processed CoCrFeNiTi-
based HEAs to form non-segregation, fine, and uniform
microstructures [122], thereby obtaining excellent tensile prop-
erties, including yield strength of 773.0 MPa, ultimate tensile
strength of 1178.0 MPa, elongation of 25.8%, and high pitting
potential (0.88 ± 0.03 V versus Ag/AgCl in a 3.5% NaCl solution
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at 353 K), as detailed in Fig. 11. Similarly, the potentiodynamic
results of Fe38.5Mn20Co20Cr15Si5Cu1.5 HEA prepared using SLM
[123] revealed that Fe38.5Mn20Co20Cr15Si5Cu1.5 HEA had a com-
bination of good strength-ductility synergy and higher passiva-
tion tendencies.

Oxidation resistance
In high-temperature environments, excellent oxidation resis-
tance can maintain HEAs with stable mechanical properties. At
present, SLM-processed HEAs also exhibit excellent oxidation
resistance potential [124]. Jia et al. [125] examined the high-
temperature oxidation behaviors of CoCrFeMnNi HEA pre-
pared using SLM at a temperature range of between 800 and
1000°C. It was found that there were three layers of oxide scale at
all temperatures. In the range of 800 to 1000°C, the inner oxide
layer was Cr2O3, and the intermediate layer was composed of Cr-
oxides and Mn-oxides. The outer oxide layer was mainly Mn2O3
at 800 to 900°C and Mn3O4 at 1000°C. For the as-built sample,
the molten pool boundaries were preferentially oxidized at
1000°C due to the fast diffusion of the Mn and Cr elements.
Fortunately, subsequent annealing treatments could suppress
this preferential oxidation behavior and improve oxidation

resistance. Refractory HEAs usually exhibit excellent high-tem-
perature oxidation resistance since they contain abundant high-
melting point elements. Due to those advantages, they are
expected to become a new generation of high-temperature
materials. Chen et al. [126] used SLM to prepare WMoTaNbV-
and TiC/WMoTaNbV-based alloys. It was found that
Ta16W18O94 and Nb14W3O47 ternary oxidation products were
formed inside the WMoTaNbV-based alloy after the two alloys
were oxidized at the high temperature of 600°C for a long period
of time. In addition, after TiC particles were added, TiO2 and
Ti2Nb10O29 oxidation products were further generated, which
was of major benefit for improving the oxidation resistance of
the alloy.

APPLICATIONS OF SLM-PREPARED HEAs

Coating applications
The excellent mechanical and functional properties of HEAs
indicate that they have major development potential in the
preparation of surface coatings and improvements in the wear
resistance, corrosion resistance, and oxidation resistance of
substrate surfaces. At present, there are many methods to pre-

Figure 9 Nano-TiC (1 wt%)-reinforced CoCrFeMnNi HEA composites. (a) SEM image of the mixed powders, showing the distribution of nano-TiC
particles on the surface of CoCrFeMnNi HEA powders; (b) SEM image of composites, showing inter-crystalline and intra-crystalline precipitates; (c) TEM
bright-field image of composites, showing dislocation tangle around nano-TiC particles; (d) engineering stress-strain curves at different energy densities.
Reprinted with permission from Ref. [107], Copyright 2022, Elsevier.
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pare HEAs coatings, such as thermal spraying, cold spraying,
and plasma spraying. However, the metallurgical adhesion
between HEAs coatings prepared by those methods and sub-
strates tends to be poor, and large numbers of defects may occur
[127,128]. Due to the high temperature gradients and cooling

rates, laser cladding (including SLM and direct laser deposition)
can achieve good metallurgical bonds between HEAs coating
and substrate interfaces. However, at present, direct laser
deposition is mainly used to prepare HEAs coatings, and there
has been less research conducting regarding SLM technology.

Figure 10 Hysteresis loops of Co47.5Fe28.5Ni19Si3.4Al1.6 HEA at (a, c) 200 W, 800–1400 mm s−1 and (b, d) 1000 mm s−1, 200–400 W; (e) engineering tensile
stress-strain curves of the SLM sample with 200 W, 800 mm s−1 and cast sample; (f) tensile fracture micromorphology of the sample with 200 W, 800 mm s−1

in laser powder bed fusion (LPBF). Reprinted with permission from Ref. [79], Copyright 2023, Elsevier.
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For the purpose of improving the surface properties of Q235
carbon steel, Li et al. [129] prepared CrFeMoNiTi(WC)0.3 HEA
composite coating via SLM and then studied its wear resistance
and corrosion resistance. The results revealed that the WC
particles and BCC phase played load-bearing roles during the
friction processes and lowered the wear loss of the composite
coating. The anodic protection produced by the corrosion-
resistant WC particles and BCC phase also greatly improved the
NaCl corrosion resistance of the composite coating. In addition,
the high-temperature oxidation behaviors of the refractory
NiSi0.5CrCoMoNb0.75 HEA coatings prepared using laser clad-
ding technology were investigated [130]. It was observed that
after the coating was oxidized in air at high temperatures, it
formed a unique oxide layer, as shown in Fig. 12. Then, fol-
lowing further elemental analysis, it was demonstrated that the
oxide layer was composed of Ni3(VO4)2, Ni3TiO5, NiCrO3,
CoCr2O4, and Nb0.6Cr0.4O2.

Applications in the manufacture of complex components
Without any additional traditional molds and machining, SLM
technology is able to produce components with various complex
shapes by virtue of its high dimensional accuracy and high

degree of design freedom. Ren et al. [131] prepared three
representative engineering components of AlCoCrFeNi2.1 HEA
using SLM, including a heatsink fan, an octet-truss microlattice
and a gear, which demonstrated the excellent printability of
AlCoCrFeNi2.1 HEA. In addition, Zhou et al. [34] manufactured
a small turbine blade with a bright surface and no obvious
macroscopic defects through SLM (Fig. 13), verifying the feasi-
bility of fabricating large and complex components of
Al0.5FeCoCrNi HEA via SLM. Such achievements have ines-
timable economic benefits and strategic significance for the
manufacturing development of precision components in the
future.
In addition, with further improvements in the industry

requirements for the comprehensive performance results of
products, the concept of “lightweight” has begun to emerge
[132–134]. However, the traditional preparation technologies of
HEAs encounter difficulties when processing the interiors of
integrated components, which limits the potential of HEAs to
exploit lightweight and complex structural component advan-
tages [135,136]. Fortunately, SLM technology has broken
through the limitations of traditional technologies. Its high
precision and enhanced design freedom can introduce complex

Figure 11 CoCrFeNiTi-based HEA. (a) Scanning TEM (STEM)-EDS maps of SLM-produced specimen; (b) tensile stress-strain curves of the as-built SLM
and EBM specimens at room temperature; (c) representative potentiodynamic polarization curves of the as-built SLM and EBM specimens in 3.5% NaCl
solution at 353 K; (d) SEM image of the SLM specimen after potentiodynamic polarization measurements in 3.5% NaCl solution at 353 K. Reprinted with
permission from Ref. [122], Copyright 2019, Elsevier.
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components of HEAs with hollow sandwich structures, hollow
lattice structures, integrated structure realization, and topologi-
cal structures, thereby realizing lightweight designs and reduc-
tions in the overall weights of the components. Meanwhile,
excellent performances results can be ensured [137,138]. These
are promising application directions in both the aerospace and
automobile manufacturing fields.

Graded materials
In industrial fields, different parts of complex components
usually play a variety of roles. Therefore, the properties of the

required materials will also be different. For example, one
position may require materials to possess excellent creep resis-
tance, and another position needs materials to have good cor-
rosion resistance. In other words, connections between a variety
of materials may be needed to meet the performance require-
ments of components [139]. Graded materials are a new type of
composite material characterized with continuous gradient
changes in compositions and properties achieved by combining
two or more types of heterogeneous materials, such as metal/
metal, metal/ceramic, metal/non-metal, ceramic/non-metal, and
non-metal/plastic combinations [140,141]. SLM technology has

Figure 12 SEM and the corresponding oxygen distribution images at different temperatures. (a1, b1, c1) Ti-6Al-4V at the oxidation temperatures of 800,
900, and 1000°C, and (a2, b2, c2) coating at the oxidation temperatures of 800, 900, and 1000°C. Reprinted with permission from Ref. [130], Copyright 2022,
Elsevier.
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major advantages in the preparation of functionally graded
materials [142,143]. For example, it can realize the direct
molding of integral components containing a variety of func-
tional materials and provide better dimensional accuracy, while
improving the mechanical and functional properties of integral
components [144]. Hu et al. [145] prepared 316L/CuCrZr
functionally graded material with both grain size gradients and
dual-scale heterogeneous microstructures using SLM. The
unique microstructures ensured that the 316L/CuCrZr graded
material combined the advantages of the excellent electrical and

thermal conductivity of the CuCrZr alloy and the high strength
and hardness of the 316L, which have high application potential
in electrical, automotive, and die-casting industries. SLM can not
only be used to prepare functional gradient materials, but also in
the preparation of compositional gradient materials. Taking
equiatomic AlCoCrFeNi and CoCrFeNi powders as feedstock,
Guo et al. [146] used a customized SLM device to fabricate
compositionally graded AlxCoCrFeNi (x = 0.04–0.75) HEAs, and
then investigated the crack problems in detail. The results
showed that the chemical segregation of the AlxCoCrFeNi (x =
0.04–0.75) HEAs promoted the formation of constant dual phase
structures. When x ≤ 0.7, those dual phase structures had
effectively inhibited the initiation and propagation of hot tearing
problems in metal AM. Similarly, Zhao et al. [147] used mod-
ified SLM equipment to fabricate CoCrFeNi HEA coupon with
stepwise gradation from 0 to approximately 12 at% Ti, in order
to ascertain the maximum Ti content that can be added to the
HEA for strength enhancement. Subsequently, by observing the
cracks of the CoCrFeNiTix HEAs, it was determined that a
maximum of ~10 at% Ti can be added during SLM.

CONCLUSIONS AND OUTLOOK
As emerging materials, HEAs have many attractive properties
due to the huge compositional design space. In recent years, the
introduction of SLM technology into HEAs has further broken
through the performance advantages of HEAs, and has attracted
widespread attention. The HEAs prepared using the SLM tech-
nology possess unique microstructures that promote excellent
mechanical and functional properties, including cellular sub-

Figure 13 Small turbine blade manufactured via SLM. Reprinted with
permission from Ref. [34], Copyright 2019, Elsevier.

Table 1 Summary of the microstructural characteristics, defects, properties, and applications of SLM-prepared HEAs

Main contents Features Constitution/origin/methods of elimination/advantages Ref.

Microstructural
characteristics

Grain morphology Columnar grains; ultrafine grains [43–45,48,49]

Cellular substructures Composed of many high-density dislocations; derived from the
intense heating and cooling of molten pools [51]

Precipitates Intermetallic compounds or oxides [36,55]

SFs and nanotwins Originate from high thermal stress caused by local ultrafast
heating and cooling cycles [58,59]

Defects

Pores Stem from the rapid melting, cooling, and solidification of
the molten pools;

optimize process parameters; heat treatments
[58,79,88]

Residual stress

Cracks

Stem from the rapid melting, cooling, and solidification of the
molten pools;

adjust the compositions of HEAs; optimize process parameters; heat
treatments

[36,102,103]

Mechanical properties Strength and ductility Greatly improves the strength while maintaining excellent ductility [104,105]

Functional properties

Magnetic properties Achieves good combinations of soft magnetic and mechanical properties [79,119]

Corrosion resistance Realizes good combinations of corrosion resistance and
mechanical properties [122,123]

Oxidation resistance Exhibits excellent oxidation resistance [124,126]

Applications

Coating applications Improves the wear resistance, corrosion resistance, and oxidation
resistance of substrate surfaces [129,130]

Manufacture of complex
components

Produces components with complex shapes by virtue of its high
dimensional accuracy and high degree of design freedom [34,131]

Graded materials
Realizes the direct molding of integral components containing a variety
of functional materials; provides better dimensional accuracy; improves

the properties of integral components
[145–147]
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structures, precipitates, SFs, and nanotwins. A summary of the
microstructural characteristics, defects, properties, and applica-
tions of SLM-prepared HEAs is listed in Table 1. However, some
defects still remain challenges, such as pores, microscopic cracks,
and residual stress. Effective methods for the control of the
microstructures and the elimination of the microscopic defects
of HEAs, including establishing the internal relationships
between the processes, microstructures, and properties, are
future research priorities. In addition, the current research
reports regarding SLM-processed HEAs have mainly focused on
the study of mechanical properties. To date, little research has
been conducted regarding the functional materials, such as
magnetic materials and energy storage materials. Therefore,
considering the present industrial demands for new high-per-
formance functional materials, the development of HEAs that
combine excellent mechanical and functional properties through
SLM technology should be one of the future development
directions.
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激光选区熔化技术制备高熵合金的研究进展
宋鑫芳, 张勇*

摘要 高熵合金的多组分特性使其具有许多传统合金无法比拟的优异
性能. 然而, 高熵合金传统的制备方法仍存在一定的局限性. 激光选区
熔化(SLM)技术可以通过逐层沉积的方式实现复杂零件的精密成形. 将
SLM技术与高熵合金相结合, 可以充分发挥高熵合金的性能优势. 本文
综述了SLM制备的高熵合金的显微结构和性能特征. 由于SLM工艺存
在高温梯度和高冷却速率, 所以在SLM制备的高熵合金中通常会形成
复杂的微观结构, 包括胞状亚结构、析出相、层错和纳米孪晶. 此外,
独特的微观结构为高熵合金带来了优异的力学性能和其他功能, 表明
利用SLM技术制备高熵合金具有很大的发展潜力. 此外, 我们还简要介
绍了SLM制备的高熵合金的微观缺陷及其应用. 本文为高性能高熵合
金的设计提供了有益的指导.
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