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Miracles of molecular uniting
Qianqian Li1 and Zhen Li1,2*

“Union is strength”. In the realm of organic molecules,
the macroscopic performance of molecular aggregates is
not just the simple overlay of single molecules, and in
many cases, new properties can be created by molecular
uniting with particular packing modes [1–4]. As to the
organic emissive materials, various changes can be rea-
lized from single molecules to aggregates (Fig. 1), in-
cluding the emerged bright emission, the varied emission
color, the different emission forms, and the arisen new
excitation processes.

AGGREGATION-INDUCED EMISSION
(AIE)
The luminogens with the AIE characteristic are non-
luminescent or weakly luminescent in dilute solution but
emit intensely in the aggregate state, opposite to the
common aggregation-caused quenching (ACQ) effect
[5,6]. Normally, AIEgens are organic π-systems with
twisted configurations, which are beneficial to the mole-
cular rotation and vibration as the nonradiative process in
solution, leading to the nearly dark state in isolated
conditions. The molecular motions and severe π-π in-
teractions as the nonradiative decay channels can be
blocked in the aggregate state due to relatively loose
molecular packing, spatial constraint and intermolecular
interactions, while in solid state or nanoparticle, the ra-
diative decay of excited state will dominate, enabling the
efficient emission of AIEgens (Fig. 2). These intriguing
luminescent phenomena are of great importance for
practical applications in optoelectronic devices and bio-
imaging [7–9], because of their high solid-state photo-
luminescent quantum yields (PLQYs) and dynamic
emissive property with “turn-on” response to aggregate
states, together with proper solubility or molecular be-
havior in water or hydrophilic system.

Actually, the AIE phenomenon is triggered by the
formation of molecular aggregates, but not the single
molecules. More importantly, AIE affords a unique op-

portunity to deeply understand the internal mechanism of
photoluminescence process, with more attention being
attracted into the molecular packing in the aggregate state
as the luminescent source. Accordingly, some novel
emissive forms and materials have been explored or re-
called new lives in recent years, for instance, the organic
room temperature phosphorescence (RTP), mechano-
luminescence (ML), excimer emission, fluorescence of
non-aromatic organic systems, and so on. All of them
exhibit much distinguishing emissive properties in iso-
lated and aggregate states, further demonstrating the
power of molecular uniting.

Basically, most of light emission materials consist of
various aromatic rings with different linkage modes, since
they can form the rigid π-system to stabilize the excited
states. While the flexible chains are normally considered
as the nonluminous materials due to the actively mole-
cular motions with low energy barriers and absence of
conjugated systems. A few years ago, this common sense
was broken by the bright fluorescence of some non-aro-
matic polymers and organic molecules, including poly-
(amido amine) (PAMAM), hyperbranched poly(amine-
ester)s (HypETs), polyurea (PURE) dendrimers, bran-
ched PEIs, polyacrylonitrile, hyperbranched polysiloxanes
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Figure 1 The proposed change of emissive behaviors from solution
(single molecule) to solid (molecular aggregate).
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(HBPSi), and natural biopolymers (e.g., cellulose, starch,
peptide) (Fig. 2) [10,11]. The common feature of these
systems is the essential components of atoms with lone
pair electrons, for instance, N, O, S, and P atoms, and/or
π electrons from carbonyl groups, carbon-carbon double
bonds, etc. With the optimized linear or branched
structures, the tight molecular packing aggregate of the
key components was induced by the reasonably covalent
linkage as fixed modes with tunable conformation, and
thus, the inter- or intra-chain interactions from hydrogen
bonding, π-π and/or n-π coupling can be formed and
contribute much to the electron delocalization and rigid
conformation of the non-aromatic system, resulting in
the light emission in aggregate state. This kind of lumi-
nescence is sensitive to the topological structures, mole-
cular weight and surrounding environments of the whole
organic system because the dynamic interactions among
key units can be further improved by the sequential cross-
linking or self-assembling process [12,13]. Moreover, the
emission with different colors can be achieved in the
same system by varied excitation wavelengths, itemed as
excitation-dependent fluorescence emission (EDF),
mainly due to the various clusters of key components,
and cluster-triggering emission (CTE) is considered as

the main mechanism for these non-aromatic luminous
system [14,15].

Colorimetric emission
For the emission of nonaromatic systems, the key point is
the formation of relatively stable excitation state as we
emphasized previously [3]. Once the relatively stable ex-
citation states are formed, the emission could be emitted
through the radiative route in molecular aggregates,
which can well explain the dramatically enhanced emis-
sion of pyrene from single molecules to aggregate, re-
gardless of its big planar system without any rotor or
motion moieties commonly present in AIEgens. In detail,
compared with the weak emission of single pyrene mo-
lecule in the UV region, a red-shifted and broad emission
band at 450–500 nm could be observed in pyrene crystal
for the formation of excimer [16,17]. Mostly, excimer-
formation involves the excitation of ground-state dimer
into its locally excited (LE) state, which then forms an
excimer via molecular rearrangement, and excitation
process can be facilitated by the pronounced π-π inter-
actions of adjacent molecules stacked in a cofacial ar-
rangement (Fig. 3). Similar phenomena can be observed
in merocyanine dyes with H aggregates and some cyano-

Figure 2 The AIE effect in organic molecules and CTE of non-aromatic luminous system.
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substituted compounds with compact molecular packing,
as well as other aromatic hydrocarbons with van der
Waals (vdW) dimers [18–20]. These colorimetric varia-
tions of emission with enhanced intensity can be applied
into the sensing schemes, which are sensitive to the re-
lative positions of these moieties under different condi-
tions [21,22].

Varied emission forms
Apart from the varied intensity and emission color from
single molecules to aggregate state, sometimes, new lu-
minescence forms can be generated in these molecular
aggregating processes. In the last decade, the persistent
RTP of pure organic molecules was an emerging phe-
nomenon in the solid state as an important breakthrough
(Fig. 4a), since it is challenging for organic materials to
overcome the spin-prohibition between single and triplet
excited state, and achieve the stable triplet excited state
[23–25]. Among various strategies for molecular design
and engineering, the adjustment of molecular packing
and intermolecular interactions is an efficient strategy to
improve the RTP effect of organic materials (Fig. 4b).
Basically, the strong molecule-molecule interactions, such
as halogen bonding and hydrogen bonding, and the
crystal lattice are beneficial to the restriction of molecular
motions, which can inhibit the possible non-radiative
transition to stabilize the triplet excitons [26–28].
Through the systematical investigation of the relation
between molecular packing and RTP effect, the face-to-
face packing mode is considered as the one which can
stabilize triplet excitons by the generation of long-lived
triplet excited states [29–31].

For instance, the RTP lifetimes of the 10-phenyl-10H-
phenothiazine 5,5-dioxide based luminogens increase
from 88 (CS-CH3O) to 188 ms (CS-H), then to 410 ms
(CS-F), accompanying with the decreased centroid-cen-

troid distances between two adjacent benzenes from 4.251
to 3.773 Å , as well as their reduced dihedral angles from
30.03o to 0o (Fig. 4b) [32]. The substituents with different
electronic properties can adjust the molecular packing,
and the electron-withdrawing substituents can effectively
reduce the electron cloud density of π-system and de-
crease the repulsion between the adjacent molecules,
which achieves closer molecular packing to enhance the
π–π interactions, facilitating the ultralong RTP effect.
This can be further confirmed by the carbazole-based
system (Fig. 4c) [29]. However, the intermolecular in-
teractions and packing modes are hard to be controlled in
crystals because of the complicated relationship between
molecular packing and chemical structures. Recently,
assembly was incorporated as an additional force to
suppress the molecular motions and optimize molecular
arrangement [33,34]. Accordingly, various approaches
have been attempted, including co-crystallization, host-
guest system, and dopant-based system, and so on, which
expand the field of organic RTP, in favor of their appli-
cations spanning from optoelectronic to photomedicine
[35–37].

Similar to the case of fluorescence, despite the fact that
to date a large number of investigations have focused
primarily on RTP mechanisms of organic conjugated
system bearing aromatic moieties, some abnormal mate-
rials with obvious RTP have emerged, for instance, car-
bon dots, biomacromolecules and some non-aromatic
polymers [38]. For example, cyanoacetic acid (CAA), an
ultra-simple molecule without any aromatic moiety, was
found to show RTP lifetime as long as 862 ms in the
crystalline state by Fang et al. [39] (Fig. 4d). Through
careful analyses of the single crystal, assembled layer by
layer structure and multiple hydrogen bonding are
proved as the main factors to increase the molecular ri-
gidity and restrict the non-radiative transition, resulting

Figure 3 (a) Schematic diagram in terms of monomer and excimer emission, (b) packing mode of pyrene and the strong fluorescence for excimer
formation. Reproduced with permission from Ref. [12]. Copyright 2009, American Chemical Society.
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in the radiative decay as persistent RTP. It further con-
firms the distinguishing emissive behavior originating
from the optimized aggregate state, in addition to the
chemical structure of organic molecules.

Emission from new excitation process
More interestingly, light emission from new excitation
process can be realized in molecular aggregates. Unlike
the normal luminescence from irradiation or electric
driving, some organic solids exhibit attractive emissions
upon mechanical stimuli, defined as ML or tribolumi-
nescence (TL) [40,41]. Generally, the multi-mechano-
sensitivity of certain ML materials is related to the lattice
behavior, such as the molecular arrangement in the solid
state. According to the intensive investigation on organic
ML materials, the stuck packing mode is the key factor, in
addition to the piezoelectric effect, since the possible
molecular slippage under the mechanical force is the
main non-radiative process (Fig. 5a) [42–44]. Similar to
photoluminescence (PL), ML can be fluorescence or
phosphorescence under different conditions, mainly re-

lated to the electronic property of the excited state gen-
erated by mechanical stimuli. And the first example of
fluorescence-phosphorescence dual ML in organic mate-
rials was realized by 2-([1,1':3',1''-terphenyl]-5'-yl)-4,4,5,
5–tetramethyl-1,3,2-dioxaborolane (DPP-BO), which
only exhibited fluorescence under irradiation as PL
emission (Fig. 5b) [45].

Thus, PL and ML have some similarity for the common
radiative transition from excited state to ground state, but
the excited state may be different for varied stimulations
and molecular arrangements. Moreover, the ML effect is
dynamic in some cases, mainly dependent on varied
molecular configures or intermolecular interactions un-
der the continuous mechanical stimulus. As to phe-
nothiazine derivative, compound FCO-CzS shows
changeable mechanoluminescent emissions from blue to
white and yellow, accompanying with the molecular
conformation transition of the phenothiazine moiety
from quasi-axial to quasi-equatorial form (Fig. 5c) [46].
With the incorporation of multiple bromine atoms into
fluorine unit, the resultant compound BrFlu-Br also

Figure 4 (a) The changed emission forms from single molecule to aggregate state. (b) The proposed mechanism for organic persistent RTP: the
strong π-π interaction could decrease the radiative transition (kP) and non-radiative transition (kTS) from T1 to S0 state, thus achieving the persistent
RTP. Printed with permission from Ref. [32]. Copyright 2018, Nature Publishing Group. (c) The relationship between molecular packing modes and
RTP properties. (d) RTP effect of organic systems without aromatic rings. Printed with permission from Ref. [39]. Copyright 2018, Royal Society of
Chemistry.
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shows tri-color ML switching, which is closely related to
the variational intermolecular Br···Br interactions during
mechanical stimulus (Fig. 5d) [47].

In summary, the emissive behaviors of organic mole-
cules experience the interesting transformation from
single molecule to aggregate state, which can be con-
sidered as the uniting effect by molecular packing. The
intermolecular interactions should be considered as one
of the main elements to the molecular arrangement and
orientation in the aggregate state, which can be affected
by many factors, such as the size, structure and electronic
nature of the organic molecules. Basically, for the aro-

matic systems, the small, unsubstituted aromatic moieties
preferred edge-to-face packing modes, whereas sub-
stituted and large multiring aromatic compounds prefer
parallel displaced geometry [48]. Apart from conjugated
skeletons, the minor changes in side chains, for instance,
the length or branching structure of alkyl groups, can
make huge alterations in packing modes, as partially de-
monstrated in the corresponding single crystals, directly
resulting in the different luminescence properties gener-
ated in the solid state. For instance, when the N-sub-
stituents in phenothiazine 5,5-dioxide derivatives are
replaced by various alkyl chains, the odd-even effect of

Figure 5 (a) The crucial role of molecular packing to ML property; (b) dual fluorescence-phosphorescence ML by DPP-BO. Printed with permission
from Ref. [45]. Copyright 2016, Wiley. (c) The dynamic ML by FCO-CzS with the emission color changing from blue to white, then to yellow over
grinding times. Printed with permission from Ref. [46]. Copyright 2018, Wiley. (d) The dynamic ML by BrFlu-Br for the varied intermolecular
interactions. Printed with permission from Ref. [47]. Copyright 2018, Wiley.
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alkanes can be realized in the RTP properties of the re-
sultant CS-CnH2n+1 series, mainly due to the different π-π
interactions with parallel arrangement by various side
chains [49].

These interactions are more complex in the non-aro-
matic system, since the whole structures are more flexible
and changeable, and thus they are hard to be controlled
accurately by molecular design with the cooperation of
key units with lone pair and/or π electrons, as well as the
topological structure of dendrimers and polymers. Al-
though non-aromatic systems demonstrate better bio-
compatibility and less toxicity in comparison with
aromatic ones, some issues still exist in colorimetric
purity and luminescent efficiency for the dynamic and
varied molecular aggregates. Therefore, more efforts are
consequently essential to control the aggregation behavior
of these complicated systems to optimize their emission
properties.

Thus, with the rational design of organic molecules to
form special molecular packing in the aggregate state,
various emissions with different forms and excitation
processes can be generated by the joint efforts of mole-
cules with multiple interactions. These non-covalent in-
teractions among organic molecules exhibit flexible forms
without fixed directions and strengths, which are more
complex than that of the covalent bonding and afford
more possibilities, resulting in the generation of new
emission behaviors by the power of molecular uniting. So
far, although the behavior of molecular aggregates could
not be controlled and well understood completely, the
much or totally different properties have been recognized
from single molecules to molecular aggregates, clearly
showing the power of molecular aggregate. Accordingly,
our recognition should not only be limited on the level of
single molecule, but turned to molecular aggregates with
the Molecular Uniting Set Identified Characteristic
(MUSIC).

“MUSIC” in the microscopic molecule world is similar
to the music in our lives: basic atoms are just like dif-
ferent notes, and the melody with the alignment of dif-
ferent notes are similar to the organic moieties
constructed by covalent linkage of different atoms with
specific sequences. Correspondingly, the MUSICs, which
are heavily dependent on the molecular uniting with
different packing modes, resemble the symphony with the
coming together of music voiced by different instru-
ments. Through the optimized modulation of molecular
structures and packing modes, the characteristic of mo-
lecular uniting can achieve excellent performance as a
grand symphony. And actually, MUSIC is not only lim-

ited to luminescence materials, but widely applicable to
other functional materials such as organic field-effect
transistors and organic photovoltaic devices [50,51]. In
one word, the time of MUSIC is coming, with miracles of
molecular uniting.
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奇妙的分子聚集效应
李倩倩1, 李振1,2*

摘要 有机材料的宏观性质是分子聚集效应的客观体现, 不仅取决
于单个分子的结构, 而且与整个分子的聚集形式密切相关. 通过对
分子聚集态行为的有效调控, 科学家们发现了一些完全不同于单
个分子特性的聚集态发光现象, 包括发光强度、颜色、形式以及
激发过程的差异. 本文对这些有趣的聚集态发光材料进行了简要
的综述, 系统分析了分子聚集模式和分子间相互作用对材料发光
性能的影响, 并介绍了“MUSIC”的理念, 以音乐创作形象化材料设
计, 强调分子聚集态行为的重要性.
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