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Functional molecular electronic devices through
environmental control
Dingkai Su†, Chunhui Gu† and Xuefeng Guo*

Motivated by Moore’s law, molecular electronic devices
are considered as a promising alternative of traditional
silicon-based electronic devices due to their extreme
miniaturization, low-cost manufacturing and versatility
[1]. The initial model of molecular electronics was a
molecular diode theoretically proposed by Aviram and
Ratner in 1974 [2], where they utilized a single organic
molecule to control the electric current flow in one-way
direction. They designed an asymmetric molecule con-
sisting of a donor-σ-acceptor structure (D-σ-A) to mimic
a p-n junction in semiconductors. At that time, one
fundamental impediment that limited the realization of
molecular diodes was how to immobilize a single mole-
cule to a pair of electrodes. In terms of this issue, in the
1980s, the development of scanning tunneling micro-
scopy (STM) and atomic force microscopy (AFM) made
it feasible to probe the conductance of molecules. Until
1997, Reed et al. [3] developed the mechanically con-
trollable break junction (MCBJ) technique to realize the
measurement of an individual molecule and a real single-
molecule diode was fabricated later by this technique [4].
With the development of more and more approaches to
build single-molecule junctions such as electromigration
break junctions [5], STM break junctions [6] and carbon
point contacts [7], researchers turned more attention to
the functionalization of molecular electronic devices, the
initial goal of molecular electronics. So far, molecular
electronic devices have been successfully developed as
prototypes with different functionalities including diodes
[8], transistors [9], switches [10] and memories [11].

The realization of functionalities in molecular junctions
is the synergistic effect of molecular engineering, inter-
facial engineering and materials engineering as shown in
Fig. 1a. Firstly and most importantly, molecular en-
gineering plays a key role in the device functionalization

[12,13] because specially designed molecules are able to
endow the intrinsic molecular properties, which are di-
rectly correlated to their electronic structures, into mo-
lecular electronic devices. Secondly and complementarily,
interfacial engineering plays an important role in the
electrical characteristics of molecular devices [14].
Through the design of different anchoring groups and/or
the introduction of different spacers between the func-
tional core and the anchoring group, interfacial en-
gineering determines the electronic structure at the
molecule-electrode contact interface, as well as the cou-
pling strength between the molecules and the electrodes.
As a result, the interfacial behavior effectively controls
molecular conductance, charge transport mechanism and
the performance of device functionalities. Finally and
technically, materials engineering mainly involves the
design and choice of electrode materials, thus determin-
ing the development of the device fabrication methodol-
ogy and experimental methods. Currently, the widely
applied electrode materials include metal (Au, Pt, Cu,
etc.), low-dimensional carbon materials (single-walled
carbon nanotubes [15] and graphene [16]), and their
combination [17]. Among these electrode materials, me-
tallic electrodes benefit from easy repeatability and high
throughput. However, they suffer from unstable contact,
atom electromigration and stochastic transition of inter-
face conformation. In contrast, carbon-based electrodes
benefit from high stability, excellent size compatibility
with molecules and robust interface conformations,
overcoming the disadvantages of metal electrodes to some
extent [18].

In general, the molecular orbitals (usually the highest
occupied molecular orbital (HOMO) and the lowest un-
occupied molecular orbital (LUMO)) of the central
functional groups play an important role in determining
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the transport properties in molecular electronic devices
because they provide spatial conduction channels for
electron to transport and cover all the quantum me-
chanical information of the electronic structures. In ad-
dition to the intrinsic molecular structure, external
manipulation of the molecular orbitals proves to be a
direct and effective strategy to control the electron
transport behavior. By taking advantage of the sensitivity
of molecular orbitals to external stimuli such as an elec-
tric field [19,20] and light [21–23], the functionalities of
molecular electronic devices can be largely enriched. For
instance, in 2009, Song et al. [9] fabricated a three-
terminal field-effect transistor (FET)-like molecular de-
vice. The device configuration in Fig. 1b shows that in-
dividual molecules are bonded to source and drain
electrodes (Au) on the back gate electrode (Al2O3/Al).

The FET behavior demonstrated in this device is attrib-
uted to the pronounced effect of an external gate voltage
in tuning the position of the HOMO or the LUMO re-
lative to the Fermi level of the electrodes. In 2016, Jia
et al. [24] realized a fully reversible single-molecule
photoswitch via covalently sandwiching single diary-
lethenes between graphene point contacts (Fig. 1c).
Through alternative radiation by ultraviolet and visible
lights, the conformational change between closed/open
forms of diarylethene molecules resulted in a smaller/
larger HOMO-LUMO gap, and thus led to a higher/lower
conductance (Fig. 1d). These studies demonstrate that
functional molecules can indeed be used as a functional
component with diversity in constructing electrical na-
nocircuits.

It should be mentioned that the use of chemical stimuli

Figure 1 (a) Schematic of functional molecular electronic devices through environmental control. (b) Schematic of a single-molecule device and
representative I–V curves measured at 4.2 K for different values of VG. S, D and G represent source, drain and gate, respectively. (c) Schematic of a
single-molecule transistor based on a graphene-diarylethene-graphene structure. (d) I–t curve through a diarylethene molecule that reversibly switches
between the closed and open forms, upon exposure to ultraviolet (UV) and visible (Vis) radiation, respectively. VD=100 mV and VG=0 V. Reproduced
with permission from Ref. [9], Copyright 2009, Nature Publishing Group, and Ref. [24], Copyright 2016, American Association for the Advancement
of Science.
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to modulate the properties of molecular electronic devices
has become a hot topic these years. In comparison with
electrical field and light stimuli, chemical reactions on the
molecular wires can directly and largely alter the elec-
tronic structure of molecular devices (and thus the cor-
responding device conductance). For example, recently,
Atesci et al. [25] realized a novel humidity-controlled
molecular diode based on a self-assembly monolayer
(SAM) of di-nuclear Ru-complex (2-Ru–N) molecules by
employing conductive-probe atomic force microscopy
(C-AFM). The 2-Ru–N molecule has a symmetric back-
bone with a strong electrostatic coupling between the two
Ru-centers. The current-voltage (I–V) characteristics
were measured by trapping the SAM between two indium
tin oxide (ITO) electrodes at low (~5%) or high (~60%)
relative humidity (Fig. 2a). As shown in Fig. 2b, c, the I–V
characteristics of 2-Ru–N junctions in the dry condition
are symmetric, whereas there is a clear asymmetry in the

high-humidity curves. The fitted rectification ratio (RR)
by a Gaussian curve at 0.9 V in high humidity condition
(RR=103.0±0.6) is about three orders of magnitude higher
than that in low humidity (RR=100.4±0.4) (Fig. 2d). Control
experiments were conducted on mono-nuclear symmetric
Ru-complexes 1-Ru–N and asymmetric Ru-complexes
1-Ru–Py, but neither of them showed diode-like beha-
viors both in dry and humid conditions, which implied
that the key factors to humidity-dependent rectification
result from the interactions of two Ru-centers in series
and water molecules. Quantum chemistry calculations
explained the mechanism of humidity-dependent rectifi-
cation in 2-Ru–N junctions. In the dry circumstances, the
two localized molecular orbitals (LMOs), which is the
combination of HOMO and HOMO-1, are degenerate
between the tip and the substrate (Fig. 2f, g). Under po-
sitive or negative biases, there is a symmetric decrease in
transmission as the two levels shift with each other (Fig.

Figure 2 (a) Schematic of a 2-Ru–N ITO–molecule–ITO junction. (b, c) 2D histograms of logarithmically binned I–V curves of 2-Ru–N molecular
junctions for low humidity (5%, b) and high humidity (60%, c) conditions. (d) Left, 2D histogram of logarithmically binned RR for the humid case.
Right, 1D histogram taken at V=0.9 V. (e, j) The 2-Ru-N complex in simulated dry (e) and humid (j) conditions, with the purple dots representing
water molecules. (f, k) The HOMO and HOMO-1 orbitals without (f) or with (k) the existence of water. (g–i, l–n) Illustration of the two LMOs
between substrate (S) and tip (T) electrodes at zero bias (g, l), positive bias (h, m) and negative bias (i, n) in dry and humid conditions, respectively.
The difference between the Fermi energy and the LMOs is represented by εL (tip side) and εR (substrate side). Reproduced with permission from Ref.
[25]. Copyright 2017, Nature Publishing Group.
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2h, i). In the humid circumstances, however, the two
LMOs become misaligned, the chemical potential of the
LMO near the tip was lower than that of the other LMO
(Fig. 2l). The reason for the level misalignment is that the
replacement of the counter ions by water molecules at the
tip side due to the higher hydrophilicity of the bare ITO
tip and capillary effects breaks the asymmetry in the
electrostatic environment of the tip and the substrate (Fig.
2j, k). This level misalignment induced asymmetric fac-
tors influencing the LMO gaps on the contrary when the
bias was applied in opposite directions. The transport is
enhanced as the gap between the two chemical potentials
of LMOs decreases at the positive bias (Fig. 2m), while the
transport is suppressed when the levels shift away from
the resonance at the negative bias (Fig. 2n). In addition,
researchers found that the junction was also responsive to
tip radius and applied force in humidity. After the opti-

mization of tip radius and background noise, RR values
could exceed 6,500.

Besides directly tuning the molecular orbitals, external
chemical stimuli also take effect by controlling the elec-
tronic structure of the interface [26]. For instance,
Capozzi et al. [27] used the STM break junction to
characterize the electrical property of a symmetric oli-
gomer of thiophene-1,1-dioxide (TDO) in polar solvents
or nonpolar solvents, such as propylene carbonate (PC)
or 1,2,4-trichlorobenzene (TCB) (Fig. 3a). Fig. 3b de-
monstrates that the molecule can rectify in PC and the
fitted RR value is more than 200 at 0.37 V, the highest
reported for single-molecule diodes so far. By contrast,
rectification behavior is not observed in TCB, as shown in
Fig. 3c. The experiment and theoretical model reveal that
the electric double layer formed at the tip is denser than
that at the substrate in a polar and ion-soluble solvent

Figure 3 (a) TDOn molecular structure and schematic of a molecular junction with asymmetric area electrodes. (b, c) 2D histograms of logarith-
mically binned I–V curves of TDO4 in PC (b) and TCB (c). Inset in (b): examples of exceptionally rectifying junctions. (d) Self-assembly of diblock
molecular diodes and protonation by HClO4. (e) I–V curves of diblock before protonation (black), after protonation (green), and after
protonation-deprotonation (red). (e) Schematic of a graphene-fluorenone-graphene junction. (f) Schematic of a graphene-quadruple hydrogen bond
dimer-graphene junction. Reproduced with permission from Ref. [27], Copyright 2015, Nature Publishing Group, Ref. [29], Copyright 2016,
American Chemical Society, Ref. [31], Copyright 2018, American Association for the Advancement of Science, and Ref. [32], Copyright 2018, Nature
Publishing Group.
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because of the smaller area of the tip. Therefore, the
molecular orbitals are pinned to the chemical potential of
the substrate and the current depends on the polarity of
the applied voltage.

Another result caused by chemical environment, which
cannot be ignored in molecular electronic devices, is the
charge distribution effect. It was reported by Morales
et al. [28] that the rectification direction of single-mole-
cule diodes can be switched responding to the acidity of
the environment (Fig. 3d). The dipyrimidinyl-diphenyl
diblock oligomer connected between the Au substrate and
Au nanoparticle exhibits an evident rectification effect
owing to its large dipolar moment (Fig. 3e, black line).
With the addition of perchloric acid (HClO4), the nitro-
gen atom on the pyrimidinyl moiety is protonated and
the dipolar moment inverted, which results in the in-
version of rectification direction (Fig. 3e, green line).
After the deprotonation by sodium ethoxide, rectification
direction could recover (Fig. 3e, red line) [29].

As discussed above, molecular electronic devices based
on both single molecules and SAMs can function as
rectifiers and be controlled through external environ-
mental stimuli. In comparison with SAM-based devices,
the rectification ratio and the sensitivity for single-mo-
lecule devices are less pronounced due to inevitable
tunneling current at the “off” state. However, the ad-
vantages of single-molecule devices are their small size
and their ability to reflect the unique behaviors of in-
dividual molecules. Notably, a special technique that
combines chemical stimuli with high time-resolution
acquisition was developed to monitor single-molecule
junctions [30]. By real-time measurement, the dynamic
process of chemical reactions can be revealed at the sin-
gle-molecule/single-event level. This is a promising di-
rection for future investigation in this field because the
study of chemical reaction kinetics not only reveals the
intrinsic mechanism of chemical reactions, but also can
effectively regulate the chemical reaction, which is of
practical significance to synthesis and chemical produc-
tion. Recently, Guan et al. [31] developed a reliable
platform of graphene-molecule-graphene single-molecule
junctions to carry out single-molecule electrical detection
in a solution environment with a time resolution of mi-
croseconds. With the combination of real-time electrical
signals and theoretical calculation, the intermediate in a
nucleophilic addition reaction of hydroxylamine to a
carbonyl group was discovered (Fig. 3f). Furthermore,
through direct observation of individual hydrogen bond
dynamics in different solvents/temperatures, Zhou et al.
[32] did observe fast stochastic rearrangements of the

hydrogen bond structures mainly through intermolecular
proton transfer and lactam-lactim tautomerism (Fig. 3g)

On the basis of the recent representative advances, we
summarized and highlighted such a burgeoning area of
environment-controlled molecular electronic devices.
Starting from the structure-function relationship, func-
tionalized molecular electronic devices are designed to be
sensitive to specified external stimuli through molecular,
interfacial and/or materials engineering. Essentially, the
functionality of this type of molecular electronic devices
is achieved through the modulation of molecular orbitals
controlled by environmental stimuli, involving electric/
magnet field, light or chemicals. In particular, chemical
stimuli have been developed rapidly as a powerful tool to
control the behavior of molecular electronic devices with
great diversity, selectivity and feasibility. This strategy
provides a unique perspective for integrating numerous
functionalities into electrical nanocircuits, which will in-
vite intense studies in the future.
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环境调控的功能分子电子器件
苏鼎凯†, 顾春晖†, 郭雪峰*

摘要 为了满足传统硅基电子器件日益微型化的需求, 科学家们前瞻性地提出了将单个分子或者分子聚集体夹在电极之间制备分子电子
器件的前沿研究方向. 分子电子器件功能化的实现需要从分子工程、界面工程以及材料工程的角度综合考虑. 本文总结了近期利用外界
环境来调控分子电子器件功能的最新进展. 鉴于化学刺激所引起的显著效果, 作者展望了分子电子器件在单分子化学反应动力学中的应
用前景以及未来的发展方向.
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