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5 nm NiCoP nanoparticles coupled with g-C3N4 as
high-performance photocatalyst for hydrogen
evolution
Bo Ma, Jinping Zhao, Zhenhua Ge, Yantao Chen* and Zhihao Yuan*

ABSTRACT Graphitic carbon nitride (g-C3N4) coupled with
NiCoP nanoparticles with sizes around 5 nm have been fab-
ricated via a controllable alcohothermal process. NiCoP is an
excellent electron conductor and cocatalyst in photocatalytic
reactions. The coupling between tiny NiCoP nanoparticles and
g-C3N4 through in-situ fabrication strategy could be a pro-
mising way to eliminate the light screening effect, hinder the
recombination of photo-induced charge carriers, and improve
the charge transfer. The NiCoP/g-C3N4 nanohybrids exhibit
an excellent photocatalytic activity in the hydrogen genera-
tion, with a significantly improved performance compared
with original g-C3N4, CoP/g-C3N4 and Ni2P/g-C3N4, respec-
tively. This study paves a new way to design transition metal
phosphides-based photocatalysts for hydrogen production.

Keywords: transition metal phosphides, photocatalytic hydrogen
generation, carbon nitride, nanohybrids

INTRODUCTION
The solar power as a main source among renewable en-
ergies, has attracted a great deal of attention over the past
years. Since the first report of water splitting on semi-
conductor-based photocatalysts by Fujishima and Honda
[1] in the 1970s, photocatalysis with semiconductors has
become a quite promising technique in solar energy
harvesting [2]. Carbon nitride with a graphitic structure
(g-C3N4) has great potential as non-metal and environ-
ment-friendly visible light-driven catalyst due to the
tunable electronic structure [3,4]. However, due to the
stacked structure, pristine g-C3N4 also has many draw-
backs, such as low specific surface area, quick re-
combination of photo-induced electrons and holes, weak
electrical conductivity, poor absorption of visible spec-

trum and utilization efficiency [5]. In order to boost the
activity of g-C3N4, cocatalysts are introduced to avoid the
rapid recombination of photo-generated charge carriers
[6–12]. So far, precious metals like platinum (Pt), have
been widely utilized as effective cocatalysts for photo-
catalytic H2 evolution [13,14]. However, the high-cost and
scarcity are the major obstacles for their practical use at a
large scale. Therefore, exploring non-noble-metal co-
catalysts for photocatalytic hydrogen production becomes
a very important topic.

Transition metal phosphides (TMPs) have metallic
characteristics and good electrical conductivity [15–19],
which are desirable as cocatalysts for photocatalytic hy-
drogen evolution. As the important members in TMPs,
the low cost and high activity of FeP [20,21], Ni2P [22–25]
and CoP [26–29] have been demonstrated as effective
cocatalysts towards photocatalytic H2 evolution. The
ternary NiCoP has been reported to exhibit an enhanced
electrochemical property than mono-metal phosphides
on hydrogen evolution reaction (HER) [30–34]. Since it is
widely accepted that an excellent HER electrocatalyst can
also promote photocatalytic H2 evolution as a co-catalyst
[35,36], research on NiCoP as a competent co-catalyst has
drawn considerable interests [37]. Bi et al. [38] adopted
one-pot annealing method to fabricate a highly efficient
photocatalyst of NiCoP/g-C3N4 with an average particle
size around 10 nm for hydrogen generation. Qin et al.
[39] synthesized a NiCoP-based core/shell cocatalyst,
which was mixed with g-C3N4 by grinding method. Re-
cent progress has provided evidence that the particle size
is important to the catalytic activity [40,41]. Generally,
reducing the particle size could improve the performance
of the photocatalyst due to the enhanced quantum con-
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finement effect, which will shorten the route length of
photoexcited charge transmission [42–46]. In order to
achieve a better photocatalytic activity, the cocatalyst, i.e.,
NiCoP, needs to have a tiny particle size as well as uni-
form distribution on the g-C3N4 to avoid impeding light
absorption, and couple with g-C3N4 to improve the
transfer of charge. However, the in-situ fabrication of g-
C3N4 photocatalyst with uniformly distributed tiny Ni-
CoP nanoparticles is still a challenge.

NiCoP/g-C3N4 nanohybrids with uniformly distributed
NiCoP nanoparticles with a particle size around 5 nm are
developed based on an in-situ growth strategy. The
NiCoP/g-C3N4 nanohybrids possess a greatly improved
photocatalytic activity than pristine g-C3N4 in H2 evolu-
tion due to the enhanced charge separation and transfer,
which originate from the small size of NiCoP nano-
particles, uniform distribution of NiCoP on g-C3N4, and
the coupling between NiCoP and g-C3N4. The design,
fabrication and in-depth characterization of NiCoP/g-
C3N4 exhibit the great potential of TMP-based materials
as noble-metal-free cocatalysts in photocatalysis for
highly efficient hydrogen evolution.

EXPERIMENTAL SECTION

Chemicals
Urea, Ni(Ac)2·4H2O, Co(Ac)2·4H2O, 1,3-propanediol,
isopropanol, sodium hypophosphite hydrate, N,N-di-
methylformamide (DMF) and methanol were analytical
grade and bought from Shanghai Aladdin Ltd. (China).

Synthesis of g-C3N4
Bulk g-C3N4 was fabricated by the urea precursor via a
direct thermal condensation process. Urea powder (10 g)
was placed in a 50 mL crucible with cover and then
thermally treated at 550°C for 2 h under ambient atmo-
sphere with a 5°C min−1 ramp rate. After naturally cool-
ing down, the yellowish agglomerated sample was
obtained and carefully ground into fine powders in an
agate mortar.

Synthesis of NiCo-OH/g-C3N4
The NiCo hydroxides (NiCo-OH/g-C3N4) were fabricated
by an alcohothermal method. 200 mg g-C3N4 was dis-
persed in 37.6 mL isopropanol under ultrasonication for
45 min. Meanwhile, certain amounts of Ni(Ac)2·4H2O
(3.4, 10.2, 17, 23.8, 68 and 102 mg) and Co(Ac)2·4H2O
(3.4, 10.2, 17, 23.8, 68 and 102 mg), corresponding to the
specific loadings of NiCoP on g-C3N4 (1, 3, 5, 7, 20 and
30 wt%), were added into 2.4 mL of 1,3-propanediol to

obtain a clear solution. The above solution was dropwise
added into the g-C3N4 suspension. The obtained mixture
was stirred for 2 h, and then moved into a Teflon-lined
autoclave, maintained at 160°C for 12 h. After cooling
down, the resulting product was washed by deionized
water and ethanol through centrifugation, and dried at
80°C to obtain NiCo-OH/g-C3N4. Pristine NiCo-OH was
synthesized via the similar steps without adding g-C3N4.

Synthesis of NiCoP/g-C3N4
The NiCoP/g-C3N4 was fabricated by thermal phosphi-
dation of the as-prepared NiCo-OH/g-C3N4. Briefly, 0.1 g
NiCo-OH/g-C3N4 with different loading amounts of
NiCo-OH was mechanically blended with 50 mg of
NaH2PO2·H2O using a mortar until a uniform powder
was formed. The mixture was then heated in a tube fur-
nace with a ramp rate of 5°C min−1 and kept at 300°C for
2 h under Ar atmosphere. The resulting sample was wa-
shed by water and ethanol, and then dried in an oven.
The final material was labeled as NiCoP-x/C3N4 (x=1, 3,
5, 7, 20, and 30), where x stands for the theoretical weight
percentage of NiCoP. The same procedure was also used
to obtain pristine NiCoP using 150 mg of NiCo-OH and
350 mg of NaH2PO2·H2O. The 3 wt% of Ni2P and CoP on
g-C3N4 were synthesized by the same procedure as that of
NiCoP-3/C3N4, except for the absence of Co2+ or Ni2+ in
the alcohothermal reaction, which were denoted as that of
Ni2P-3/C3N4 and CoP-3/C3N4, respectively. Thermo-
gravimetric analysis (TGA) was conducted to confirm the
actual content of cocatalysts on g-C3N4 (Fig. S1). TGA
results show that the actual weight percentage of NiCoP,
N2P and CoP on g-C3N4 is very close to the theoretical
value.

Characterization
The X-ray diffraction (XRD) was obtained from a Rigaku
SmartLab using Cu Kα radiation. X-ray photoelectron
spectra (XPS) and ultraviolet photoelectron spectra (UPS)
were measured on a Thermo Fisher Scientific ESCALAB
250Xi. Scanning electron microscopy (SEM) imaging was
conducted on a FEI Verios 460L. Transmission electron
microscopy (TEM) imaging, high resolution TEM
(HRTEM) imaging and scanning TEM (STEM) imaging
were implemented on a JEOL JEM-3010. UV-Vis diffuse
reflectance spectra were examined by a PerkinElmer
Lambda 750 with BaSO4 standard. Photoluminescence
(PL) spectrum was recorded at ambient temperature on a
Hitachi F-4600 fluorescence spectrophotometer with
365 nm excitation wavelength. TGA was performed un-
der 30% O2/N2 at a heating rate of 10 K min−1 on a TA
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SDT Q600 analyzer.

Photocatalytic evaluations
The photocatalytic activities for hydrogen generation
were assessed in a gastight and evacuation system con-
nected circulation, in which a top-irradiation-type Pyrex
cell and a 300 W xenon lamp with 300–780 nm wave-
length were used. 100 mg photocatalyst was dispersed in
the reactor containing 10 mL methanol and 90 mL water
under vigorous stirring. The suspension was degassed by
evacuation for 15 min before irradiation. The tempera-
ture of the reactor was kept at 20°C by a flowing circular
water-cooling system. The amount of evolved hydrogen
was analyzed by an on-line gas chromatograph (Tech-
comp GC7900, TCD detector and 5A molecular sieve
capillary column, Ar as carrier gas). The apparent
quantum efficiency (AQE) was measured under the same
condition as that of photocatalytic reaction, except using
a 420 nm band pass filter. The intensity of monochro-
matic light on the reactor was ~6.2 mW cm−2 over an area
of 19.6 cm2. The AQE was calculated using the following
Equation (1):

AQE(%) = number of reacted electrons
number of incident photons × 100

= number of evolved H molecules ×2
number of incident photons

×100. (1)

2

Electrochemical analysis
The electrochemical properties were tested on a Chenhua
CHI 760E electrochemical workstation by employing a
standard three-electrode cell in 0.5 mol L−1 Na2SO4 solu-
tion. The light source was a 300 W Xe lamp equipped
with a 400 nm cutoff filter. The reference electrode and
counter electrode were Ag/AgCl (saturated KCl) and Pt
foil (1×2 cm2), respectively. The working electrode for
electrochemical measurements was prepared as follow:
1 mg sample was ultrasonically dispersed in DMF and
then milled to form homogeneous paste. The paste was
uniformly deposited over indium tin oxide (ITO) glass
with 2.0 cm2 of exposed area, and annealed at 300°C
under Ar atmosphere.

RESULTS AND DISCUSSION
Fig. 1 displays the XRD results of original g-C3N4 and
different NiCoP-x/C3N4 (x = 1, 3, 5, 7, 20 and 30). All the
samples have two characteristic diffraction peaks at 13.0°
and 27.4° indexed to g-C3N4, which are attributed to the
(100) plane with in-plane repeating period of heptazine

framework and the (002) plane with interlayer stacking of
conjugated aromatic structures [47,48]. For the NiCoP-
x/C3N4, when the content of NiCoP is below 20%, the
diffraction peaks corresponding to NiCoP cannot be
observed due to the small amount and the high dispersity.
As the content of NiCoP increases to 20%, obvious dif-
fraction peaks of NiCoP are observed. The diffraction
peaks located at 41° and 44.9° could be indexed to (111)
and (201) planes of hexagonal NiCoP (JCPDS No. 71-
2336), respectively.

The surface chemical composition of the as-fabricated
NiCoP-3/C3N4 was probed by XPS. The XPS survey
spectrum (Fig. 2a) confirms the existence of Ni, Co, and
P. In the C 1s region (Fig. 2b), the peaks located at 284.7,
288.2 and 285.8 eV correspond to the C–C, N–C=N, and
C–NH2 in g-C3N4 [49,50]. The N 1s region of g-C3N4
(Fig. 2c) is deconvoluted into four peaks at 398.6, 399.4,
400.8 and 404.7 eV, attributed to the C–N=C, N–(C)3,
C–N–H and π-excitations of the C=N conjugated systems
from g-C3N4, respectively [51,52]. The two peaks of the
Ni 2p region (Fig. 2d) located at 853.3 eV (Ni 2p3/2) and
868.5 eV (Ni 2p1/2) imply the presence of partially
charged Niδ+ (δ≈0) in Ni-P compound, and the peaks
around 856.4 and 872.7 eV can be ascribed to oxidized
Ni2+. The peaks at 862.1 eV (Ni 2p3/2) and 880.0 eV
(Ni 2p1/2) are assigned to the satellites [53,54]. In Co 2p
region (Fig. 2e), the peak at 778.5 eV is ascribed to
Co 2p3/2 of partially charged reduced Coδ+ (δ≈0) in the

Figure 1 XRD results of NiCoP, g-C3N4 and NiCoP-x/C3N4.
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Co-P compound. Besides, the peaks at 781.5 and 795.4 eV
are attributed to Co 2p3/2 and Co 2p1/2 of the oxidized
Co2+/3+, with satellite peaks at 786.3 and 802.3 eV [55,56].
In the P 2p spectrum (Fig. 2f), the peak at 129.7 eV can be
ascribed to the reduced Pδ− in the metal phosphides, while
the peak at 133.3 eV can be assigned to the phosphorus
oxide (denoted as P5+) due to the exposure to air [57].
Since the XPS signals of Ni 2p and Co 2p in NiCoP-3/
C3N4 are weak for the low content of NiCoP, the XPS of
pristine NiCoP shown in Fig. S2 displays almost the same
deconvolution peaks as NiCoP-3/C3N4.

The SEM image of NiCoP-3/C3N4 is shown in Fig. 3a.
The as-prepared NiCoP-3/C3N4 aggregates as a highly
crumpled structure. The corresponding energy dispersive
X-ray spectrometry (EDX) elemental mapping suggests
that Ni, Co, and P are evenly spread over the surface of
NiCoP-3/C3N4 (Fig. S3). The structure and composition
of NiCoP-3/C3N4 were further characterized by TEM.
The TEM image reveals that the bare g-C3N4 is composed
of irregularly curved layers (Fig. S4). For NiCoP-3/C3N4,
the tiny nanoparticles are evenly distributed on the g-
C3N4 nanosheets (Fig. 3b, c). In the synthesis process, the
metal ions (Ni2+ and Co2+/3+) can be captured by the lone
pair electrons of nitrogen in the g-C3N4 framework,
leading to a uniform distribution [5]. The average particle

size of the NiCoP nanoparticles was calculated as 5 nm
(Fig. S5). The HRTEM image (Fig. 3d) of the single
NiCoP nanoparticle on g-C3N4 clearly presents the (111)
plane of NiCoP, with lattice spacing of 0.22 nm [58]. The
STEM image and elemental mapping of nanohybrids are
demonstrated in Fig. 3e, revealing Ni, Co and P elements
are concentrated on NiCoP nanoparticles. The TEM EDX
spectrum is given in Fig. S6, suggesting the atomic ratio
of Ni:Co:P is around 5:4:5.

The UV-Vis absorption analysis was used to investigate
the optical property of g-C3N4, NiCoP and NiCoP-x/C3N4
(Fig. 4a). The colors of the as-prepared NiCoP-x/C3N4
samples vary from yellow to dark gray (Fig. S7). Besides,
NiCoP-x/C3N4 exhibits remarkably raised absorption in
the whole visible spectrum range with increased content
of NiCoP, which should be attributed to the inherent
absorption of NiCoP nanoparticles. The band gaps of
original g-C3N4 and NiCoP-3/C3N4 calculated from the
derived plots of the transformed Kubelka–Munk func-
tions are 2.68 and 2.62 eV, respectively. The almost same
value indicates that loading of NiCoP does not cause any
obvious change of the intrinsic band gap of the original g-
C3N4 (Fig. 4b).

In order to further study the band edge positions of
NiCoP-3/C3N4, Mott–Schottky measurements were car-

Figure 2 XPS survey spectrum (a) and C 1s (b), N 1s (c), Ni 2p (d), Co 2p (e) and P 2p (f) spectra of NiCoP-3/C3N4.
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ried out as displayed in Fig. 5. The Mott–Schottky plots of
g-C3N4 and NiCoP-3/C3N4 show positive slopes, corre-
sponding to n-type semiconductors. The flat-band po-
tentials of g-C3N4 and NiCoP-3/C3N4 can be estimated as
−0.76 and −0.84 V vs. the normal hydrogen electrode
(NHE, ENHE=EAg/AgCl+0.197 V) [59], which are obtained
from the x-axis intercept of the linear region in Mott–
Schottky plots. Normally, the flat band potential of n-type
semiconductor is more positive about 0.1 or 0.2 V than its
conduction band potential [60], so the calculated con-
duction band bottoms of g-C3N4 and NiCoP-3/C3N4 from
Mott-Schottky plots are determined as −0.96 and −1.04 V
vs. NHE, respectively. According to the equation EVB =
ECB + Eg [61], the EVB of g-C3N4 and NiCoP-3/C3N4 are
calculated as 1.72 and 1.58 V, vs. NHE, respectively. For

comparison, UPS was also employed to measure the va-
lence band of g-C3N4 and NiCoP-3/C3N4, as given in
Fig. S8. The valence band tops of g-C3N4 and NiCoP-3/
C3N4 are determined as 1.84 and 1.68 V, respectively vs.
NHE, which are close to the results of Mott–Schottky
plots. Obviously, coupling with tiny NiCoP nanoparticles
leads to a variation in the band structure of g-C3N4.
Considering band edge positions of the as-prepared Ni-
CoP-3/C3N4, it should be a promising photocatalyst un-
der UV-Vis light.

The light harvesting properties of NiCoP-x/C3N4 were
investigated for photocatalytic H2 generation. As shown
in Fig. 6, only a trace amount of H2 could be detected for
pristine g-C3N4, while NiCoP exhibits no appreciable
activity under UV-Vis light irradiation. However, NiCoP

Figure 3 (a) SEM, (b, c) TEM, (d) HRTEM images and (e) STEM elemental mapping of NiCoP-3/C3N4.

Figure 4 (a) UV-Vis absorption spectrum and (b) the corresponding
plots of (αhv)1/2 versus hν of g-C3N4 and NiCoP-x/C3N4 samples.

Figure 5 Mott–Schottky plots of g-C3N4 and NiCoP-3/C3N4.
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can significantly promote the photocatalytic hydrogen
evolution when coupling with g-C3N4. The enhancement
effect of NiCoP is strongly related to its weight percentage
and a volcano-shaped curve can be plotted. The highest
photocatalytic H2 generation rate of 159 µmol g−1 h−1 is
obtained for NiCoP-3/C3N4, which is increased by a
factor of 2.5 folds compared with CoP-3/C3N4 and 35
folds compared with Ni2P-3/C3N4. The AQE is calculated
as 4.2% for the optimized NiCoP-3/C3N4 photocatalyst
under monochromatic 420 nm visible light, which is one
of the highest values among the similar TMPs/g-C3N4
photocatalytic systems (Table S1). The activity of NiCoP-
3/C3N4 was compared with the 3 wt% Pt loaded g-C3N4
(Pt-3/C3N4) (Fig. S9). Although Pt-3/C3N4 has a higher
photocatalytic activity, NiCoP-3/C3N4 has the obvious
advantage of low-cost. In addition, the photo-stability of
NiCoP-3/C3N4 was also evaluated by performing cycling
tests. As indicated in Fig. S10, after five cycling tests, the
activity had no obvious loss, confirming the sufficient
stability of NiCoP-3/C3N4 for photocatalytic H2 evolution.

Under suitable light irradiation, the electrons of g-C3N4
are excited from valence band (VB) into conduction band
(CB), and holes are left in the VB. The photo-generated
charges can migrate to the solid–solution interface of g-
C3N4, reducing water to hydrogen and oxidizing metha-
nol. However, a rapid recombination of the charges oc-
curs in bare g-C3N4 with the absence of cocatalysts.
NiCoP is identified as an excellent electron conductor.
When coupling with g-C3N4, photo-induced electrons in

the CB of g-C3N4 will efficiently move to the surface of
NiCoP, and react with water to generate hydrogen. At the
same time, the holes in the VB of g-C3N4 are consumed
for oxidizing methanol. The NiCoP nanoparticles can
effectively restrain the recombination of photo-induced
electron-hole pairs, and thereby facilitate the photo-
catalytic activity. With the increasing content of NiCoP,
the transfer of photo-induced electrons in NiCoP-x/C3N4
should be promoted, whereas the light absorbance would
be diminished by the light screening effect, and the ag-
glomeration of excess NiCoP also decreases the activity of
reaction sites. To balance these two points, NiCoP-3/C3N4
was optimized for effective hydrogen evolution (Fig. 7).

PL spectrum is very helpful to explore the electron-hole
pairs separation and migration behaviors in semi-
conductor materials. The emission PL spectra of g-C3N4
and NiCoP-x/C3N4 were measured at room temperature
and shown in Fig. 8. PL signals of all samples are located
within 400–600 nm as a result of the surface and internal
radiative recombination of photo-induced charges. It is
observed that the presence of NiCoP significantly de-
creases the PL intensity, confirming the role of NiCoP in
boosting the charge transfer and suppressing the charge
recombination in g-C3N4. The high separation efficiency
leads to a higher performance of NiCoP-x/C3N4. Com-
pared with Ni2P and CoP cocatalysts, the lower PL in-
tensity indicates NiCoP is more efficient to suppress the
charge recombination (Fig. S11).

To reveal the charge-transfer behavior in g-C3N4 and
NiCoP-3/C3N4 photocatalysts, photocurrent responses
were finally examined, as shown in Fig. 9a. Pristine g-
C3N4 shows an obvious current response from potential

Figure 6 Photocatalytic H2 generation activities of different samples
under UV-Vis light. 100 mg photocatalyst and 10 mL methanol in
90 mL water, T = 298 K.

Figure 7 Schematic of the separation of photo-generated charge carriers
in the photocatalytic H2 generation for the NiCoP/g-C3N4 nanohybrids.

SCIENCE CHINA Materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .ARTICLES

February 2020 | Vol. 63 No. 2 263© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019



of −1.1 V (vs. Ag/AgCl) under light with wavelength
≥400 nm. NiCoP-3/C3N4 shows a much higher photo-
current density, suggesting the presence of NiCoP sig-
nificantly enhances the separation and migration
efficiency of photo-induced charge carriers. Fig. 9b dis-
plays the electrochemical impedance spectroscopy (EIS)
of the as-fabricated pristine g-C3N4 and NiCoP-3/C3N4.
The diameter of the semicircle in the Nyquist plots is
relative to the charge transfer resistance (Rct). The value
of Rct concluded from the EIS of NiCoP-3/C3N4 is much
smaller than that of pristine g-C3N4, reflecting the more
rapid electron transfer in NiCoP-3/C3N4 photocatalyst.
The Rct value of NiCoP-3/C3N4 is also much smaller than
that of Ni2P-3/C3N4 and CoP-3/C3N4 (Fig. S12), sup-
porting the conclusion that NiCoP has a better charge
transfer efficiency than Ni2P and CoP.

CONCLUSIONS
The NiCoP/g-C3N4 nanohybrids containing uniformly
distributed 5 nm NiCoP nanoparticles coupled with g-C3N4
nanosheets were successfully developed via an in-situ
growth strategy. Considering NiCoP as an excellent elec-
tron conductor, the photo-induced electrons in g-C3N4
may efficiently move to NiCoP, and the recombination of
photo-induced charges should be largely suppressed.
Accordingly, NiCoP/g-C3N4 nanohybrids exhibit greatly
enhanced photocatalytic activity than pristine g-C3N4.
The enhancement effects of NiCoP cocatalyst are relative
with NiCoP contents and the optimized NiCoP weight
percentage is 3 wt%, leading to a hydrogen production
rate of 159 µmol g−1 h−1 by using UV-Vis light, which is
significantly higher than pristine g-C3N4, CoP/C3N4 and
Ni2P/C3N4, respectively. The in-situ fabrication of tiny
NiCoP nanoparticles coupled with g-C3N4 as a highly
active photocatalyst in hydrogen production demon-
strates an effective strategy for boosting the photocatalytic
activity of noble-metal-free cocatalyst.
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负载5 nm磷化钴镍纳米颗粒的石墨相氮化碳高效
光催化产氢催化剂
马博, 赵金苹, 葛振华, 陈衍涛*, 袁志好*

摘要 本文通过可控醇热反应将5 nm磷化钴镍纳米颗粒负载在石
墨相氮化碳上得到一种高效催化产氢催化剂. 磷化钴镍是优良的
电子导体和光催化反应助催化剂. 通过原位生长法将微小的磷化
钴镍纳米颗粒和氮化碳复合可有效消除磷化钴镍的光遮蔽效应 ,
同时抑制光生载流子的复合, 提高载流子的迁移率. 由此, 磷化钴
镍/氮化碳纳米复合物表现出远高于纯氮化碳, 单独的磷化镍或磷
化钴/氮化碳复合物的光催化产氢活性. 本研究为构筑过渡金属磷
化物基光催化剂提供了崭新的思路.
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