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Gluing Ba0.5Sr0.5Co0.8Fe0.2O3−δ with Co3O4 as a cathode for proton-
conducting solid oxide fuel cells
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ABSTRACT The Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) + Co3O4
composite material is evaluated as a cathode for proton-con-
ducting solid oxide fuel cells (H-SOFCs), which provides a new
strategy to solve the thermal mismatch problem between the
cathode and electrolyte without impairing the cathode per-
formance. BSCF is a well-known cathode material for inter-
mediate-temperature SOFCs, but its performance for H-
SOFCs is unsatisfactory. One reason for the relatively low
performance is the poor contact between the BSCF cathode
and the electrolyte due to the high thermal expansion of BSCF.
The relatively low melting point of Co3O4 is taken in this study
as an advantage to bond the BSCF cathode to the electrolyte,
mitigating the poor contact problem for the BSCF with the
electrolyte. Furthermore, the addition of Co3O4 promotes the
catalytic activity of the BSCF cathode as demonstrated by
experimental studies and first-principles calculations, leading
to an impressively high performance of BSCF-based cathodes
for H-SOFCs.
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INTRODUCTION
Fuel cell technology, which can directly convert chemical
energies into electricity, has received considerable attention in
the past decades [1,2]. Solid oxide fuel cells (SOFCs) are an
important research direction in the fuel cell community, thus
becoming one of the most investigated fuel cell types due to their
all-solid-state structure and high efficiency [3–5]. Proton-con-
ducting SOFCs (H-SOFCs) have currently become a popular
research topic for SOFCs because they can decrease the working
temperatures of traditional SOFCs and thus extend the lifetime
of fuel cells [6–9]. In addition, fuel dilution is absent for
H-SOFCs because water is produced at the cathode side,
improving the efficiency of the cell [10]. Most studies conducted
in the past two decades have focused on electrolyte materials
[11,12] and cathode materials [13–16] for H-SOFCs. Compared
with the search for proton-conducting electrolyte materials with
a good compromise between conductivity and chemical stability
[17,18], an increasing amount of research has currently shifted
to the exploration of proper cathode materials for H-SOFCs
because cathodes substantially influence the polarization resis-
tance of the cells and thus govern the output of the fuel cells
[19–24].

The cathode reaction mechanism for H-SOFCs indicates that
the migrations of protons, oxygen ions, and electrons are
important to the cathode performance [25,26]. Therefore, the
development of triple-conducting cathodes has recently gained
remarkable attention [27–30]; thus, some high-performing tri-
ple-conducting cathodes have been proposed for H-SOFCs
[31,32]. However, the development of triple-conducting cath-
odes remains in its early stage compared with the traditional
SOFC cathodes. In addition, measuring exact proton and oxygen
ion conductions in these oxides is still technically challenging
[33,34]. Examining the development history of H-SOFC cath-
odes, some traditional cathodes have been demonstrated to
show the desirable performance of H-SOFCs despite the absence
of reports on proton conduction for these cathodes [35–37].
This finding implies that the cathode may also demonstrate
good performance for H-SOFCs under high oxygen reduction
reaction (ORR) activity.

Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF), a classical cathode for inter-
mediate-temperature SOFCs, has been demonstrated to deliver
excellent performance for oxygen ion conducting SOFCs [38].
However, the utilization of BSCF in H-SOFCs is uncommon
despite some attempts [39,40] because the performance of BSCF
in H-SOFCs is far inferior to that in oxygen-ion-conducting
SOFCs (O-SOFCs). The relatively poor performance of BSCF in
H-SOFCs is mainly due to the following two factors: the small
proton conduction in BSCF under the dry air condition and the
high thermal expansion of BSCF, leading to poor contact
between the cathode and electrolyte [41]. The use of a composite
cathode by mixing BSCF with a proton-conducting oxide could
be a solution to the thermal mismatch problem. However, the
interdiffusion of Ba element between BSCF and the proton-
conducting oxide could be detrimental to the performance of
fuel cells [40]. Considering the high catalytic activity of BSCF,
predicting that the BSCF could provide decent performance for
H-SOFCs if a good contact between BSCF and electrolyte can be
achieved is reasonable, and the performance may be further
enhanced if the ORR activity of the BSCF-based cathode is
further improved.

Co3O4 has been used as a catalyst to promote the ORR activity
of the cathode for O-SOFCs; it has also been successfully utilized
in other catalysts to facilitate their activity [42,43]. Notably, the
melting point of Co3O4 is relatively low (895°C), and this tem-
perature is close to the co-firing temperature of cathodes during
their layer fabrication process. Therefore, it is feasible to melt
Co3O4 during the co-firing procedure of cathodes and make it a
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glue to adhere the cathode material with the electrolyte. Mean-
while, Co3O4 may further improve the catalytic activity of the
cathode [44], thus enhancing the performance of the fuel cells.
Based on the above considerations, BSCF is coupled with Co3O4
to use the melted Co3O4 to bond BSCF with the electrolyte and
also further promote the catalytic activity of BSCF for H-SOFCs.

EXPERIMENTAL SECTION
BSCF and Co3O4 powders were synthesized by a wet chemical
route [45]. Citric acid was used as the complexing agent. The
preparation details can be found in the previous studies [22,40].
The BSCF and Co3O4 powders were respectively calcined at 900
and 600°C for 3 h each to achieve the pure phase. The BSCF +
Co3O4 mixture was obtained by mixing BSCF and Co3O4 at a
weight ratio of 8:2. The phase purities of BSCF, Co3O4, and
BSCF + Co3O4 mixture before and after co-firing were examined
by X-ray diffraction (XRD). The morphologies and elemental
distributions of these powders were observed by using scanning
electron microscopy (SEM) coupled with energy-dispersive X-
ray spectroscopy. The BSCF + Co3O4 mixture was then evaluated
as the cathode in comparison with BSCF without Co3O4, and the
morphologies of the cathode-electrolyte interfaces after co-firing
were observed with SEM.

Anode-supported BaZr0.1Ce0.7Y0.2O3−δ (BCZY) half-cells were
fabricated by the conventional co-pressing and co-sintering
method, and the co-sintering temperature was set at 1350°C. The
NiO + BCZY composite in a weight ratio of 6:4 was used as the
anode. The BSCF + Co3O4 mixture used as a cathode was
deposited on the surface of the sintered BCZY electrolyte, fol-
lowed by a co-firing procedure at 900°C in the microwave sin-
tering furnace. The cell structure is NiO + BCZY(anode)/BCZY
(electrolyte)/BSCF + Co3O4(cathode). The cell was then tested
with H2 and static air as the fuel and the oxidant, respectively.
The electrochemical performance of the cell was recorded using
an electrochemical workstation (Squidstat Plus, Admiral
Instruments). The long-term stability test of the cell was con-
ducted by holding the cell at 600°C with an applied current
density of 0.4 A cm−2. The cell voltage was then recorded as a
function of time.

First-principles calculations were conducted via the density
functional theory (DFT) method using VASP (Vienna ab initio
simulation package) [46]. The details for the parameter settings
can be found in the previous report [47]. Briefly, the cutoff
energy was set to 520 eV, and a gamma-centered 4 × 4 × 4 k-
point mesh was used. The convergence criteria for energy and
force were 10−5 eV and 0.05 eV Å−1, respectively. For Hubbard’s
correction, the Ueff values of 3.32 and 4 eV were added to Co and
Fe, respectively [48]. The surface model was used for the
interface constructions and calculations. The (001) surface of
BSCF and the (110) surface of Co3O4 were cleaved, and the
supercell of the surfaces was expanded to make a matching
lattice constant between BSCF and Co3O4 for the combination.
The final supercell for the interface calculations contained 144
atoms. The bottom four layers of each slab were fixed, and the
top two layers were relaxed. The formation energy of oxygen
vacancy (Evo) was calculated in accordance with

E E E E= + 1
2vo defect O perfect2

, in which Eperfect is the energy of a

perfect bulk and Edefect is the energy of a bulk with one oxygen
atom deficiency. When calculating the Evo at the BSCF/Co3O4,
one oxygen atom was removed at the interface and then the

Edefect was calculated accordingly.

RESULTS AND DISCUSSION
The phase purity of the synthesized BSCF and Co3O4 was
examined by XRD, suggesting the successful preparation of
BSCF and Co3O4 materials (Figs S1 and S2, respectively). The
BSCF + Co3O4 mixture must be co-fired during the cathode
fabrication; thus, checking the possible reaction between BSCF
and Co3O4 at high temperatures is necessary. Fig. 1a shows the
XRD patterns of the BSCF + Co3O4 mixture before and after the
cathode co-firing. The co-firing temperature was set at 900°C.
Two separated phases, which include BSCF and Co3O4, can be
detected for the BSCF + Co3O4 mixture before and after firing.
However, extra peaks corresponding to CoO appear in the XRD
pattern of the BSCF + Co3O4 after firing. The appearance of CoO
is due to the release of O2 for Co3O4 at high temperatures. By
comparing the peaks of BSCF and Co3O4 before and after firing,
no evident peak shift can be found, suggesting the absence of a
reaction between BSCF and Co3O4. However, some decom-
position of Co3O4 to CoO is observed at high temperatures. The
Co3O4 is still the majority of the cobalt oxides that can be
observed from the relative intensity of the Co3O4 and CoO
peaks. Figs S3 and S4 show the morphologies and the elemental
distribution of BSCF and Co3O4, respectively. Only Ba, Sr, Co,
Fe, and O elements are observed for BSCF, and the distribution
of each element is homogeneous without evident accumulation
of any element. The same phenomenon is observed for Co3O4,
wherein no segregation of any element can be found. By con-
trast, the SEM mapping results for the BSCF + Co3O4 mixture
after firing shown in Fig. 1b exhibit some difference. Evident
accumulation of Co elements at some places can also be
observed. BSCF contains Co element, but the Co accumulation
phenomenon indicates the abundance of Co at these places,
suggesting the existence of cobalt oxides. This result is consistent
with the XRD analysis.

One major motivation for coupling Co3O4 with BSCF is to use
the relatively low melting point of Co3O4 that can bond BSCF
with the electrolyte layer as a “glue”. Fig. 2a shows the co-firing
scheme of the BSCF cathode with the electrolyte for the fuel cell
fabrications. The BSCF cathode slurry is deposited on the sur-
face of the BaCe0.7Zr0.1Y0.2O3−δ (BCZY) electrolyte membrane,
followed by a co-firing procedure. However, BSCF delaminates
from the electrolyte layer due to the well-known high thermal
expansion coefficient (TEC) of BSCF [49]. The corresponding
SEM image for the BSCF-BCZY interface confirms the poor
contact between the single-phase BSCF cathode and the BCZY
electrolyte. The BSCF layer completely peels off from the elec-
trolyte layer after co-firing, and a gap is found between the BSCF
cathode and BCZY electrolyte parts even after co-firing. By
contrast, contact is substantially improved when the BSCF +
Co3O4 composite cathode is used. Notably, the TEC of Co3O4 is
even higher than that for BSCF at high temperatures [50].
Therefore, the improved contact for the BSCF + Co3O4 com-
posite cathode with the electrolyte cannot come from the
balanced TEC by the addition of Co3O4. As plotted in Fig. 2b,
the dispersed Co3O4 melts during the cathode-electrolyte co-
firing procedure and then glues the BSCF layer to the electrolyte,
avoiding the delamination of the BSCF layer from the electro-
lyte. The SEM image of the BSCF + Co3O4-BCZY interface
indicates that the BSCF + Co3O4 composite cathode adheres
firmly with the electrolyte, thereby solving the delamination
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problem of the BSCF cathode layer. By observing the elemental
distribution, although no accumulation of Ba, Sr, and Fe ele-
ments can be found for the BSCF + Co3O4 cathode, noticeable
accumulations of Co elements can be observed in the entire
cathode. This phenomenon indicates that Co3O4 particles are
dispersed in the entire cathode area, which is vital for improving
the overall cathode catalytic activity, which will be discussed
later. In addition, some Co accumulation can be detected at the

cathode-electrolyte interface, which probably plays a critical role
in bonding the BSCF layer to the electrolyte layer once Co3O4
starts to melt. The relatively low melting point of Co3O4 allows
this material to melt during the high-temperature firing process,
serving as a glue to adhere the BSCF to the BCZY electrolyte
layer and overcoming the delamination problem induced by the
high TEC of BSCF. If the co-firing temperature is lower than the
melting point of Co3O4 (such as 800°C), then the BSCF + Co3O4

Figure 1 (a) XRD patterns for BSCF + Co3O4 mixture before and after firing; (b) SEM image for BSCF + Co3O4 mixture powders and their corresponding
elemental mapping results.
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cathode cannot bond well with the BCZY electrolyte, as shown
in Fig. S5. This result further confirms that the melted Co3O4 is
necessary for bonding the cathode layer to the electrolyte.

The addition of Co3O4 solves the thermal mismatch problem
between BSCF and the electrolyte. Moreover, Co3O4 is found to
further promote the catalytic activity of BSCF. Experimental
studies were performed to investigate the oxygen diffusion and
surface exchange capabilities of BSCF with and without Co3O4.
The electrical conductivity relaxation (ECR) tests were con-
ducted by abruptly changing the atmosphere from air to 50% O2,
and the conductivity of the material changes until reaching an
equilibrium. The relaxation time was recorded, and the results
are shown in Fig. 3a, b. The relaxation time is reduced for BSCF
with the addition of Co3O4. By fitting the ECR data, the oxygen
diffusion coefficient (D*) and the oxygen surface exchange
coefficient (k*) for BSCF + Co3O4 are 8.38 × 10−5 cm2 s−1 and
1.02 × 10−3 cm s−1, respectively. These values are significantly
increased compared with BSCF (6.98 × 10−5 cm2 s−1 for D* and
5.52 × 10−4 cm s−1 for k*). The enhanced D* and k* values are
expected because reports have indicated that the addition of
Co3O4 can promote the ORR activity of SOFC cathodes [44,51].
The XPS analysis shown in Fig. 3c, d indicates that the BSCF +

Co3O4 composite cathode has more oxygen vacancies (Vo) than
the BSCF. Reports have also indicated that the ratio between the
adsorbed and lattice oxygen reflects the Vo content [52,53], and
this ratio is 4.9 and 6 for BSCF and BSCF + Co3O4, respectively,
suggesting that the addition of Co3O4 improves the Vo content.

First-principles calculations were used to further explore the
formation of Vo at the atomic level. Fig. 4a shows the calculated
configuration of the BSCF-Co3O4 structure. Reports have indi-
cated that the heterostructure could enhance the interface
properties [54]. Therefore, the Vo formation energy (Evo) at the
BSCF-Co3O4 interface was calculated, and the result indicates
that the Evo at the BSCF-Co3O4 interface is −2.98 eV, which is
significantly lower than that for BSCF (−1.19 eV), suggesting
that the formation of Vo is more favorable at the BSCF-Co3O4
interface compared with BSCF. This result is consistent with the
XPS analysis. Notably, different sites for the Vo formation were
calculated, and the formation energy at the BSCF site at the
interface has lower energy than that at the Co3O4 site, which
means the formation of Vo is more favorable at the BSCF site.
Reports indicated that the high deficiency of Vo is one of the key
reasons for the high ORR activity of BSCF [38]. The improved
Vo formation at the BSCF-Co3O4 interface further implies ORR

Figure 2 (a) Schematic illustration of the co-firing procedure for BSCF and BSCF + Co3O4 cathodes with the electrolyte layer. Their corresponding SEM
images for the cross-sectional view are presented. (b) The SEM image for the BSCF + Co3O4 cathode and BCZY electrolyte interface with their corresponding
elemental mapping analysis.
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activity because Vo influences the oxygen ion diffusion and
remarkably impacts ORR [55,56]. In addition, the investigation
on density of states (DOS) of O 2p and Co 3d, respectively
shown in Fig. 4b, c, indicates that the distance between O 2p and
Co 3d (D3d-2p) decreases from 3.34 for BSCF to 1.59 for BSCF +
Co3O4. Report has also indicated that the decreased D3d-2p dis-
tance predicts the low energy formation of Vo [54], which agrees
with the aforementioned Evo results. Furthermore, although
D3d-2p is usually regarded as a good indicator of the catalyst
activity at room temperature [57] and is not widely used for
SOFCs, a recent study indicates that one mechanism for H-
SOFC cathode reactions also contains the formation of *O2,
*OOH, *O and *OH adsorbates [58], which shows some simi-
larities to the ORR procedure at room temperature [57].
Therefore, the D3d-2p distance is expected to be useful in pre-
dicting the ORR activity for the cathodes of H-SOFCs at inter-
mediate temperatures [54]. The reduced D3d-2p could facilitate
the charge transfer and gas adsorption and desorption [59], thus
positively contributing to the ORR activity.

The above experimental and theoretical studies indicate that
Co3O4 can act as a glue to bond the BSCF cathode to the elec-
trolyte layer due to its low melting point, overcoming the
thermal mismatch problem of BSCF. Moreover, the addition of
Co3O4 could further enhance the ORR activity of BSCF, making
it a potential high-performing cathode composition for H-
SOFCs. Therefore, the BSCF + Co3O4 mixture was evaluated as
the cathode for H-SOFCs with the BCZY proton-conducting

electrolyte. Fig. 5a shows the current density-voltage (I-V) and
power density curves for an H-SOFC using a BSCF + Co3O4
cathode. The peak power density (PPD) of the cell is 1446, 1089,
and 751 mW cm−2 at 700, 650, and 600°C, respectively. The fuel
cell performance is high even when compared with the recently
developed cathodes for H-SOFCs. Further comparing the cell
performance with an H-SOFC using the traditional BSCF +
BCZY composite cathode, the PPD of the cell using the tradi-
tional BSCF + BCZY composite cathode is 1001, 605, and
393 mW cm−2 at 700, 650, and 600°C, respectively (Fig. S6). The
PPD is lower than that for the cell using the composite BSCF +
Co3O4 cathode, showing the advantage of the composite BSCF +
Co3O4 cathode over the conventional BSCF + BCZY composite
cathode. In addition, the weight ratio of 8:2 for BSCF and Co3O4
in the composite is the optimal composition. If the weight ratio
between BSCF and Co3O4 is 9:1, then the cathode layer cannot
adhere well to the electrolyte after firing, as shown in Fig. S7.
This finding suggests that 10% Co3O4 is insufficient to bond
BSCF to the electrolyte. When the weight ratio for Co3O4
increases to 30%, that is, the weight ratio between BSCF and
Co3O4 is 7:3, the cathode layer can adhere to the electrolyte layer.
However, the fuel cell performance is slightly lower than that of
the cell using the BSCF + Co3O4 (8:2) cathode reported in the
manuscript. Fig. S8 shows that the PPD of the cell using the
BSCF + Co3O4 (7:3) cathode is 1250, 861, and 540 mW cm−2 at
700, 650, and 600°C, respectively. The PPD is lower than that of
the cell using the aforementioned BSCF + Co3O4 (8:2) cathode.

Figure 3 ECR results for (a) BSCF + Co3O4 and (b) BSCF cathodes on the change of atmosphere from air to 50% O2 tested at 600°C; XPS O 1s spectra for
(c) BSCF + Co3O4 and (d) BSCF.
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Figure 4 (a) Calculated configuration for BSCF-Co3O4 using first-principles; calculated partial DOS (PDOS) for Co 3d and O 2p orbitals for (b) BSCF and
(c) BSCF + Co3O4.

Figure 5 (a) I-V and power density curves for an H-SOFC using a BSCF + Co3O4 cathode; (b) cross-sectional view for the tested cell; (c) EIS plots for the cell
tested at different temperatures; (d) electrochemical stability test for the cell operated at 600°C; (e) comparison of the performance of the current cell (NiO +
BCZY/BCZY (14 μm)/BSCF + Co3O4) with H-SOFCs using BSCF cathodes reported in the literature: NiO + BaCe0.8Y0.2O3/BaCe0.8Y0.2O3 (30 μm)/BSCF [39];
NiO + BaCe0.9Y0.1O3/BaCe0.9Y0.1O3 (20 μm)/BSCF + BaCe0.9Y0.1O3 [40]; NiO + BaCe0.8Sm0.2O3/BaCe0.8Sm0.2O3 (50 μm)/BSCF + BaCe0.8Sm0.2O3 [60]; NiO +
BCZY/BCZY (N/A)/BSCF [61]; NiO + BaCe0.8Sm0.2F0.1O3/BaCe0.8Sm0.2F0.1O3 (50 μm)/Ba0.5Sr0.5Co0.8Fe0.2O2.9F0.1 + BaCe0.8Sm0.2F0.1O3 [62]; NiO + BCZY/BCZY
(N/A)/BSCF [63]; NiO + BCZY/BCZY (14 μm)/BSCF + BCZY [66]; NiO + BCZY/BCZY (10 μm)/BSCF + BCZY [67].
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Fig. 5b shows the cross-sectional view of the cell after testing,
indicating that the BSCF + Co3O4 cathode layer still adheres well
to the electrolyte without detectable delamination. The above
elemental analysis presented in Fig. 2b indicates that Co3O4
particles are dispersed at the entire cathode, extending the
BSCF-Co3O4 interface and promoting the cathode reactions. The
electrochemical impedance spectroscopy (EIS) plots shown in
Fig. 5c indicate that the polarization resistance (Rp) of the cell is
0.036, 0.067, and 0.137 Ω cm2 at 700, 650, and 600°C, respec-
tively. These values are smaller than those of the BSCF-based
cathodes for H-SOFCs, which are generally in the range of 0.1 to
0.4 Ω cm2 at 700°C [39,40,60–63]. One factor for the sub-
stantially reduced Rp is the improved ORR activity of the BSCF +
Co3O4 compared with the aforementioned BSCF. The other
factor is the improved contact between the cathode and elec-
trolyte layers, facilitating charge transfers and thus reducing Rp.
No proton-conducting phase was added, but the BSCF + Co3O4
cathode still demonstrated good activity due to the following two
reasons. First, the migrations of oxygen ions and protons are
involved in the cathode reaction in the cathode for H-SOFCs
[25]. Therefore, the cathode may show decent performance if the
oxygen ion conduction is sufficiently high, and BSCF is a
material containing the aforementioned characteristics. Second,
recent reports [64,65] indicate that BSCF could show some
proton conduction in the wet atmosphere and H2O is produced
at the cathode side for H-SOFCs that could trigger the proton
conduction in BSCF. Therefore, the potential proton conduction
in BSCF could further improve the cathode performance. In
addition to the excellent fuel cell output and low Rp, the cell with
the BSCF + Co3O4 cathode exhibits good long-term stability.
Fig. 5d shows that the fuel cell works for approximately 150 h
under the testing condition and no detectable degradation can
be observed. Stability is one of the major concerns for BSCF. The
stability of the BSCF phase in the BSCF + Co3O4 composite is
partially improved with the protection of Co3O4. The chemical
stability of BSCF and BSCF + Co3O4 was examined by treating
the powders in a 20% CO2-containing atmosphere at 600°C for
3 h, and the results are presented in Fig. S9. The figure reveals
that extra peaks corresponding to BaCO3 and SrCO3 are formed
for BSCF and BSCF + Co3O4 after the treatment. This phe-
nomenon suggests the presence of a reaction between BSCF and
CO2, and this reaction is also observed for the BSCF phase in the
BSCF + Co3O4 composite. However, the relative intensities of
the BaCO3 and SrCO3 peaks for the single BSCF are higher than
that for the BSCF + Co3O4 composite, suggesting that the
reaction between BSCF and CO2 in the BSCF + Co3O4 composite
is less severe compared with that in the single-phase BSCF. This
result also indicates that the Co3O4 particles partially protect the
BSCF phase in the composite, making it less reactive compared
with the single-phase BSCF. Notably, the performance of the
current fuel cell is substantially higher than other H-SOFCs
using BSCF-based cathodes reported in the literature, as shown
in Fig. 5e. Notably, the traditional way of solving the thermal
mismatch problem for BSCF is to couple it with proton-con-
ducting oxides. The previous reports indicated that the perfor-
mance is moderate [39,40,60–63,66,67], which is far inferior to
the current study, despite the adherence of BSCF-based cathode
to the electrolyte. Compared with BSCF-based cathodes mod-
ified with other doping strategies [67,68] or noble metals [69],
the current BSCF + Co3O4 cathode shows superior performance.
This result suggests that the utilization of Co3O4 not only

overcomes the thermal mismatch for BSCF but also enhances
the cathode and fuel cell performances, providing a new way to
reuse BSCF for H-SOFCs.

CONCLUSIONS
BSCF is a classical cathode for intermediate-temperature SOFCs,
but its high thermal expansion complicates the contact between
the BSCF and electrolyte. Coupling BSCF with proton-con-
ducting oxides can mitigate this problem, but the interdiffusion
of elements and the moderate electrochemical performance
contribute to the unsatisfactory performance of this strategy. An
alternative strategy of using Co3O4 to glue BSCF to the elec-
trolyte has been proposed in the current study. The low melting
point of Co3O4 allows the formation of a melting phase during
the co-firing procedure of cathodes, thus bonding BSCF to the
proton-conducting electrolyte layer. Compared with the pure
BSCF that completely peeled off from the electrolyte after co-
firing, the BSCF + Co3O4 mixture firmly adheres to the elec-
trolyte without any delamination. Elemental analysis suggests a
good distribution of cobalt oxides in the entire cathode,
including the cathode-electrolyte interface. Further experimental
studies and first-principles calculations indicate that the addition
of Co3O4 promotes the catalytic activity of the cathode, leading
to a high fuel cell performance of H-SOFCs using the BSCF +
Co3O4 cathode. This study not only provides a new cathode
candidate for H-SOFCs but also offers an interesting strategy to
solve the thermal mismatch problems for some high-performing
cathodes with high thermal expansions.
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通过Co3O4将Ba0.5Sr0.5Co0.8Fe0.2O3−δ进行粘合以作为
质子导体固体氧化物燃料电池的阴极
杨璇†, 尹燕儒†, 于守富, 毕磊*

摘要 Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) + Co3O4复合材料作为质子导体固
体氧化物燃料电池(H-SOFC)的阴极为在不影响阴极性能的前提下解
决阴极与电解质之间热匹配的问题提供了一种新的策略. BSCF是中温
氧离子导体SOFC中受到广泛认可的一种阴极材料, 但其在H-SOFC中
的表现并不突出, 其中一个主要的原因是由于BSCF较高的热膨胀系数
使其与电解质的接触不好. 在本研究中, 利用Co3O4熔点较低的特性将
BSCF阴极粘结到电解质上, 以缓解BSCF与电解质之间接触不好的问
题. 此外, 实验研究和第一性原理计算都证明了Co3O4的添加有效地增
强了BSCF阴极的催化活性, 从而使该阴极展现出良好的电化学性能以
及燃料电池输出性能.
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