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Cobalt single atoms anchored on N-doped ultrathin
carbon nanosheets for selective transfer
hydrogenation of nitroarenes
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ABSTRACT Selective transfer hydrogenation of nitroarenes
to amines with transition metal nanocatalysts is appealing due
to its low-cost, moderate reaction conditions, good activity
and excellent selectivity. Single-atom catalysts (SACs) pos-
sessing advantages of maximum atom efficiency and parti-
cular electronic structure are expected to be more effective for
this reaction, yet no report about it. Herein, cobalt single
atoms anchored on N-doped ultrathin carbon nanosheets
(denoted as CoSAs/NCNS) were produced and demonstrated
as an outstanding SAC for selective transfer hydrogenation of
nitroarenes to amines with formic acid as hydrogen donor.
The turnover frequency (TOF) reached 110.6 h−1, which was
20 times higher than the best results of cobalt nanoparticles
reported in literatures under similar reaction conditions.
Moreover, CoSAs/NCNS exhibited excellent selectivity for a
variety of nitroarenes bearing other reducible functionalities,
such as iodo, cyano, keto, vinyl, alkynyl and ester groups. The
findings further highlight the ability and advantages of SACs
in heterogeneous catalysis.

Keywords: single atom, catalysis, cobalt, hydrogenation, ni-
troarenes

INTRODUCTION
During recent years, single-atom catalysis has become
one of the most attractive new frontiers in catalysis as a
model bridging homogeneous and heterogeneous cata-
lysis [1–7]. With the aid of recent advances in synthetic
methodologies, atomic-resolution characterization tech-
niques and theoretical modelling, various single-atom
catalysts (SACs) were produced and studied for catalysis

[8–20]. Compared with clusters and nanocatalysts, SACs
usually exhibit superior activity and excellent selectivity
in a wide variety of catalytic reactions owing to their
maximum atom efficiency, unsaturated coordinate en-
vironment and particular electronic structures [21–28].
Thus, single-atom catalysis provides an ideal platform
and opportunity to develop more efficient catalysts.

Functionalized amines are key intermediates for poly-
mers, pharmaceuticals and fine chemicals [29,30]. Cata-
lytic hydrogenation of nitroarenes with molecular
hydrogen is the most straightforward and atom-eco-
nomical route. Especially, heterogeneous catalysts based
on transition metals (e.g., Fe and Co) have been de-
monstrated to be potential replacements for commonly
used homogeneous catalysts and noble metal catalysts
[31–37]. However, high H2 pressure and elaborate ex-
perimental setup (e.g., 110°C, 5 MPa) were usually re-
quired. As an alternative to direct hydrogenation, transfer
hydrogenation of nitroarenes with formic acid [38–43],
alcohol [44–46] or hydrazine [47] has also attracted
considerable attention because of the moderate reaction
conditions and readily available hydrogen donors [48,49],
which may be regarded as hydrogen carrier. Beller and
co-workers [39,40] demonstrated that Fe2O3 or Co3O4
nanoparticles surrounded by nitrogen-doped graphene
layers (denoted as Fe2O3/NGr@C or Co3O4/NGr@C) were
active catalysts for the activation of formic acid in the
transfer hydrogenation of nitroarenes to anilines. Since
then, several other kinds of cobalt catalysts were also
reported [41,42]. Nevertheless, all the reported catalysts
based on transition metals were nanoparticles by far and
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their specific activities needed to be further improved.
Taking consideration of the advantages of SACs described
above, we envisioned that transition metal SACs would
exhibit better activity for this reaction.

Herein, we report a reliable method to produce cobalt
single atoms anchored on N-doped ultrathin carbon na-
nosheets (denoted as CoSAs/NCNS) for selective transfer
hydrogenation of nitroarenes. Aberration-corrected high-
angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) and synchrotron radiation
X-ray absorption fine structure (XAFS) analysis confirm
that all Co species exist as single atoms coordinated with
four N atoms (CoN4 site). The ultrathin and mesoporous
structure favor the active Co single atoms to be accessible
during the reaction, making the CoSAs/NCNS a superior
active heterogeneous catalyst for transfer hydrogenation
of nitrobenzene with formic acid as the hydrogen donor.
The turnover frequency (TOF) reaches as high as
110.6 h−1, which is twenty times higher than the best re-
sults of cobalt nanoparticles reported in the literatures
under similar reaction conditions. Moreover, the CoSAs/
NCNS exhibits excellent selectivity to amines towards a
variety of nitroarenes bearing reducible functionalities,
such as iodo, cyano, keto, vinyl, alkynyl and ester groups.

EXPERIMENTAL SECTION

Materials
Dopamine (DA) hydrocholoride (99%), tris(hydro-
xymethyl)-aminomethane (Tris, 99%), 1,10-phenanthro-
line (anhydrous, 99%) and cobalt(II) acetate tetrahydrate
(Co(OAc)2·4H2O, 98%) were purchased from Alfa Aesar.
Urea (AR) was purchased from Shanghai Chemical Re-
agents, China. Nitrobenzene (99+%) was obtained from
Acros Organics. n-Tridecane (99%) and triethylamine
(99%) were purchased from J&K scientific Co., Ltd.
Formic acid was obtained from Xilong scientific Co., Ltd.

Preparation of g-C3N4 nanosheets
In a typical experiment, 10 g of urea was placed in a
crucible with a cover, and then it was heated at 550°C
with a rate of 5°C min−1 in a muffle furnace for 2 h. The
resultant yellow powder was collected for use without
further treatment.

Preparation of CoSAs/NCNS
Cobalt(II) acetate tetrahydrate (12.7 mg, 0.05 mmol) and
1,10-phenanthroline (18.4 mg, 0.1 mmol) were mixed and
stirred in ethanol (25 mL) for approximately 30 min at
room temperature. Then, 469 mg g-C3N4 was added and

the whole reaction mixture was refluxed at 80°C for 4 h.
The reaction mixture was cooled to room temperature
and the ethanol was removed by a rotary evaporator
(40°C, 60 rpm, 20 min). The obtained Co(phen)2/g-C3N4
was dispersed in 150 mL methanol under ultrasound for
five minutes. Separately, a freshly prepared tris methanol
solution (1.81 g, 140 mL) and DA methanol solution
(1.36 g, 60 mL) were added dropwise. After stirring for
6 h, the grey precipitates were collected by centrifugation
and washed with methanol for three times and dried
under vacuum at room temperature overnight. The
powder of Co(phen)2/g-C3N4@polydopamine (PDA) was
transferred into a 30 cm × 60 cm rectangle crucible,
which was covered by another identical crucible. The
covered crucible was placed in a tube furnace (GSL-
1100X-S, Hefei Kejing crystal material technology Co.,
LTD.) and then heated to 850°C for 2 h at the heating rate
of 2°C min−1 under flowing Ar gas and then naturally
cooled to room temperature to obtain the CoSAs/NCNS.

Preparation of Co(phen)2/GO@PDA and Co(phen)2/g-C3N4
The Co(phen)2/GO@PDA was synthesized using a similar
synthetic route, only changing the g-C3N4 to the graphene
oxide (24 mL, 10 mg mL−1); the Co(phen)2/g-C3N4 was
synthesized using a similar synthetic route except for the
coating of PDA.

Preparation of phen/NCNS
The phen/NCNS was synthesized using a similar syn-
thetic route, without the addition of Co(OAc)2·4H2O.

Preparation of CoSAs/NCNS-AT (acid treatment)
The CoSAs/NCNS-AT was synthesized by acid etching of
CoSAs/NCNS using aqua regia at 85°C for 20 h. 10 mg
CoSAs/NCNS and 25 mL aqua regia were added to a 35-
mL glass reaction tube without a lid (Beijing Synthware
Glass, Inc. Pressure Vessel, HeavyWall). The mixture was
stirred in a preheated 50°C oil bath for 30 min and then
heated up to 85°C for 20 h. The catalyst was washed with
water and ethanol for four times and dried under vacuum
at room temperature for 12 h.

Characterizations
Powder X-ray diffraction (XRD) patterns were recorded
on a Rigaku D/max2500 with Cu Kα radiation (40 kV,
40 mA, 0.1541 nm). Brunauer-Emmett-Teller (BET) sur-
face areas were obtained from N2 adsorption/desorption
isotherms at 77 K with a Micromeritics ASAP 2460 in-
strument. Before measurements, the samples were de-
gassed at 150°C for 12 h. The Co content of the samples
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was measured by inductively coupled plasma spectro-
meter (ICP-AES) on a SHIMAZU ICPE-9000 instrument.
The surface morphology and the element distribution of
the samples were obtained using a scanning electron
microscope (SEM, HITACHI, S-4800) and a transmission
electron microscope (TEM, JEOL, JEM-2100F) with en-
ergy-dispersive X-ray spectroscopy (EDS) analysis.
HAADF-STEM images were obtained using a JEOL
ARM200F (JEOL, Tokyo, Japan) STEM operated at
200 kV with cold filed emission gun and double hexapole
Cs correctors (CEOS GmbH, Heidelberg, Germany).
Atomic force microscope (AFM) images and height
profiles were acquired through a Bruker dimension icon.
Thermogravimetric analyses (TGA) were carried out on a
TA-60 WS thermal analyzer heating from room tem-
perature to 1,000°C at the rate of 2°C min−1 under flowing
nitrogen. X-ray photoelectron spectroscopy (XPS) mea-
surements were performed on a VG Scientific ESCALa-
b220i-XL spectrometer using Al Kα radiation.

XAS measurements
The X-ray absorption fine structure (XAFS) spectra at
Co K (E0 = 7,709 eV) edge was performed at BL14W1
beamline of Shanghai Synchrotron Radiation Facility
(SSRF) operated at 3.5 GeV under “top-up” mode with a
constant current of 250 mA. The XAFS data were re-
corded under transmission mode with two Oxford ion
chambers. The energy was calibrated accordingly to the
absorption edge of pure Co foil. Athena and Artemis
codes were used to extract the data and fit the profiles.
For the X-ray absorption near edge structure (XANES)
part, the experimental absorption coefficients as function
of energies μ(E) were processed by background subtrac-
tion and normalization procedures, and reported as
“normalized absorption” with E0 = 7,709.0 eV for all
tested samples and Co foil/CoO/Co3O4 standard. For the
extended X-ray absorption fine structure (EXAFS) part,
the Fourier transformed data in R space were analyzed by
applying first-shell approximate model for Co-N con-
tribution. The passive electron factors, S0

2, were de-
termined by fitting the experimental data on Co foil and
fixing the coordination number (CN) of Co-Co to be 8+6,
and then fixed for further analysis of the measured
samples. The parameters describing the electronic prop-
erties (e.g., correction to the photoelectron energy origin,
E0) and local structure environment including CN, bond
distance (R) and Debye-Waller factor around the ab-
sorbing atoms were allowed to vary during the fit process.
The fitted ranges for k and R spaces were selected to be k
= 2.5–11.5 Å−1 with R = 1.0–2.0 Å (k3 weighted).

General catalytic test
5.0 mg CoSAs/NCNS catalyst (0.78 mol% Co) and 3 mL
tetrahydrofuran (THF) were added to a 15-mL glass re-
action tube sealed with a Teflon lid (Beijing Synthware
Glass, Inc. Pressure Vessel, HeavyWall). Then, the cor-
responding nitro compound (0.5 mmol), 3.5 mmol (7
equiv.) of HCOOH, 1.4 mmol of Et3N (HCOOH–Et3N
(5:2) mixture) and 51 μL n-tridecane as the internal
standard were added sequentially. The reaction mixture
was stirred in a preheated 100°C oil bath for a desired
time. After the completion of the reaction, the reaction
mixture was cooled to room temperature and diluted with
ethanol. Then, the catalyst was filtered off, and the sample
of the mixture was directly subjected to GC analysis with
a gas chromatograph (Shimadzu GC-2010) equipped with
a flame ionization detector (FID) and a Rtx-5 capillary
column (0.25 mm in diameter, 30 m in length). The
identity of the product was ascertained by GC-MS (Shi-
madzu GCMS-QP2010S) with a HP-5MS capillary col-
umn (0.25 mm in diameter, 30 m in length).

For the recyclability test, the reaction conditions were:
5 mg catalyst, 0.25 mmol nitrobenzene, 3.5 mmol (14
equiv.) HCOOH, 1.4 mmol Et3N (HCOOH–Et3N (5:2)
mixture), 25 μL n-tridecane, 100°C, 2 h. At the end of the
catalytic reaction, the mixture was centrifuged and the
solid was recovered, which was washed with THF five
times, dried at 60°C under vacuum and then reused in a
next run.

RESULTS AND DISCUSSION
Scheme 1 illustrates the preparation process for CoSAs/
NCNS, which includes three-step procedures: (1) cobalt
acetate and 1,10-phenanthroline are adsorbed onto g-
C3N4 nanosheets to form the Co(phen)2/g-C3N4; (2) a
thin layer of PDA is coated on Co(phen)2/g-C3N4 to form
the Co(phen)2/g-C3N4@PDA composite; (3) the obtained
composite was pyrolyzed under a constant Ar flow at
850°C to form the final CoSAs/NCNS.

Typical TEM and SEM images of the obtained samples
in each step are shown in Fig. S1. The final obtained
CoSAs/NCNS shows ultrathin nanosheet structure and
no nanoparticles are observed in the wide range low-
magnification TEM image (Fig. 1a). The thickness of the
catalyst is measured to be about 4.4 nm according to the
representative atomic force microscopy (AFM) image
(Fig. 1b and Fig. S2). Because PDA was coated on both
sides and the g-C3N4 nanosheets decomposed completely
at 645°C under argon atmosphere (Fig. S3), the CoSAs/
NCNS was actually composed of two layers with a very
thin void space. Thus, the average thickness of the
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CoSAs/NCNS was only about 2.2 nm. High-resolution
TEM image also shows no obvious nanoparticles (Fig. 1c)
in CoSAs/NCNS. Meanwhile, the representative EDS
analysis reveals that Co and N atoms are uniformly dis-
tributed in the carbon nanosheets (Fig. 1e). The Co

content in CoSAs/NCNS was measured to be about 4.57
wt% by ICP-AES. In addition, XRD pattern (Fig. S4)
shows no peaks of cobalt metal or its compounds. All
above results prove the presence of highly dispersed Co
species.

Aberration-corrected HAADF-STEM study was further
carried out to elucidate the exact form of Co atoms. As
shown in Fig. 1d, the isolated bright dots corresponding
to individual Co atoms dispersed in the carbon support
could be clearly discerned due to the different atom Z-
contrast. Synchrotron radiation XAFS was performed to
identify the chemical state and coordination structure of
Co atoms in CoSAs/NCNS. As shown in the XANES
profiles (Fig. 1f), CoSAs/NCNS shows very similar lines
to that of CoO standard sample, indicating the valence
state of Co single atoms is close to Co2+, in accordance
with XPS analysis (Fig. S5). Further structural informa-
tion associated to Co atoms can be obtained from the
EXAFS. As shown in Fig. 1g, the peaks of Co–Co or
Co–O coordination are absent in the Fourier transform

Scheme 1 Schematic illustration of preparing CoSAs/NCNS. Key: co-
balt atom (purple), nitrogen atom (blue), carbon atom (grey).

Figure 1 (a) TEM, (b) AFM, (c) HR-TEM, (d) HAADF-STEM and (e) EDS mapping images of CoSAs/NCNS. (f) Co K-edge XANES profiles and (g)
Fourier transformed EXAFS profiles in the R space of CoSAs/NCNS and standard samples.
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curves of CoSAs/NCNS, showing that the Co species are
atomically dispersed. EXAFS curve fitting analysis reveals
that the coordination number of Co–N is 4.3 at a distance
of 1.99 Å (Fig. S6 and Table S1), indicating the square-
planar configuration of cobalt atoms in CoSAs/NCNS
[50–55].

The g-C3N4 nanosheet and PDA coating show sy-
nergistic effect in the formation of the final CoSAs/
NCNS. The control sample produced without PDA
coating (denoted as Co(phen)2/g-C3N4) was first prepared
to elucidate the role of PDA. It can be seen that cobalt
nanoparticles are formed in this sample (Fig. S7b).
Without PDA protection, complete decomposition of the
g-C3N4 nanosheet during pyrolysis results in aggregation
of Co species. In order to elucidate the role of the g-C3N4
nanosheet, another sample using graphene oxide (GO)
instead of g-C3N4 nanosheet (denoted as Co(phen)2/
GO@PDA) was also prepared. As shown in Fig. S7a,
cobalt nanoparticles dispersed on the carbon support are
observed in this sample. The g-C3N4 nanosheet possesses
many N atoms for coordination, which is beneficial to the
homogeneous distribution of Co atoms during pyrolysis.
Moreover, it also acts as the template for final 2D ultra-
thin structure. The complete decomposition of g-C3N4
nanosheet would generate large amount of gases during
pyrolysis, which helps to introduce additional mesopores
in the final CoSAs/NCNS. As shown in Fig. S8, the N2
adsorption-desorption isotherms of CoSAs/NCNS display
a typical type IV profile, confirming the existence of
mesoporous structure. The BET surface area of CoSAs/
NCNS was calculated to be 657 m2 g−1. The relatively high

surface area and mesoporous structure as well as ultrathin
structure are very favorable for mass transfer to access the
active Co single atoms and thus beneficial to the catalytic
activity.

The catalytic property of CoSAs/NCNS for the transfer
hydrogenation with nitrobenzene as the substrate and
formic acid as the hydrogen donor was first studied. As
shown in Table 1, no conversion was observed without
catalyst or without cobalt metal (Table 1, entries 1–2).
The CoSAs/NCNS catalyst shows 14.3% conversion and
99% selectivity to aniline in 0.17 h, yielding a TOF as high
as 110.6 h−1 (Table 1, entry 4), which is much higher than
the results of nanoparticles reported in literatures
(Table 1, entries 6–10). Nitrobenzene could be completely
converted with > 99% selectivity to aniline in 2 h with the
CoSAs/NCNS catalyst under the optimized reaction
condition (Table 1, entry 5). The corresponding TOF
under the complete conversion could still reach 64.4 h−1,
which is also substantially higher than those of transition
metal nanocatalysts. The CoSAs/NCNS catalyst after
etching with aqua regia shows no activity (Table 1, entry
3), further confirming that the active species are cobalt
single atoms in this reaction.

Besides nitrobenzene, nitroarenes bearing electron-do-
nating groups (n-butyl and methoxy) or withdrawing
groups (trifluoromethyl) could all be readily transformed
into the desired aniline derivatives with high yields
(Table 2, entries 1–3), indicating the outstanding effi-
ciency of the CoSAs/NCNS. A striking selectivity was
observed with several nitroarenes substrates bearing ea-
sily reducible moieties, such as iodo, cyano, keto, vinyl

Table 1 Comparison for the transfer hydrogenation of nitrobenzenea

Entry Catalyst T (°C) Time (h) Conv. (%) TOF (h−1)

1 - 100 2 0

2 Phen/NCNS 100 2 0

3 CoSAs/NCNS-AT 100 2 0

4 CoSAs/NCNS 100 0.17 14.3 110.6

5 CoSAs/NCNS 100 2 >99 64.6

6[39] Fe2O3/NGr@C 120 24 >99 0.83

7[40] Co3O4-NGr/C 100 15 >99 3.3

8[42] Co@NPC 100 6 97 3.36

9[41] Co@NC-600 90 4 99 1.98

10[38] Ni-NxCy-800 85 2.5 >99 0.8

a) Reaction conditions: 0.5 mmol nitrobenzene, 5.0 mg catalyst, 3.5 mmol (7 equiv.) of HCOOH, 1.4 mmol of Et3N (HCOOH–Et3N (5:2) mixture),
3 mL THF.
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Table 2 Transfer hydrogenation of substituted nitroarenes with CoSAs/NCNS as catalysta

a) Reaction conditions: 0.5 mmol nitroarene, 5.0 mg catalyst, 3.5 mmol (7 equiv.) of HCOOH, 1.4 mmol of Et3N (HCOOH–Et3N (5:2) mixture),
3 mL THF. The patterns of GC and GC-MS of some products are shown in Figs S10–S15.
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and alkynyl groups. These nitroarenes could all be con-
verted into the corresponding amines with high se-
lectivity with the CoSAs/NCNS catalyst (Table 2, entries
4–11). Hydrogenation of nitroheteroarenes was also tes-
ted since these compounds are valuable building blocks in
synthesizing a variety of pharmaceuticals and agro-
chemicals. 2-Nitroflurene and 5-nitroindole were hydro-
genated to the targeted heteroaromatic amines with
prolonged reaction time, and no by-products were de-
tected in the reaction mixtures (Table 2, entries 13–14).

Finally, the CoSAs/NCNS catalyst could be easily se-
parated from the solution by centrifugation and shows
good stability with a slight decrease in activity after re-
used for five times. The activity decrease comes from the
loss of Co content in the CoSAs/NCNS under such re-
action condition. This degradation phenomenon was also
observed in other literatures using Co-based catalysts.
However, satisfactory yields could be obtained after
prolonged the reaction time (Fig. S9). The TOF of the
reused catalysts is still as high as 32.2 h−1, which is still ten
times higher than the results reported in literatures.

Above catalytic reaction results suggest the high effi-
ciency of the CoSAs/NCNS catalyst in selective transfer
hydrogenation of nitroarenes. Together with the appeal-
ing feature of selective transfer hydrogenation reaction in
moderate reaction conditions (as shown in Tables 1 and
2, the reactions were carried out at 100°C under ambient
pressure), this system is cost-effective and certainly safer.

CONCLUSIONS
We produced cobalt single atoms anchored on N-doped
ultrathin carbon nanosheets and demonstrated it as a
superior heterogeneous catalyst for selective transfer hy-
drogenation of nitroarenes to amines with formic acid as
the hydrogen donor. Owing to the ultrathin and meso-
porous structure, which is favorable for mass transfer to
access the active Co single atoms, the catalytic activity of
CoSAs/NCNS is 20 times higher than those of transition
metal nanoparticles reported in literatures under similar
reaction conditions. Furthermore, it shows outstanding
selectivity toward various nitro compounds bearing other
reducible moieties. All these features make this single
cobalt atom catalyst an excellent candidate for transfer
hydrogenation reactions.
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负载于超薄氮掺杂碳纳米片上的钴单原子催化芳
香硝基化合物氢转移反应
李会宁1,2, 曹昌燕1,2*, 刘剑1,2, 施杨1,2, 司锐3, 谷林4, 宋卫国1,2*

摘要 过渡金属催化芳香硝基化合物氢转移反应制备胺类化合物,
具有成本低廉、反应条件温和、高活性、高选择性等优点. 单原
子催化剂具有最大的原子利用率和独特的电子结构, 有望进一步
提升其催化反应性能, 但目前还没有关于单原子催化剂应用于该
反应的文献报道. 本文制备了负载于氮掺杂超薄碳纳米片上的钴
单原子催化剂(简写为CoSAs/NCNS), 并将其应用于芳香硝基化合
物氢转移反应中, 在与文献报道类似的反应条件下, 该催化剂的
TOF达110.6 h−1, 是已报道结果的20倍; 且该催化剂对一系列具有
其他不饱和官能团(如: 卤素, 氰基, 醛基, 乙烯基和乙炔基等)的硝
基化合物具有优异的选择性.
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