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Advancements in three-dimensional titanium alloy
mesh scaffolds fabricated by electron beam melting
for biomedical devices: mechanical and biological
aspects
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ABSTRACT We elucidate here the process-structure-prop-
erty relationships in three-dimensional (3D) implantable ti-
tanium alloy biomaterials processed by electron beam melting
(EBM) that is based on the principle of additive manufactur-
ing. The conventional methods for processing of biomedical
devices including freeze casting and sintering are limited be-
cause of the difficulties in adaptation at the host site and
difference in the micro/macrostructure, mechanical, and
physical properties with the host tissue. In this regard, EBM
has a unique advantage of processing patient-specific complex
designs, which can be either obtained from the computed to-
mography (CT) scan of the defect site or through a computer-
aided design (CAD) program. This review introduces and
summarizes the evolution and underlying reasons that have
motivated 3D printing of scaffolds for tissue regeneration.
The overview comprises of two parts for obtaining ultimate
functionalities. The first part focuses on obtaining the ulti-
mate functionalities in terms of mechanical properties of 3D
titanium alloy scaffolds fabricated by EBM with different
characteristics based on design, unit cell, processing para-
meters, scan speed, porosity, and heat treatment. The second
part focuses on the advancement of enhancing biological re-
sponses of these 3D scaffolds and the influence of surface
modification on cell-material interactions. The overview
concludes with a discussion on the clinical trials of these 3D
porous scaffolds illustrating their potential in meeting the
current needs of the biomedical industry.

Keywords: Electron beam melting, 3D printing, tissue en-
gineering, mechanical properties, biocompatibility

INTRODUCTION
Evolution of additive manufacturing
Additive manufacturing is a rapid prototype (RP) tech-
nique involving layer-by-layer processing of three-di-
mensional (3D) complex structures as directed by the
computer-aided design (CAD) [1,2]. Additive manu-
facturing can be utilized to fabricate complex structures
of relevance to aerospace and patient-specific implants.
For instance, biomedical devices can be fabricated using
the CAD program or computed tomography (CT) scan of
a damaged site that provides a 3D visualization of the
damaged or defect region. The CT scan data is subse-
quently transformed into a 3D design using a commercial
software (MIMICS), which generates a STL (STereo-
Lithography) file. Next this file is fed as an input file to
the 3D printing system, to print the scaffold or compo-
nent.
The fabrication of porous materials has been explored

since 1940s, when pores were introduced in aluminum
through the addition of mercury to the melt [3]. How-
ever, the idea of introducing porous materials in the
biomedical industry started only in 1970s with the aim to
enhance osseointegration and enable bone ingrowth to
potentially replace conventional solid/dense implants
with porous coatings [4]. In this regard, several en-
gineering materials such as metals, ceramics, polymers,
and composites were rendered porous through the
adaptation of advanced manufacturing approaches [5–
16]. In load-bearing orthopedic applications, irrespective
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of the manufacturing technique, brittle behavior of
ceramics and poor strength of polymers limit their ap-
plications for bone implants. Thus, titanium, cobalt-
chromium, stainless steel, tantalum, and magnesium al-
loys are considered worthy of research.
Titanium and its alloys have been widely used for

several decades as monolithic and solid implants. They
have inherent advantages of specific strength, low stiff-
ness, good corrosion and fatigue resistance in physiolo-
gical medium and have been extensively used for dental,
orthopedic, and maxillofacial applications [17,18]. Tita-
nium alloy has superior biological and mechanical
properties, in comparison to other metals, because of the
favorable microstructure and stable passive film. 3D
printing of porous structures of titanium alloys have the
ability to reduce modulus mismatch in the context of
biomedical devices [3,19–21]. Thermo-mechanically
processed solid titanium alloys have higher elastic mod-
ulus (~90–115 GPa) compared to the surrounding tissue
(cortical hard bone: ~15–25 GPa; cancellous or trabecular
soft bone with open cellular structure: ~0.1–4.5 GPa) [22–
24]. This leads to stress-shielding, because of which the
implant takes the maximum load [25]. An important
consequence of biomechanical mismatch is the possibility
of reduced rate of bone healing [25]. Hence, a viable
approach to alleviate biomechanical mismatch is to fab-
ricate open cellular porous structures that are character-
ized by significantly reduced modulus and reduced
density. Another approach is alloy design. In the last
decade, with the advancement in manufacturing techni-
ques, porous metal structures have been fabricated by
additive manufacturing (AM) (layer-by-layer fabrication)
from precursor powders using electron beam melting
(EBM) and selective laser melting (SLM) [26–28]. The
following sections summarize the advancements in de-
sign, structure, process, and properties of porous titanium
alloy components fabricated by EBM for orthopedic ap-
plications.

Design considerations
In additive manufacturing, the properties of the fabri-
cated component are governed by the unit cell, while the
design is dictated by the resolution offered by the additive
manufacturing process/equipment [1]. For ARCAM A1
the resolution is ±0.4 mm based on the information in
the user’s manual. Irrespective of the above, compressive
strength, endurance and elastic modulus can be opti-
mized to ensure the long term success of the implant
[1,29–32]. Vascularization is another aspect that merits
consideration during design, because vascularization

promotes diffusion of nutrients that is necessary for cell
proliferation and differentiation. Biomedical devices of
different alloys including titanium alloys, stainless steel
and cobalt-chromium alloys have been actively con-
sidered for 3D printing [1].
The aspects that are of significance in the design and

processing of optimal architecture for bone tissue en-
gineering applications include: (a) high porosity-high
strength combination with elastic modulus similar to
bone, (b) interconnected porous structure with clinically
relevant geometry that allows oxygen and exchange of
nutrients, and facilitates efficient cell seeding and pro-
duction of extracellular matrix (ECM), and (c) appro-
priate chemistry and topography for cell attachment,
proliferation, and differentiation [33,34].
With regard to regeneration of an injured tissue, mi-

micking cellular and physiological environment, invol-
ving neighboring cells, extracellular matrix, flow of
physiological fluid, mechanical, chemical and topo-
graphical cues is a primary requirement [1,35,36]. Con-
sidering that the response of cells depends on the
available environment, the ECM needs to be considered
as part of the environment to ensure cell-material inter-
action and to provide a route for sensing chemical and
physical cues [1,37–39]. Hence, tissue engineered scaf-
folds are expected to play a determining role in ECM
modeling and governing cell-material interaction during
the regeneration process. In this regard, scaffolds are re-
quired to be non-toxic and biocompatible [1,40,41]. They
are also expected to provide structural support to cells
during tissue regeneration/remodeling [1,42,43]. The
scaffold with desired physical and chemical properties
dictates tissue engineering. For example, the elastic
modulus of ECM dictates differentiation of cells into
different lineage. High stiffness is important for bone
forming cells [1,44,45]. In the case of cardiac muscle
cells, the geometry of scaffold is an important issue in
aligning cells, which may enable directional contraction
of tissue from the perspective of efficient blood transfer
[1,46].
In regard to bone tissue regeneration, pore size and

percentage of porosity impact osteogenesis [18]. In the
case of bio-inert materials, porosity and pore size gen-
erally do not affect osteogenesis, but with regard to
bioactive materials, porosity and pore size significantly
influence osteogenesis [47–49]. It is pertinent to keep in
mind that porosity is not the cause for hypoxia, which is
considered responsible for encouraging osteochondral
ossification [1,50]. During design, degree of porosity and
pore size are important considerations from the per-
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spective of long term structural support. Vascularization
availability of micro-vessels is required for the transport
of oxygen and nutrients, otherwise cells may die [1,51].
Thus, ensuring desired growth of new blood vessels and
adequate space for growth is a necessity [1,51].
An important area of application of additive manu-

facturing relates to the design of scaffolds to perform a
particular function. For example, electroactive scaffolds
with directional porosity enabled alignment of nerve cells
and acted as a guiding cue for growth [52]. Electrical
stimulation also promoted nerve growth factor (NGF)
[53]. Scaffolds play a determining role in transmitting the
applied external stimuli to the cells and enabling the
biological functions to be controlled [1,54,55]. Repair of
the annulus fibrous rupture was accomplished by loading
the scaffolds with mesenchymal stem cells, eliminating
herniation of nucleus pulposus tissue and stabilization of
disk height [1,56].
In summary, tissue-specific scaffolds are preferred be-

cause the complex structure can be mimicked and the
damaged tissue can be restored. Moreover, 3D scaffold
with interconnected porous structure provides space for
vascularization, and serves as a template for the re-
generation of tissue. Also, the porous structure can be
designed to suit a particular tissue-specific environment,
e.g., directionality for nerve regeneration. The afore-
mentioned requirements can be conveniently met by
designing 3D scaffolds, which is not feasible using con-
ventional approaches.

3D ADDITIVE MANUFACTURING
METHODS FOR BONE TISSUE
ENGINEERING
Prior to the development of 3D additive manufacturing
methods, the methods adopted to fabricate 3D porous
scaffolds include freeze drying, solvent casting with par-
ticulate leaching, fiber bonding, membrane lamination,
and gas foaming [16,57–59]. In these methods, it is dif-
ficult to control the pore size, shape, and pore inter-
connectivity [60]. These challenges can now be met via
rapid prototyping or 3D printing, as described in the
following section below. Patient specific scaffolds or de-
vices with tailored dimensions and porosity can be con-
veniently processed by the additive manufacturing
method.

Electron beam melting
An EBM system (Fig. 1) to process 3D porous scaffolds
has an electron column, where a focused electron beam is
produced and scans a uniformly raked layer of powder,

which is gravity fed from the feed stock [1,61]. The AR-
CAM A1 system, using a DC current of ~10 mA and
anode potential of 60 kV drives a tungsten filament in a
3 kW electron gun. A combination of electromagnetic
lenses focuses the electron beam (beam spotsize (FWHM)
0.2–1.0 mm). The system operates in vacuum of <
104 Torr. The resolution is ±0.025 mm [ARCAM user’s
manual]. The selective melting of powder is based on
CAD design. The powder bed is initially heated to
~750°C, for instance, in the case of titanium alloy powder
[1,27,62–64]. In general, powders are heated to 0.5–0.6Tm

(Tm: melting temperature of powder). Packing, powder
size, beam energy, powder conductivity and heat of fusion
are important contributors. The selective melting of
powder that is added in the build direction produces a
complex 3D structure. Also, presented in Fig. 1 is an SLM
system, also referred as selective laser sintering (SLS) (Fig.
1), which is a conventional particle-bonding system,
using a laser beam (e.g., CO2 laser) in lieu of electron
beam [61].
Illustrations of biomedical devices produced via ad-

ditive manufacturing are presented in Fig. 2 [62]. Near
net-shape components can be produced by additive
manufacturing with little or no machining. Titanium al-
loy components processed by EBM were characterized by
a columnar structure and ~50–60 nm thick lamellar
plates with indentation hardness of ~2.5 GPa, which was
similar to the hardness of ~2.3 GPa obtained for SLM
processed component. Co-Cr alloy (Co-26Cr-6Mo-0.2C)
was processed by EBM to fabricate femoral (knee) pro-
totypes as a reticulated mesh structure (density of
1.5 g cm−3) [1,64] characterized by array of orthogonal
Cr23C6 carbides. The microstructure of the Co-Cr alloy
was ~2 µm in the build plane, perpendicular to the build
direction, and the carbide columns were present in the
vertical plane, parallel to the build direction. The result-
ing structure had indentation hardness of 4.4 GPa, yield
strength of ~0.51 GPa and tensile strength of ~1.45 GPa
[1,65]. The fabricated knee exhibited a hardness of
5.9 GPa, while the prototype knee in the annealed con-
dition had a lower hardness of 4.7 GPa [1,65]. The re-
ticulated mesh strut structure had a high density of
carbide arrays with indentation hardness of 6.2 GPa. The
success achieved in obtaining a complex monolith and a
reticulated mesh structure of Co-Cr alloy by EBM, that
exhibited high strength, led to the conclusion that com-
plex monoliths with multifunctional characteristics can
be processed by EBM. The properties of titanium alloy
fabricated by EBM and SLM are presented in Table 1
[65].
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EBM: OBTAINING ULTIMATE
FUNCTIONALITIES IN 3D TITANIUM
ALLOY SCAFFOLDS

Part I: Mechanical properties
It is important to obtain desired mechanical properties
during fabrication of 3D scaffolds. This is essential for
structural integrity, till such time new tissue is re-
generated [66]. The mechanical properties depend on the
specific anatomical location of application, i.e., soft or
hard tissue [67,68]. The compressive strength of human
bone is in the range of ~2–12 MPa for cancellous bone

and ~100–230 MPa for cortical bone. The elastic modulus
of cortical bone, cancellous bone and titanium alloy
scaffold are ~15–25 GPa, ~0.1–4.5 GPa and ~110 GPa,
respectively [69]. Scaffolds of strength less than the bone
are additionally supported by plates, screws, or nails. The
mismatch of elastic moduli between the scaffold and bone
with a higher elastic modulus than host tissue leads to
stress shielding and consequent bone resorption. In a
recent study focused on understanding the mechanical
property-porosity relationship (pore size ~350–1000 µm)
led to reduced elastic modulus of the porous implant, and
minimized stress shielding, in vivo [1,70]. However, the

Figure 1 Commercially available EBM and SLM equipments along with the schematic representation of temperature variation of melting process for
the substrate plate. Adapted from ref. [61], Copyright 2016, Elsevier.
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scaffolds can rupture and give away if their strength is less
than the host bone for load-bearing situations. It is de-
sired that the scaffolds exhibit mechanical properties
(elastic modulus and strength) similar to bone [1,71].
Ideally, it is preferred that a scaffold which substitutes for
the bone, is modeled as a structure with multiple layers so
that the mechanical properties vary across the structure.
This can be made possible by having a gradient or graded
structure with different porosity across the scaffold,
which provides a means to vary the stiffness [72]. It is
important to keep in mind that the mechanical strength
depends on apparent density of the scaffold, where the
thickness zone of inter-pore walls and pore size to beam
thickness ratio dictates the mechanical strength of 3D
printed porous scaffolds [73,74].
In general, the mechanical properties of 3D printed

scaffolds depend on unit cell, pore architecture, pore
volume, and percentage porosity. To ensure long term
endurance and the ability to withstand impact, it is ne-
cessary that the fabricated materials have a good combi-
nation of strength and energy absorption capability, as
discussed below. It is recognized that scaffolds with high
interconnected porosity, though, preferred for tissue re-
generation, but they may lack adequate mechanical
strength and energy absorption capability. The mutually
opposing requirement of high porosity and mechanical
strength in conjunction with high energy absorption is a
challenge.

Role of unit cell design
Recently, the effect of cell shape on mechanical properties
and deformation mechanism was studied in EBM fabri-
cated Ti-6Al-4V reticulated mesh structure with different
unit cell elements (cubic, G7, rhombic dodecahedron)
[75]. These different unit cells provide a means to effec-
tively balance the strength, elastic modulus and de-
gradation behavior in cellular solids. It was observed that
in the case of cellular structures with different unit cell,
the underlying fatigue mechanism involved interaction of
cyclic ratcheting and fatigue crack growth on the struts.
This was closely related to coupling of buckling and
bending deformation of the strut. On increasing the
buckling deformation on the struts via design of cell
shape, the cyclic ratcheting rate of the meshes during
cyclic deformation was decreased and the compressive
fatigue strength was increased. While increasing the
bending deformation of the struts, the contribution of
fatigue crack growth in the struts led to significant fatigue
damage of mesh [75]. Moreover, the presence of rough
surface and pores contained in the struts significantly
deteriorated the compressive fatigue strength of the
struts. It was also observed that by altering the influence
of bending deformation, the stress-strain behavior
transformed from brittle to ductile. It was demonstrated
that Ti-6Al-4V cellular materials with high strength, low
modulus, and desirable mechanical deformation behavior
can be processed by EBM, involving tuning of cell design
(Fig. 3) [75]. Table 2 summaries the properties of tita-
nium alloy fabricated with different unit cell design by
EBM [75].

Role of porosity
A comparative study of Ti-6Al-4V and Ti2448 alloy on
the effect of porosity on mechanical properties indicated
that both the compressive strength and yield strength
decreased with increased porosity for both the alloys [76].
It was observed that Ti-6Al-4V alloy with identical por-
osity (75%) built using the same unit cell shape exhibited
higher compressive strength and Young’s modulus of

Figure 2 (a) Typical knee replacement component fabricated by EBM
method and (b) finished part. Adapted from ref. [62], Copyright 2009,
Elsevier.

Table 1 List of mechanical properties of Ti-6Al-4V titanium alloy bars fabricated by additive manufacturing methods: EBM and SLM [65] (YS:
yield strength; UTS: ultimate tensile strength)

Fabrication process

EBM SLM

Vertical Horizontal Vertical Horizontal

Φ7 Φ4 Φ1.2 Φ7 Φ4 Φ1.2 Φ7 Φ4 Φ1.2 Φ7 Φ4 Φ1.2

UTS (MPa) 1033 1049 1177 982 1023 1168 1311 1286 1174 1253 1278 1134

YS (MPa) 957 960 1101 884 927 1098 1224 1206 1127 1145 1123 1127
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~60 MPa and 3.0 ± 0.6 GPa, respectively in comparison
to the Ti2448 alloy sample of ~38 MPa and ~1.44 ±
0.2 GPa. They concluded that β-type Ti2448 porous
structure had at least twice strength-to-modulus ratio
than Ti-6Al-4V porous components with identical por-
osity, and was highly attractive for biomedical applica-

tions.

Role of scan speed
The effect of scan speed in EBM on the surface and
mechanical properties of the scaffolds was also studied
[77]. Higher scan speeds, led to a rough strut surface with

Figure 3 (a) CAD files and (b) scanning electron microscopy (SEM) graphs of different unit cell elements with (c) stress-strain plots showing brittle
(cubic and rhombic dodecahedron) and ductile (G7) characteristics of unit cells. (d) Compression deformation behavior showing different de-
formation modes and angle of fracture/crush bands for cubic (bucking and 90), G7 (bending and 45), and rhombic dodecahedron (bending and 45)
unit cell elements. Adapted from ref. [75], Copyright 2016, Elsevier.
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pores/defects (~40 µm) because of partial sintering of
particles. It was observed that lower electron beam scan
speed (150 mm s−1) led to more input energy, which
produced strong struts with less number of pores/defects
and smooth surface. This suggested that the surface
properties can be tailored by adjusting the scan speed of
the electron beam. Other researchers observed that the
orientation during the building process had an influence
on surface roughness because of change in energy flow
[78,79].

Role of complex design architectures (Graded/Gradient)
The natural bone has a functionally graded structure. The
outer dense region referred as cortical bone has elastic
modulus of ~15–25 GPa, while the inner porous region
referred as cancellous bone has an elastic modulus of
~0.1–4.5 GPa. There is a bone marrow cavity in the
center [1,80]. Thus, to obtain a replica of natural bone,
3D scaffolds with graded porosity were studied, since
porosity is related to the elastic modulus according to
Gibson-Ashby equation: E=E0(ρ/ρ0)

2 [81]. In this regard,
titanium alloy rod with graded density, characterized by a
lower density inner foam (density ~0.6 g cm−3; stiffness
~0.3 GPa), surrounded by a foam with relatively higher
density (~1.1 g cm−3; stiffness ~2.2 GPa) was fabricated
[28].
Graded/gradient porous structures are envisioned to

provide optimum combination of elastic modulus,
strength and toughness. Recent studies focused on bone
ingrowth suggested that the cellular structures should
have high degree of porosity. However, highly porous
structures are expected to have low mechanical strength.
It is absolutely essential that cellular structures are char-
acterized by adequate strength and ductility combination
in conjunction with the ability to absorb high energy [1].
In this regard, a complex structure mimicking bone in-

volving graded/gradient Ti-6Al-4V mesh structure using
EBM was fabricated [82]. It was observed that graded and
uniform mesh structures had an elastic regime up to the
peak stress, followed by a plateau region, where the stress
fluctuated (Fig. 4). Furthermore, it was noted that both
low and high density regions of the graded mesh struc-
ture first experienced uniform deformation, followed by
fracture in the low density region, when crush band was
formed. Finite element analysis (FEA) was used to in-
dicate stress concentration regions in the mesh and a
discontinuous stress transfer was noted in graded mate-
rials at the nodes, but not in the gradient material (Fig. 5)
[82]. This study outlined the advantage of gradient mesh
design over graded and uniform mesh design, which
avoids the weakness of brittle behavior and is character-
ized by high strength-high ductility combination and
high energy absorption.

Role of post-fabrication heat treatment
Several post-fabrication treatments such as stress reliev-
ing, surface heat treatment, and hot isostatic pressing
(HIP) have been explored for porous scaffolds [83,84].
The process of annealing or aging implemented after
fabrication led to a different microstructure, where the
mechanical properties are sensitive to the microstructure
[85]. It was observed that the annealed sample consisted
of single β phase and exhibited large plasticity, low
Young’s modulus and good fatigue properties. On aging,
precipitation of α phase occurred that increased the
hardness, strength and Young’s modulus and at low
stress, cyclic ratcheting was the primary factor that led to
fatigue failure [85].

Role of post-fabrication surface modification
Recently, several surface modification methods have been
explored on porous scaffolds to promote cellular inter-

Table 2 List of properties of Ti-6Al-4V titanium alloy fabricated by EBM with different unit cell structures [75]

Unit cell structures Density (g cm−3) Modulus (GPa) Strength (MPa)

Cubic 1.6 14.94 202

0.9 2.88 90

0.7 2.22 46

G7 1.6 2.39 52

1.0 1.46 18

0.8 1.23 15

Rhombic dodecahedron 1.68 6.34 112

0.91 1.38 30

0.73 0.89 20
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actions with the host tissue, beyond what is obtained by
3D printing. However, to obtain uniform surface mod-
ification on 3D cellular structure is a challenge. In this
regard, the traditional surface treatment methods such as
grinding, grit blasting, ion implantation, thermal spray-
ing, etc. cannot be employed because they do not help in
obtaining a homogeneous surface modification through-
out the entire structure [86–90]. Hence, the recent focus
was on chemical and/or electrochemical methods because
acid-based solution can penetrate through the porous
structures through the interconnected pores, producing a
homogeneous surface throughout the entire structure
[86,91–93]. Micro-arc oxidation was observed not to in-
fluence the mechanical properties such as maximum
stress, yield stress, plateau stress, and energy absorption,
but had a significant effect on the elastic modulus. Me-
chanical properties were significantly affected and de-
creased in scaffolds with higher relative densities [93]. A
combination of chemical etching and electrochemical
polishing of porous structures as a post-fabrication sur-
face modification step led to an increase in internal
porosity and a decrease in effective strut thickness re-
sulting in overall decreased mechanical properties [86]. In
another study, acid-alkali surface treatment induced
substantial mass loss and, hence, significant loss of both

static and fatigue properties [94]. Thus, large surface area
of 3D printed porous scaffolds, was responsible for a
significant impact on mechanical properties induced by
surface modification.
Irrespective of the above, an improvement in fatigue

strength was noticed on chemically etching with same
etchant compared to the as-fabricated samples of Ti-6Al-
4V alloy, but not in the case of CoCrMo alloy [83,84]. The
differences were attributed to low notch (surface rough-
ness and micro-pitting after etching) sensitivity of
CoCrMo alloy with more ductility than Ti-6Al-4V alloy.
Given that the notch is a stress raiser, the fatigue prop-
erties were improved in a Ti-6Al-4V alloy after etching
because of reduced surface roughness and removal of
partially melted powder particles. In contrast, in CoCrMo
alloy, while the particles were removed, micro-pits were
formed on the surface, leading to insignificant difference
in surface roughness. Thus, selecting an appropriate
etchant and exposure time is important to enhance me-
chanical properties.

Part II: Biocompatibility and biological response
—influence of surface modification
A practical approach to alleviate the undesired bio-
mechanical mismatch is to use a 3D interconnected

Figure 4 (a, c) Compression stress-strain plots of graded mesh structure, (b) compressive strength and Young’s modulus as a function of effective
density (experimental: solid symbols; and theoretical: open symbols), and (d) energy density/unit weight as a function of compressive strength
(effective density, ρeff, is defined as: ρeff = ρ1 f1 + ρ2 f2, where f is the volume fraction of uniform mesh constituent, and subscripts 1 and 2 denote each
constituent respectively). Aadapted from ref. [82], Copyright 2016, Wiley.
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porous foam or mesh structure, which will have a sig-
nificantly low modulus compared to a solid and dense
implant. Recently, the interplay between 3D printed foam
and mesh structure and osteoblast functions were studied
and compared with a solid Ti-6Al-4V alloy [1,95,96]. As
expected, the seeding efficiency was low for both mesh
and foam structures, but there was significant cell
spreading and cell bridging of osteoblasts (MC3T3-E1).
Fig. 6 illustrates morphology of osteoblasts on mesh and

foam structures [1,95,96]. The alkaline phosphate (ALP)
assay results suggested that the enzyme activity increased
with time for foam and mesh structures, irrespective of
pore size.
The response of different cells to pore size varies [97].

For example, pore size of ~5–15 μm was considered sui-
table for fibroblast, ~70–120 μm for chondrocytes, ~100–
400 μm for osteoblast ingrowth [19,98–100]. Moreover,
interconnected porous structures with gradient distribu-

Figure 5 Finite volume method (FVM) stress analysis of graded and gradient mesh structures performed using ANSYS software, indicating the stress
discontinuity along the interface between the two different layers in graded mesh (G1-G2 and G2-G3) during deformation. Such discontinuities were
absent in gradient mesh structures. Adapted from ref. [82], Copyright 2016, Wiley.
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tion of pores can repair and reconstruct more than one
tissue, even though the microenvironment varies for
different tissues [1]. For instance, functionally graded
porous titanium alloy fabricated to meet the requirements

of tissue engineering and to reduce stress shielding and
high energy absorption indicated that the structure fa-
cilitated flow of nutrients and cell proliferation across the
entire structure [101,102]. It was concluded that the

Figure 6 Representative SEM graphs of Ti-6Al-4V mesh and foam structures with different porosity fabricated by EBM and corresponding osteoblast
function. Adapted from ref. [95], Copyright 2014, American Scientific Publishers; and ref. [96], Copyright 2015, Wiley.
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various stages of cell maturation can co-exist in different
regions of the gradient mesh structure.

Surface modification of 3D printed structures
To enhance the cell-material interaction and osseointe-
gration potential beyond what is possible via 3D archi-
tecture, surface modification is being explored. A number
of studies have been conducted on Ti-6Al-4V cellular
structures fabricated by EBM to study biocompatibility of
surface modified structures. One such study focused on
determining the suitability of different Ti-6Al-4V surfaces
produced by EBM as a matrix for attachment, prolifera-
tion, and differentiation of osteoblasts [103]. It was noted
that osteoblast proliferation and differentiation can be
changed by modifying the surface characteristics of Ti-
6Al-4V mesh. Titanium alloy was observed to provide a
highly favorable surface for osteoblast adhesion and os-
teogenic differentiation. In another study, it was shown
that the oxide layer adsorbed fibronectin promoted os-
teoblast attachment and osteointegration through binding
of adsorbed fibronectin to surface-expressed osteoblast
integrins [104]. Studies also reported the influence of
surface nanotopography on the enhanced expression of
osteogenic markers [105–107].
More recently, mesh structures were modified via mi-

cro-arc oxidation and anodization approach (Figs 7 and
8) [96,97]. The combination of macro-, micro-, and na-
noporous architecture obtained in the surface modified

Ti-6Al-4V mesh structures mimicked natural bone-like
ECM topography that promotes bone formation at na-
noscale (regulating protein conformation and signal
transduction) and microscale (impacting initial cell at-
tachment and proliferation) [83,108–117]. The unique
combination of microporous/nanoporous bioactive tita-
nia and interconnected porous architecture of microarc/
anodized titanium alloy mesh structures provided a
multimodal surface roughness from nano-to-micro-to-
macroscale regime and increased the bioactivity of the as-
fabricated mesh structure [91,92]. This provided a fa-
vorable osteogenic microenvironment for tissue ingrowth
and is envisioned to facilitate stronger primary and sec-
ondary fixation of the implant device. The interconnected
porous architecture also enables circulation of physiolo-
gical fluid, oxygen, nutrients, and cells and mimics the
flow conditions of natural bone. Additionally, in the
context of long term structural integrity, the transport of
cells through the porous mesh structure helps in me-
chanical interlocking because the confluent sheet con-
nects the pores and integrates with the structure [91,92].
The coating of 3D titanium implants with tantalum and

chitosan-hydroxyapatite composite improved diabetes-
induced impaired osteogenesis of these implants
[118,119]. While evidence of clinical studies indicated
high failure rate for titanium implants in diabetic pa-
tients, where reactive oxygen species (ROS) were pro-
duced at the implant/bone interface [120–122]. Diabetes-

Figure 7 2D CAD profile of micro-arc oxidized Ti-6Al-4V alloy mesh structure illustrating the SEM morphology of micropores grown on the strut
surface, bioactive apatite formation, and osteoblast-micropore interaction. Also presented are the fluorescent micrograph representing cell adhesion
and expression of extracellular fibronectin, and optical micrograph of mineralized scaffold. Adapted from ref. [91], Copyright 2016, Wiley.
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induced accumulation of ROS also influenced the viabi-
lity of cells on the titanium surface [123]. In this regard,
tantalum coating on titanium indicated superior in-
tegration of tissue in diabetes mellitus impaired osteo-
genesis in sheep by suppressing the ROS-mediated p38
MAPK pathway. In a similar way, studies performed by
chitosan-hydroxyapatite composite coating on 3D mesh
structures improved diabetes-induced impaired os-
teointegration via the reactivation of Wnt/β-catenin
pathway [118]. Contrary to the aforementioned benefits,
coatings were believed to loosen the biomaterial/coating
interface because of inherent brittleness and poor adhe-
sion [124–126].
In another study, the Ti-6Al-4V mesh structures fab-

ricated by EBM technique were biologically surface
modified using BMP-2 (bone morphogenetic protein-2)
and decellularized extracellular matrix. The bioactivity of
the surface was improved and the modified surface was
expected to enhance the fixation of the implant with the
surrounding bone and improve the long-term stability
[127,128].

Biological surface modification: incorporation of
therapeutic drugs into 3D printed architectures
The incorporation of osteoinductive growth factors such
as bone morphogenetic proteins (BMP) into 3D printed
mesh structures or surface treatment of 3D mesh struc-
tures with BMP can be considered as viable approaches to
increase osteoinductivity and facilitate bone tissue re-

generation in the scaffold. Incorporation of other drugs
such as dexamethasone, hydrogels, simvastatin, anti-
microbial agents, and VEGF has also been explored [127–
130].
The potential role of topography of the material in

determining the molecular assembly of BMP-2 and sub-
sequent osteoblast functions indicated a significant dif-
ference in organization and assembly of protein [127]. It
was proposed that 300 µm pore size mesh structure with
interconnected porous architecture was superior to mesh
structures with 600 µm and 900 µm pore size respectively,
in terms of cell proliferation and mineralization. Also, a
favorable effect of pore size on protein adsorption was
noted, which led to the formation of small and dense
dendrites of protein on mesh structures, that provided a
favorable osteogenic microenvironment. It was envisaged
that the unique microstructure of mesh along with pre-
adsorbed protein (BMP-2) provided the conditions fa-
vorable for bone tissue formation in terms of cell adhe-
sion, proliferation, expression level of proteins, and
mineralization. On incorporating BMP-2, the os-
teoinductive potential of the material was increased, in-
fluencing cell signaling cascade to differentiate osteoblast
cells into a more matured osteogenic phenotype. In an-
other study, 3D printed scaffolds containing proteins
were observed to successfully deliver BMP-2 that pro-
moted bone formation in relation to scaffold without
BMP-2 [1,131]. More recently, the advances in printing
technology have provided an opportunity to load drugs

Figure 8 2D CAD profile of anodized Ti-6Al-4V alloy mesh structure illustrating the SEM morphology of nanotubes grown on the strut surface,
bioactive nanoscale apatite formation, and osteoblast-nanotube interaction. Also presented are the fluorescent micrograph representing cell pro-
liferation and optical micrograph of mineralized scaffold. Adapted from ref. [92], Copyright 2016, Elsevier.
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during post-fabrication surface treatment [132–135].
It is pertinent to indicate that vascularization directly

impacts in vivo bone formation. In reality, scaffolds with
interconnected porous structure and with pore size of
~300–400 µm are favorable for the ingrowth of blood
capillaries [1,136,137]. Thus, the long-term success of a
3D scaffold under in vivo conditions is largely governed
by the effectiveness of the scaffold to support angiogen-
esis [138–140]. Angiogenesis refers to new blood capil-
laries that are formed from pre-existing blood vessels at
the host site. Vascularization occurs during wound
healing [1,141] and is a slow process, requiring several
days or weeks for it to completely take place in porous
scaffolds with interconnected pores [140,141]. When
there is insufficient vascular network, the cells experience
a condition of hypoxia/necrosis because of restricted
supply of oxygen/nutrients [142]. The amount of oxygen
that is supplied to the cells, is governed by the diffusion
length, which is ~150–200 µm from the blood vessel
[141–146]. A primary limitation associated with 3D
scaffold vascularization is adequate supply of blood in the
center of scaffolds, when the blood capillaries are absent
[140]. For instance, rapid growth of blood vessels occurs
in scaffolds with pore size greater than ~250 µm [1,147].
Additive manufacturing that allows fabrication of 3D
scaffolds with predefined architecture, is most likely to
enable cell alignment, spatial organization of cells, tune
porosity with respect to mechanical properties and vas-
cularization [1,52,148–150]. On the other hand, conven-
tional methods such as freeze casting, gas foaming, and
particle leaching that produce a porous architecture with
random distribution of pores results in a torturous
pathway for new blood capillaries [1,151]. This slow-
downs the growth of blood capillaries and transport of
nutrients and oxygen [1,141].
In the case of large scaffolds, pre-treatment is generally

preferred for rapid growth of blood capillaries. To ac-
complish this, growth factors such as vascular endothelial
growth factor (VEGF) play a role in angiogenesis and
faster healing [1,152,153]. Furthermore, vascularization
provides osteoprogenitor cells at the defect site, pro-
moting new bone formation [154,155]. To ensure that
vascularization occurs at the center of the 3D scaffold,
pre-seeding of scaffolds with endothelial cells was pro-
posed [156,157]. As a consequence, a link is established
between the blood vessels of host tissues and endothelial
cells which promotes vascularization. Furthermore,
coating of endothelial cells and VEGF encourages the
formation of blood vessels and promotes new bone for-
mation [1,158]. The development of vascular and circu-

lation networks is important for homeostasis and the
regeneration ability of the bone. Based on the afore-
mentioned findings, the future of bone tissue engineering
will depend on developing tissue specific porous 3D
scaffolds and incorporate the recent findings to ensure
tissue regeneration [1].

IN VIVO STUDIES AND CLINICAL TRIALS
OF EBM FABRICATED 3D SCAFFOLDS
3D printed titanium alloy mesh structure scaffolds have
the potential to restore anatomically complex patient
specific areas such as spinal fusion, dental, tempor-
omandibular joint and craniomaxillofacial surgery
[159,160]. Spinal fusion mesh/cage devices were in-
troduced in 1988 to attain spine interbody (cervical disk)
fusion and are now widely practiced. Interbody fusion
cage made of poly-ether-ether-ketone (PEEK) was used
for spinal disorder treatment. But, it does not integrate
well with surrounding bone tissue and forms fibrous
tissue capsule. To overcome this disadvantage, 3D porous
Ti mesh/cage using EBM, was developed [160]. Research
is in progress to 3D print titanium alloys to produce
customized titanium prosthesis in limb salvage surgery to
replace bones lost due to sarcoma [161]. Studies have
demonstrated that porous Ti implants into the frontal
skull of domestic pigs exhibited enhanced bone formation
within the implant [162].
The 3D mesh/cage constructs provide necessary sup-

port for cells to proliferate and differentiate. They are
believed to be a good choice for bone regeneration and
hard tissue replacement [58,163]. The control of pore
size, pore geometry and porosity distribution, cell beha-
vior in vitro and in vivo environments were significantly
improved and good biocompatibility was obtained
[18,164–166]. It was shown that pore size in the range of
300–900 µm using EBM-fabricated mesh provided fa-
vorable condition for cell differentiation at an early stage,
and bone cells adhered to the struts and ligaments of
mesh by forming numerous cytoplasmic extensions [95].
Within 21 days, bone cells colonized the entire archi-
tecture bridging the pores. For these architectures, the
stiffness for Ti-6Al-4V implants was in the range of
~2–20 GPa, appropriate for elimination of stress shield-
ing.
A recent in vivo study on porous Ti mesh/cage fabri-

cated by EBM and implanted at cervical disc levels (C3/
C4 or C4/C5), in 12 mature female Small Tail Han sheep
(1–2 years old, 35–50 kg) indicated that rapid bone in-
growth is a possibility, together with superior osseointe-
gration and mechanical stability. This demonstrated their
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potential for clinical application in comparison to PEEK
[160]. After three months, post-implantation, micro CT
(computer generated) imaging and histological staining
showed the growth of neighboring bone tissue into por-
ous Ti mesh, partially fusing the two vertebral bodies. The
bone tissue bonded closely with Ti mesh/cage, with ma-
jority of bone tissue around the struts in the interior and
peripheral regions of the mesh (Fig. 9) [160]. A com-
parative study showed that the culture of human osteo-
blast-like cells on Ti-6Al-4V led to enhanced osteogenic

differentiation in comparison to PEEK implant [167].
The 3D-printed titanium mesh implants have also been

shown to be excellent candidates for the repair of bi-
frontal skull defects and maxillary and orbital floor re-
construction [168,169]. The 3D architecture provides
improved stability after fixation of mandibular fracture,
compared to the plates and screws because of their 3D
configuration instead of greater plate thickness or screw
length [170]. This is supposed to facilitate good blood
supply to the bone tissue. More recently, clinical trials of

Figure 9 (a) Low magnification digital image of 3D printed porous Ti-6Al-4V titanium alloy mesh implant with an average pore size of 600 μm
fabricated by EBM, (b) implantation of mesh implant in a mature Small Tail Han sheep (1–2 years, 35–50 kg) to fuse two cervical discs in the anterior
region of the spine, and (c) radiographic analysis after 3 months in a mature Small Tail Han sheep representing radiolucent interface gap (white
arrows) in (c1) X-ray, (c2) computer-generated image of thick section, and (c3) computer-generated image of thin section. (d) Histological analysis
after 3 months in a mature Small Tail Han sheep representing significant extent of bone formation (B) and growth of fibrous tissue (F) inside the
pores of the implant. Adapted from ref. [160], Copyright 2017, Springer.
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bimaxillary surgery and mandibular reconstruction using
EBM fabricated titanium alloy on a woman has also
shown highly encouraging results [171]. In summary, the
EBM is potentially a valuable tool to fabricate patient
specific prosthesis with complex shapes/architectures and
internal features, that can precisely match the bone tissue-
implant interface and contribute to the improvement in
the quality of life of the patient.

CONCLUSIONS
The process-structure-property relationships in three-di-
mensional implantable titanium alloy biomaterials pro-
cessed by EBM is elucidate here. EBM has the benefit of
processing patient-specific complex designs, which can be
either obtained from the CT scan of the defect site or
through a CAD program. We have summarized the
evolution and underlying reasons that have motivated 3D
printing of scaffolds for tissue regeneration. There are
two parts of review for obtaining ultimate functionalities.
The first part focuses on obtaining the ultimate func-
tionalities in terms of mechanical properties of 3D tita-
nium alloy scaffolds fabricated by EBM with different
characteristics based on design, unit cell, processing
parameters, scan speed, porosity, and heat treatment. The
second part focuses on the advancement of enhancing
biological response of these 3D scaffolds and the influ-
ence of surface modification on cell-material interactions.
In the end a discussion on the clinical trials of these 3D
porous scaffolds illustrates their potential in meeting the
current needs of the biomedical industry.
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电子束增材制造医用钛合金三维多孔支架力学及生物功能研究进展
Krishna Chaitanya Nune1, 李述军2, R. Devesh Kumar Misra1*

摘要 本文综述了电子束增材制造法(EBM)制备医用钛合金多孔支架植入物的工艺-结构-性能之间关系. 传统加工多孔材料方法(如冷冻
铸造及烧结法)制备的多孔植入器械由于很难匹配患病部位以及与人体组织在宏微观结构、力学和物理性能存在差异等因素受到很多限
制. 针对这一问题, EBM方法具有独特的优势. 它可以利用患病部位的CT扫描成像或者CAD程序设计制备出复杂个性化多孔植入器械. 本
文概述了用于组织再生3D打印多孔支架的发展历程, 主要包含两部分: 第一部分介绍了EBM法制备的具有不同特征(设计、结构单元、加
工参数、扫描速率、孔隙率及热处理)钛合金多孔支架的力学性能; 第二部分介绍了多孔支架生物响应的改进优化以及表面改性对细胞-
材料交互作用的研究进展. 最后, 本文还讨论了三维多孔钛合金支架的临床试验结果, 并展望了其在生物医疗领域的应用前景.
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