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ABSTRACT  Electrospinning has attracted tremendous
attention in the design and preparation of 1D nanostruc-
tured electrode materials for lithium-ion batteries (LIBs)
and sodium-ion batteries (NIBs), due to the versatility and
facility. In this review, we present a comprehensive summary
of the development of electrospun electrode nanomaterials
for LIBs and NIBs, and a brief introduction about electrode
materials beyond LIBs and NIBs. By summarizing various
electrochemical active materials, this review focuses on the
evolution in structures and the constitution of electrospun
electrode materials. In detail, a variety of electrospun anode
and cathode materials of LIBs and NIBs have been properly
discussed, respectively. Finally, the current progress in the
electrospun electrode materials is well reviewed and the
development direction is also pointed out. We believe that
in the nearly future, electrospun electrode materials would
be applied in commercial LIBs and promote the advance in
NIBs. And we hope that this review could be helpful in the
design and fabrication of electrospun hierarchical materials
for other advanced energy-storage devices.

Keywords:  electrospinning, one-dimensional nanostructures,
lithium-ion batteries, sodium-ion batteries, electrochemical
activity.

INTRODUCTION
Global energy crisis and environmental pollution are two of
the toughest problems that the human beings are currently
facing. In the last decades, scientists and engineers have
made great efforts to study and address these two severe is-
sues via developing new energy-related technologies, such
as wind power and solar power. Among them, energy con-
version and storage are crucial factors to realize the highly
efficient and environment-friendly utilization of renewable
energy. To achieve the goal, rechargeable batteries have

been chosen to reversibly store chemical energy and re-
lease electric energy through electrochemical processes [1].
Due to the high energy density and power density, and long
cycle life, lithium-ion batteries (LIBs) show great promise
in the large scale applications, which have been already
widely applied in portable electronic devices, electric vehi-
cles and hybrid electric vehicles [2–4]. On the other hand,
sodium-ion batteries (NIBs) have attracted intensive atten-
tion as one promising alternative to current LIBs [5]. As
applications of rechargeable batteries have been extended
to the large scale grid energy storage, the primary concern
would be the cost and the availability of resources. Since
sodium is the 4th most abundant element in the Earth crust,
NIBs show low cost and the promising potential tomeet the
requirements of the large scale applications [6–12].
To meet the global ever-increasing demands of advanced

energy storage systems, it is urgent to develop batteries
with low cost, and high energy and power density [13]. The
valuable performance characteristics to evaluate batteries,
such as specific capacity and operation current densities,
are determined by the electrochemical performances of
the electrode materials in batteries [14,15]. Therefore, de-
veloping reasonable electrode materials for LIBs and NIBs
is of great importance to realize the aim. Rechargeable
batteries function via Faradaic reactions, accompanied
by mass and charge transfer within electrodes and elec-
trolytes [16]. Nanostructured electrode materials have
been confirmed to be able to enhance the electrochemical
activity of electrode materials, due to the decreased parti-
cle size and increased specific surface area, leading to the
reduced mass and charge diffusion length, and enhanced
intercalation kinetics [17–19]. Among these as-prepared
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nanostructures, one-dimensional (1D) nanomaterials are
one promising choice applied in energy related areas to
improve the lithium/sodium storage performance, which
present high specific surface areas, short transport paths
for ions and fast electron transfers along longitudinal
direction [20–29]. Various methods have been stud-
ied to prepare 1D nanostructured electrode materials,
such as: self-assembly [30], chemical vapor deposition
(CVD) [31–33], solution-growth [34,35], solvothermal
or hydrothermal methods [36–39], and electrospinning
[40–43]. Compared with other strategies, electrospinning
is a simple, effective and versatile strategy to prepare 1D
nanofibers with tunable features, including long length,
uniform diameter and designable morphology [44–46]. In
this paper, we briefly review the application of electrospin-
ning technology in LIBs and NIBs, focusing on the recent
development of electrospun 1D electrode materials.

PRINCIPLE OF ELECTROSPINNING
Electrospinning is a fast, simple and facile strategy to pre-
pare 1D nanofibers. As shown in Fig. 1, a typical elec-
trospinning setup consists of one syringe with one metal-
lic needle as a spinneret, one high voltage power supply,
and one collector [44]. During a typical electrospinning
process, a polymer solution is loaded in the syringe and
moves into the spinneret via a syringe pump, forming a
pendant droplet functioned by the surface tension. As a
high voltage is applied between the spinneret and the col-
lector, the electrostatic repulsive force at the surface of pen-
dant droplet would drive it to elongate and form a coni-
cal structure, Taylor cone [47]. When the applied voltage
increases to one critical value, the surface repulsive force
would overcome the surface tension and thus a liquid jet
ejects from the tip of spinneret. As the surface is filled with
like charges, the liquid jet is continuously elongated by the
electrostatic repulsive force from the needle to the collector
during the process, leading to reduced diameter of liquid jet
to hundreds or tens of nanometers [45,48]. During the typi-
cal process, the solvent in the liquid jet would be evaporated
and the solidified polymer fibers would form one randomly
oriented, non-woven mat. The diameter (R) of the electro-
spun nanofibers is determined by the preparation parame-
ters (i.e., flow rate (Q), electric field intensity (E), electric
current (I), distance between the spinneret and collector
(D), density of the precursor solution (ρ) ). Spivak et al.
[49,50] presented a model analysis of diameter of collected
electrospun nanofibers as R = (ρQ3)1/4·(2IEDπ2)−1/4. There-
fore, the diameter of the electrospun nanofibers is control-
lable through tuning the related parameters [51].

Figure 1    Schematic illustration of a fundamental electrospinning setup.

In 1914, Zeleny [52] first studied the electrospinning
technology, which was initially patented by Anton in
1934 [53], focusing on the preparation of polymer fil-
aments. Up until 1990s, only a few works studied the
application of electrospinning in thin fibers [54,55]. Af-
terwards, along with great advance of nanomaterials in
various fields, electrospinning has reobtained intensive
attention and been used to produce a large number of
1D nanomaterials [44,56,57]. Due to the simplicity and
efficiency of electrospinning, various kinds of precursor
solutions have been electrospun to nanofibers, such as
poly(vinyl alcohol) (PVA) [58], polyacrylonitrile (PAN)
[59], poly(vinyl pyrrolidone) (PVP) [60], poly(ethylene
oxide) (PEO) [61]. By further designing the solution
compositions, the setup, especially the needle and collec-
tor, and subsequent treatments, scientists have prepared
various 1D nanofibers with modified structures. Kim et
al. [62] prepared porous carbon nanofibers (PCNFs) via
applying PAN and poly(methyl methacrylate) PMMA
polymer-blend solution as the electrospinning precursor.
Due to the phase separation, in the electrospun polymer
nanofiber, PMMA solution would be dispersed in the PAN
solution like particles in fibers. After the carbonization
process, PMMA phase decomposed and PAN phase was
converted to carbon, finally obtaining PCNFs with hollow
cores. Different to the work of the polymer blend by Kim
et al., Yu et al. [63] used mixed solvents of dimethylfor-
mamide (DMF) and H2O to dissolve PAN as the precursor
solution and obtained electrospun porous PAN fibers
based on one induced phase separation from solution.
Designing the new needles with two coaxial tubes and
multi-tubes, Jiang and co-workers [64,65] prepared novel
nanofibers with hollow and multichannel structures via
electrospinning. Moreover, the walled number and inner
morphology of channels in the electrospun nanofibers are
both controllable by tuning the structure of needles. In ad-
dition, McCann et al. [66] prepared special nanofibers with
high porosity by gradually reducing solvent evaporation
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rate during electrospinning process and created the phase
separation effect between residual solvent and polymer
in nanofibers by immersing the collectors into one liquid
nitrogen bath with a low temperature of about −196°C.
Uniform polypyrrole (PPy) nanotubes have been prepared
by Xie et al. [67] via using electrospun poly(�-caprolac-
tone) (PCL) and poly(L-lactide) (PLLA) nanofibers as
templates.
In addition, a variety of electrospun ceramic nanofibers

have also been prepared by several groups. One efficient
strategy is direct electrospinning of proper viscous inor-
ganic sols. Larsen et al. [68] combined sol-gel methods
and electrospinning and successfully fabricated ceramic
nanofibers, including TiO2/SiO2 and Al2O3 nanofibers.
Later, Choi and co-workers [69] realized fabrication of
silica nanofibers by direct electrospinning of silica sol,
which was prepared from tetraethyl orthosilicate (TEOS),
H2O, ethanol and HCl. However, the diameter of electro-
spun nanofibers produced from the strategy was usually
hundred nanometers. To further reduce the diameter of
electrospun ceramic nanofibers, Li et al. [70] used poly-
mer, such as PVP to adjust the viscosity of the solution and
control the viscoelastic behavior. After electrospinning
and subsequent thermal treatment, TiO2 nanofibers with
uniform diameter of less than 200 nmhave been fabricated.
Later, a variety of electrospun ceramic nanofibers, such as
SiO2 [71], ZrO2 [72], CuO [73], and N2O5 [74] nanofibers,
have been fabricated by this strategy with different poly-
mers (e.g., PVA and PEO).
Electrospinning is one facile and cost-effective strategy

to design and prepare novel nanostructures. Owing to the
versatility of electrospinning, the research on electrospun
electrode materials for LIBs and NIBs focuses on modi-
fications of materials to realize improvements of electro-
chemical activity. With wide applications of electrospin-
ning for preparing nanomaterials with controllable struc-
ture and composition, electrospinning shows great poten-
tial in designing electrode materials for LIBs and NIBs.

ELECTROSPUN ELECTRODE MATERIALS
IN LITHIUM-ION BATTERIES

Anode materials
In the LIBs, graphite is currently used as the commercial
anode materials, due to its low working potential, low cost
and good cyclability. However, low specific capacity of
graphite (372 mA h g−1) and low diffusion rate of lithium
into graphite limit the energy and power density [75,76].

Therefore, it is required to develop advanced anode ma-
terials with higher capacity and fast Li-ion diffusion rate.
In this review, we focus on the 1D carbonaceous materials,
alloys, metal oxides, and metal sulfides/nitrides prepared
by electrospinning.

Carbonaceous materials
Various types of carbon nanofibers (CNFs) have been
prepared using different sources in last decades, such as
PAN [77], PVP [78], PVA [79], polyimides (PIs) [80],
poly(vinylidene fluoride) (PVDF) [81] and pitch [82].
Among them, PAN and pitch are the usually used precur-
sor polymers to fabricate CNFs after proper carbonization
processes [83,84], which are prepared for numerous ap-
plications, for example, supercapacitors [85], electric
conductors [86], and catalysts [87]. For the electrochem-
ical applications, electrospinning-derived CNFs prepared
from PAN were firstly applied as anode materials for LIBs
by Kim and co-workers [88]. They studied the influence of
carbonization temperature on the structural characteristics
and electrochemical performances of CNFs, demonstrat-
ing the CNFs carbonized at 1000°C showed the highest
initial capacity of 450 mA h g−1 at a current rate of 30 mA
g−1 but without long-cycle performance. Afterwards,Wu et
al. [89] realized the long-term cycling of PAN-electrospin-
ning derived CNFs, reaching 400 mA h g−1 after 500 cycles
at 0.27 C, and provided reasonable experimental explana-
tion of the gradually increased capacity during long cycle
life of CNFs, possible continuous exfoliation of graphene
layer in CNFs during Li-ion intercalation/de-intercala-
tion. And Ramakrishna et al. [90] successfully prepared
free-standing PAN-electrospun CNFs by modifying the
carbonization process. However, the capacity of CNFs in
these three works is still limited.
To improve the capacity of CNFs, several groups com-

bined electrospinning with other methods to obtain CNFs
with designed structure and improved capacity. Chemi-
cal doping is one general strategy to improve electrochem-
ical performance of carbonaceous materials due to the en-
hancement of electric conductivity and capacity ascribed
to the atom doping in carbon layers. Nan et al. [91] pre-
pared nitrogen-enriched PCNFs (NPCNFs) via using PAN
andmelaminewith high nitrogen content as precursors and
NH3 treatment during carbonization. With a high nitro-
gen content (7.9 %), NPCNFs displayed a high reversible
capacity of 1323 mA h g−1 at 50 mA g−1 and improved rate
performance.
Another strategy to increase the electrochemical per-

formance of carbonaceous materials is to prepare porous
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structures with a large number of lithium storage sites.
Template-basedmethods and activating agents (e.g., KOH)
are widely applied strategies to realize the porous structure,
templates here as sacrificial sections. Hard templates, such
as silica nanoparticles and soft templates, such as PLLA,
have been used in electrospinning to prepare PCNFs as
anode materials for LIBs [92−94]. Different from the
traditional template-based methods and KOH-activation
methods used in other carbonaceous materials, Li et
al. [95] firstly reported a simple, low cost and environ-
ment-friendly strategy to prepare highly porous carbon
nanofibers (HPCNFs) as flexible anode materials for LIBs,
activation with air. As shown in Fig. 2, by introducing a
certain amount of air into the Ar flow during carboniza-
tion, the controllable combustion of CNFs would form
numerous pores to formHPCNFs, displaying a high capac-
ity of ~1780 mA h g−1 at 50 mA g−1 and a ultra-long cycle
life (~1500 mA h g−1 after 600 cycles at 500 mA g−1). More-
over, for the flexible carbonaceous materials, the flexibility
of the obtained CNF film can be tuned via subsequent
carbonization processes and fabricating composite CNFs.
Arshad and co-workers [96] have studied the parameters
(i.e., heat temperature, diameter of electrospun CNFs)
affecting the tensile strength and elastic modulus. While

the tensile strength showed a maximum at 1400°C, the
elastic modulus increased along with increasing tem-
perature until 1700°C. Moreover, the CNFs with smaller
diameter showed higher tensile strength and elastic mod-
ulus. Another strategy to enhance flexibility of CNFs is
to fabricate composite CNFs, such as CNFs-carbon nan-
otubes (CNTs)-hybrid material [97]. On the other hand,
hierarchical porous structures are also helpful to improve
the electrochemical activity of carbonaceous materials.
Dong and co-workers [98] prepared electrospun CNFs-Co
nanoparticles composite nanofibers to improve the elec-
trochemical performance of CNFs through the formation
of Co nanoparticles in CNFs, which would enhance the
specific surface area and electronic conductivity of CNFs.
Due to the synergistic effect of Co nanoparticles, the com-
posite nanofibers presented improve cycle performance
and rate capacity. In addition, Chen et al. [99] reported
a series of PCNFs with hierarchical porous structures by
introducing Ni nanoparticles as sacrificial catalysts. As
shown in Figs 3a and b, Chen et al. [99] reported the in
situ formation of hollow graphitic carbon nanospheres
(HGCNs) in amorphous CNFs (ACNFs/HGCNs) with
catalytic effects of Ni nanoparticles in the CNFs. With
increased defects in HGCNs as extra lithium storage sites,

Figure 2     (a) Schematic illustration of the preparation strategy for the HPCNFs electrode. (b and c) Capacity retention of the electrodes at a cycling rate
of 50 mA g−1 and 500 mA g−1 cycled between 0.001 and 3 V vs. Li+/Li. CNFs is one control sample without air activation. Reproduced with permission
from Ref. [95], Copyright 2015, Elsevier.
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Figure 3    SEM and TEM images of (a and b) ACNFs/HGCNs (Reproduced with permission from Ref. [99], Copyright 2012, the Royal Society of
Chemistry), (c and d) ACNHGCNs (Reproduced with permission from Ref. [101], Copyright 2012, the Royal Society of Chemistry), (e and f) N-doped
CNTs-CNFs hybrid material (Reproduced with permission from Ref. [102], Copyright 2013, American Chemical Society), and (g and h) ANHTGCNs
(Reproduced with permission from Ref. [103] Copyright 2014, Royal Society of Chemistry).

the hybrid material displayed a high reversible capacity of
~750 mA h g−1 at a current density of 50 mA g−1. Similar
to Ni nanoparticles as sacrificial catalysts, Fe nanopar-
ticles were also used to prepare functionalized porous
graphitic CNFs (FPG-CNFs), delivering a remarkable
capacity of 983 mA h g−1 at 100 mA g−1 [100]. Through
introducing triple-coaxial electrospinning, as shown in
Figs 3c and d, HGCNs were decorated in amorphous CNTs
(ACNHGCNs) prepared by Chen and co-workers [101].
Compared with the ANCFs in Ref. [99], amorphous CNTs
in this work showed better access to electrolyte and facili-
tated the Li-ion diffusion, presenting a higher capacity of
~969 mA h g−1 at a current density of 50 mA g−1. As shown
in Figs 3e and f, Chen et al. [102] then introduced PMMA
into the precursor solution to prepare one CNFs-CNTs
hybrid material. During the carbonization process at
the atmosphere of N2/H2, C2H2, along with the thermal
decomposition of PMMA, served as a carbon source to
form CNTs under the catalytic effect of Ni nanoparticles
embedded in the CNFs, forming the N-doped CNFs-CNTs
hybridmaterials. Through one subsequent KOHactivation
process and removing of Ni nanoparticles by HNO3, acti-
vated N-doped CNFs-CNTs hybrid materials were finally
obtained, showing an enhanced capacity of ~1150 mA h
g−1 at 0.27 C. Moreover, by controlling the atmospheric
pressure during the carbonization process, as shown in
Figs 3g and h, Ni in CNFs can diffuse out of the nanopar-
ticles to create inner hollow-tunnel structure, forming
N-doped hollow-tunneled graphitic CNFs (ANHTGCNs)
via subsequent chemical activation and acid treatment
[103]. The prepared material showed a very high capacity

of ~1560 mA h g−1 at a current density of 0.1 A g−1.

Alloys
Alloy anode materials show promising potentials as anode
materials for commercial LIBs, owing to high theoretical
capacities, such as silicon (Si), germanium (Ge), tin (Sn),
and phosphorus (P), which can be electrochemically al-
loyed with Li. However, practical applications of these al-
loy anode materials are hindered by huge volume change
during lithiation and delithiation, leading to cracking and
pulverization of electrode materials, disconnection from
current collectors, and unstable solid-electrolyte-interface
(SEI) [104]. These would result in fast fade of capacity and
low Coulombic efficiency (CE). To solve these problems,
significant efforts have beenmade to reduce the stress from
volume change and crack of SEI, such as downsizing al-
loy particles, preparing porous structures, and introducing
protective matrixes.
Among the as-prepared Si nanostructures, 1D Si nanos-

tructures have shown great promise for improvement of
electrochemical performance of Si anode materials due to
the enhanced electrochemical activity. Lee et al. [105] pre-
pared mesoporous Si nanofibers (m-SiNFs) via combin-
ing electrospinning and magnesiothermic reduction. As
shown in Fig. 4a, electrospun polyarylic acid (PAA)/SiO2

nanofibers were firstly calcined at 500°C in air to remove
the PAA and mesoporous SiO2 nanofibers were obtained.
The m-SiNFs would be prepared after the magnesiother-
mic reduction of mesoporous SiO2 nanofibers and etching
withHCl to remove unreactedMg, as shown in Fig. 4b, dis-
playing  mesoporous  structures  formed  by  contacted  Si
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Figure 4    (a) Schematic illustration of the synthesis process and (b) TEM image of mesoporous silicon nanofibers (m-SiNFs); (c) cycle performances
and Coulombic efficiencies of the unit cell fabricated using SiNPs and m-SiNFs at 2 A g−1. Reproduced with permission from Ref. [105] , Copyright
2013, American Chemical Society.

nanoparticles. Benefiting from the fast electron and Li-ion
diffusion along with nanosized Si particles and accommo-
dation effect of mesoporous structure for volume change
during cycling, the m-SiNFs delivered a high reversible
capacity of ~1364 mA h g−1 after 300 cycles at 2 A g−1
(Fig. 4c). On the other hand, great efforts have been
devoted to develop silicon-carbon composites, regarded
as promising candidates for advanced LIBs. In this re-
gard, Wang et al. [106] prepared CNFs-Si composites by
electrospinning, displaying agglomerated nanosized Si
dispersed in the CNF matrix, showing higher capacity
than that of nanosized Si/activated carbon mixture com-
posites. However, due to the non-uniform dispersion of
nanosized Si particles, the cycle life is still limited. Xu et
al. [107] then realized the uniform distribution of Si/C
clusters in three-dimensional (3D) CNF matrix by simul-
taneously electrospinning PAN fibers and electrospraying
nano-Si-PAN clusters. After carbonization, PAN fibers
became 3D CNFs and nano-Si-PAN clusters formed Si/C
clusters, forming a flexible 3D Si/C fiber paper electrode as
shown in Figs 5a and b. Attributed to the enhanced ionic
and electronic conductivity and volume accommodation
in the porous structure, the flexible 3D Si/C fiber paper

displayed an enhanced overall capacity of ~1600 mA h g−1
after 600 cycles (Fig. 5c).
On the other hand, Si nanoparticles (0D) encapsulated

in CNFs (1D) is one promising strategy to accommodate
the volume change of Si [108–111]. Zhou et al. [112] pre-
pared one Si@PCNF hybrid material with Si nanoparticles
encapsulated in PCNFs via a single-nozzle electrospinning
technique as shown in Fig. 6a. Si nanoparticles were first
coated with SiOx with a thickness of 10–12 nm by calcina-
tion. Then the PAN/DMF solution with Si@SiOx nanopar-
ticles was electrospun to nanofibers. After carbonization
and etching with hydrogen fluoride to remove SiOx, the
Si@PCNFwas obtained. As shown in Fig. 6b, the Si@PCNF
presented that Si nanoparticles were encapsulated in the
PCNFs with void space, which would accommodate the
volume change of Si nanoparticles during cycling and fi-
nally improve the cyclability with enhanced capacity reten-
tion of 69.1% as shown in Fig. 6c. Other prospective encap-
sulation design, core (Si)-shell (carbon) fibers, is expected
to be able to resolve the poor cycle performance of silicon
[113–116]. Hwang and co-workers [116] prepared hybrid
fibers with core full of Si nanoparticles wrapped by carbon
 shell  (SiNP@C)  by dual-nozzle electrospinning (Fig. 7a),
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Figure 5    SEM images of the 3D Si/C fiber paper electrode, (a) top view, and (b) cross section, the insert in (a) shows one digital photo of the flexible
3D Si/C fiber paper electrode; (c) cycle performance of the 3D Si/C fiber paper electrode. Reproduced with permission from Ref. [107], Copyright 2015,
Wiley.

Figure 6    (a) Schematic illustration of the synthesis process of the Si@PCNF hybrid structure. (b) TEM image of the Si@PCNF hybrid structure. (c)
Cycle performance of Si@PCNF, PCNF, and nano-Si at 0.2 A g−1. Reproduced with permission from Ref. [112], Copyright 2013, Wiley.

SiNP with PMMA dissolved in a mixed solvent of DMF
and acetone as the core solution and PAN dissolved in
DMF as the shell solution. After electrospinning, as shown

in Fig. 7b, the obtained core (SiNP-PMMA)-shell (PAN)
nanofibers were heated to form core (SiNP)-shell (carbon)
nanofibers  (Fig. 7c)  resulted  from the decomposition of
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Figure 7    (a and b) Schematic illustration of the synthesis process of the SiNP@C nanofibers. (c) Cross-sectional SEM image of the SiNP@C nanofibers.
(d) Cycle performance of SiNP@C nanofibers at 2.75 A g−1 (3 C). Reproduced with permission from Ref. [116], Copyright 2012, American Chemical
Society.

PMMA and carbonization of PAN. The robust carbon shell
in the structure can accommodate the huge volume change
and severe pulverization of Si during cycling, forming sta-
ble SEI layers, and facilitate the electron diffusion along the
carbon shells, finally maintaining excellent cyclability at 3
C as shown in Fig. 7d.
Tin, as another promising alloy anode material, has

been widely studied, due to its theoretical capacity of
990 mA h g−1. Nevertheless, the cyclability of Sn anode
materials suffers from large volume change and easy ag-
gregation of Sn nanoparticles during cycling. To address
these problems, Yu et al. [117,118] designed two kinds
of porous structures to buffer the large volume variation
and prevent Sn NPs from aggregation via electrospinning.
As shown in Fig. 8a [118], through a single-nozzle elec-
trospinning of one solution of tin octoate-PMMA-PAN
dissolved in DMF, the as-spun nanofibers display one core
(tin octoate-PMMA)-shell (PAN) structure, due to the
easier stretch of a PAN solution than a PMMA/DMF fluid.
The as-spun nanofibers were first stabilized in air at 250°C,
forming SnO2 NPs embedded in porous hollow fibers as
the PAN and tin octoate decomposed (Fig. 8b). Then
Sn nanoparticles (~200 nm) encapsulated in the porous
hollow carbon fibers (diameter ~2 μm) (SPMCTs) were
obtained after carbonization in one mixed atmosphere
of Ar and H2 (Fig. 8c). Compared with commercial Sn
nanoparticles, the SPMCTs presented a high reversible

capacity of 648 mA h g−1 at 0.5 C after 140 cycles (Fig. 8d),
ascribed to the sufficient void space to alleviate the huge
volume change of Sn NPs and high surface area accessible
to electrolyte. Then another novel Sn@carbon NPs encap-
sulated in bamboo-like hollow CNF hybrid material was
prepared by Yu and co-workers [117] via a typical coaxially
electrospinning strategy. A mixed solution of tributyltin
(TBT) and mineral oil and a solution of PAN dissolved in
DMF were applied as the inner solution and outer solu-
tion, respectively. As shown in Fig. 9a, with soaking with
n-octane to remove the mineral oil, the as-spun nanofibers
were converted to one hollow structure. After heat treat-
ment under an Ar/H2 mixed atmosphere, the Sn@carbon
nanoparticles encapsulated in hollow CNFs were obtained
as shown in Figs 9b and c. The carbon shell of hollowCNFs
would relief the strain resulted from the volume change
of Sn NPs. Moreover, the carbon coating layer on the Sn
NPs would prevent pulverization Sn. Finally,the hybrid
structure maintained the excellent cycle performance of
737mA h g−1 after 200 cycles at 0.5 C (Fig. 9d). In addition,
the electrochemical activity of Sn NPs is related to the size
of Sn NPs as well as the electrospun CNF matrix. Zhang et
al. [119] have prepared Sn quantum dots (QDs) (~5 nm)
embedded in N-doped CNFs (Sn QDs@CNFs) by electro-
spinning followed annealing in N2. With the reduced mass
diffusion length along Sn QDs and enhanced electronic
conductivity of  N-doped CNFs,  the  Sn QDs@CNFs  dis-

���
   April 2016 | Vol.59 No.4
© Science China Press and Springer-Verlag Berlin Heidelberg 2016

������ SCIENCE CHINA Materials



Figure 8    (a and b) Schematic illustration of the synthesis process of the SPMCTs nanofibers. (c) TEM image of the SnNP@C nanofibers, the insert
shows the TEM image with higher resolution. (d) Cycle performance of SnNP@C nanofibers at 0.25, 2 and 10 C. Reproduced with permission from Ref.
[118] , Copyright 2009, American Chemical Society.

Figure 9    (a) Schematic illustration of the preparation process, (b and c) TEM images and (d) cycle performance at 0.5 C of the Sn@carbon nanoparticles
encapsulated in hollow CNFs. Reproduced with permission from Ref. [117], Copyright 2009, Wiley.
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played long cyclability of 887 mA h g−1 after 200 cycles at a
cycling rate of 0.1 A g−1.
Germanium (Ge) is another promising anode mate-

rial with a high theoretical capacity (1624 mA h g−1 for
GeLi4.4), higher Li-ion diffusion coefficient and electrical
conductivity than Si [120]. Ge is applied to prepare elec-
trospun anode materials for LIBs to overcome strain from
volume change after lithiation. A flexible electrode con-
sisting of Ge nanoparticles embedded in CNFs (Ge-CNFs)
has been prepared by Li et al. [121] via electrospinning.
The precursor solution containing tetramethoxygermane
(TMOG) and PAN dissolved in DMF was firstly electro-
spun to nanofibers, followed by stabilization at 280°C in
air and carbonization at 650°C in Ar/H2. The Ge-CNFs
were finally obtained and exhibited excellent electrochem-
ical performance of 1420 mA h g−1 at 0.15 C after 100
cycles based on the synergistic effects of 0D Ge NPs, 1D
CNFs and 3D interconnected CNF matrix. To further
stabilize Ge in CNFs, Wang and co-workers [122] pre-
pared amorphous germanium encapsulated in N-doped
CNFs (Ge/N-CNFs) forming Ge–N chemical bonds via
electrospinning a homogeneous solution of ethanedi-
amine-germanium-PVP (EDA-Ge-PVP) dissolved in
water. The Ge–N chemical bonds benefited the cyclability
of Ge during cycling. To further enhance the structural
stability of Ge during cycling, Wang et al. [123] applied
additional TiO2 layer on the surface of Ge-CNFs and finally

obtained improved cycle performance. In addition, to
study the electrochemical activity of different dimensional
Ge anode materials, Li and co-workers [124] designed and
prepared carbon-coated single crystal Ge nanowires grown
on the surface of CNFs (c-GeNWs-CNFs hybrid mate-
rials) as flexible and self-supported anode materials for
LIBs. A precursor solution of PAN/nickel acetate/TMOG
(PAN/Ni(Ac)2/TMOG) dissolved in DMF was electrospun
to nanofibers. During the process, DMF evaporated and
TMOG reacted with H2O in the air to form GeO2, forming
PAN/Ni(Ac)2/GeO2 composite nanofibers. After stabi-
lization in air, the nanofibers were carbonized at 550°C in
Ar/H2 atmosphere. As shown in Fig. 10a, during the py-
rolysis process, NiO nanoparticles produced from Ni(Ac)2
and GeO2 would converted to be Ni nanoparticles (Ni NPs)
and Ge, respectively, under the reduction of H2. Under the
catalytic effect of Ni NPs, small organic molecule gas (i.e.,
C2H2 and CH4), produced from partial decomposition of
PAN, and GeO gas, generated from reaction between Ge
and unreduced GeO2 served as the source of carbon layer
and Ge NWs, respectively. Finally, Ge NWs (diameter
~10 nm) coated by carbon layers (~2nm) were grown on
CNFs, forming a flexible film with a hybrid structure as
shown in Figs 10b and c. Resulted from increased specific
surface area accessible to electrolyte and good electronic
conductivity along the Ge NWs, carbon layers and 3D
interconnected CNF network, the c-GeNWs-CNFs hybrid

Figure 10    (a) Schematic illustration of the preparation process, (b) SEM, (c) TEM images and (d) cycle performance at 0.1 C of the c-GeNWs-CNFs
hybrid materials. The insert in (c) shows one digital photograph of the flexible c-GeNWs-CNFs hybrid film. Reproduced with permission from Ref.
[124], Copyright 2015, Wiley.
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materials presented an outstanding cycle performance of
1520 mA h g−1 at 0.1 C after 100 cycles (Fig. 10d).
Phosphorus is another alloy anode material with a very

high theoretical capacity of 2595mA h g−1, but suffers from
huge volume change (~300 %) during cycling and low elec-
tronic conductivity. Li and co-workers [125] used elec-
trospun PCNFs as matrix to load red P, forming a flexi-
ble film electrode. PAN and PMMA were co-electrospun
to nanofibers in a solvent of DMF, which formed PCNFs
after pyrolysis at 1000°C in Ar based on the decomposi-
tion of PMMA and carbonization of PAN. Benefiting from
the nanosized red P nanoparticles confined in PCNFs and
enhanced electron transfer along 3D interconnected PC-
NFs, the flexible electrode delivered an excellent cyclability
(~2030 mA h g−1 at 0.1 C after 100 cycles).

Metal oxides
Tremendous efforts have been devoted to study metal ox-
ide anode materials for LIBs, including numerous oxides,
such as Li4Ti5O12, TiO2, Fe3O4, CoO, and SnO2. This review
intends to summarize recent development of metal oxides
prepared via electrospinning as anode materials for LIBs,
including intercalation/de-intercalationmaterials and con-
version materials based on the types of electrochemical re-
action with lithium.
The research ofmetal oxide anodematerials based on the

intercalation/de-intercalation mechanism mainly focuses
on Li4Ti5O12, TiO2, and TiNb2O7. As one promising al-
ternative to commercial carbonaceous anode materials for
LIBs, Li4Ti5O12 (LTO) has been widely investigated, due to
zero-strain during lithium intercalation/de-intercalation
and avoidable formation of decomposition of electrolyte
and formation of SEI layers. However, the low Li-ion
diffusion coefficient and poor electronic conductivity
hinder the practical applications of LTO. To solve these
issues, nanosized LTO fibers have been applied. Wang
et al. [126] synthesized porous LTO nanofibers consist-
ing of interconnected LTO nanoparticles via pyrolysis of
electrospun nanofibers (tetrabuyl titanate, lithium acetate
and PVP). Ascribed to increased electrode-electrolyte
interface of porous nanofibers and reduced Li-ion diffu-
sion length of the LTO nanoparticles, the LTO nanofibers
showed improved rate performance (90.4 mA h g−1 at 60
C). To further improve the electronic conductivity of LTO
nanofibers, Park and co-workers [127] prepared electro-
spun LTO nanofibers coated with conductive TiN/TiOxNy

layers via nitridation. The obtained LTO nanofibers after
electrospinning and thermal treatment in air were heated
in an atmosphere of NH3 gas to complete the nitridation

process and amorphous TiN/TiOxNy layers formed on
the surface of the LTO nanofibers. Compared with the
pristine LTO nanofibers, the nitridated LTO nanofibers
with the outer conductive layers showed better rate per-
formance. On the other hand, CNF matrixes have been
widely employed as conductive matrix to improve the elec-
tronic conductivity of electrode materials in LIBs. Choi
et al. [128] and Zhu et al. [129] synthesized LTO/CNF
composites showing enhanced rate performance. To fur-
ther increase the electrolyte/electrode interface area and
shorten the Li-ion transfer length, Xu et al. [130,131]
designed and prepared highly porous carbon-coated LTO
fibers by combining electrospinning with treatment in air.
As shown in Fig. 11a, the as-spun nanofibers containing
lithium acetylacetonate (LAA), titanium isopropoxide
(TTIP) and PVP were firstly carbonized at 800°C in Ar/H2

(v/v=95:5) to form LTO/C nanofibers. Then the composite
nanofibers were treated in air at 350°C to partially burn
off the carbon matrix, obtaining highly porous LTO/C
nanofibers with a large number of pores in the composite
nanofibers as shown in Figs 11b–d. With facilitated infil-
tration of electrolyte within the highly porous structure
and improved electron transfer along the carbon matrix,
the PLTO/C delivered excellent rate performance of 161,
154, 150, and 143 mA h g−1 cycled at 0.5, 2, 10 and 30 C,
respectively (Fig. 11e).
TiO2 is another low-cost and environment-friendly an-

ode material with high lithium insertion voltage, present-
ing similar advantages of LTO but higher capacity than
LTO.Unfortunately, the cyclability and rate performance of
TiO2 are also hindered by the inferior electron and Li-ion
conductivity. Electrospinning provides a promising solu-
tion to prepare 1D TiO2nanomaterials to conquer these is-
sues [132]. To increase penetration of the electrolyte, Yuan
et al. [133] and Zhang et al. [134] prepared TiO2 hollow
nanofibers through the coaxial electrospinning strategy by
using TiO2-precursor solutions and mineral oil or polymer
solutions as the materials for the core and shell, respec-
tively. TiO2 hollow nanofibers were obtained after pyrol-
ysis in air. Afterwards, Tang and co-workers [135] synthe-
sized multichannel hollow TiO2 nanofibers through a sim-
ple single-nozzle electrospinning process. As shown in Fig.
12a, the precursor solution of PAN/PVP/tetrabutyl titanate
(TBOT) in DMF would undergo phase separation during
the evaporation of DMF, forming the multichannel hollow
nanofibers. After pyrolysis in air, as shown in Figs 12b and
c, TiO2 nanofibers (diameter of ~200 nm) withmulti-chan-
nels (diameter of tens of nanometers) were prepared and
displayed enhanced rate performances  of  218,  200,  170,
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Figure 11    (a) Schematic illustration of the formation of the PLTO/C nanofibers, (b) SEM, (c and d) HRTEM images and (e) rate performance of the
PLTO/C nanofibers. Reproduced with permission from Ref. [131], Copyright 2014, Elsevier.

144, 110, and 72 mA h g−1 at 1, 2, 5, 10, 20 and 50 C,
respectively (Fig. 12d). The electronic conductivity is an-
other key factor determining the electrochemical activity
of TiO2. As shown in Fig. 13, nitridation [136,137], metal
nanoparticles [138,139], and carbon matrix [140–143]
were usually applied to enhance the electronic conductivity
of TiO2 nanofibers. Han et al. [137] produced N-doped
TiO2 hollow nanofibers via one typical electrospinning
process and subsequent nitridation process in the NH3

atmosphere. With the increased electrolyte/electrode
interface, the TiO2 hollow nanofibers were also sheathed
with highly conductive TiN/TiOxNy layers. Owing to
simultaneously enhanced electronic conductivity and
shortened Li-ion diffusion distance, the N-doped TiO2

hollow nanofibers showed higher rate capability than
pristine TiO2 nanofibers.
With higher theoretical capacity of 387.6 mA h g−1,

TiNb2O7 is regarded as one promising candidate anode
material to LTO, with reversible insertion of Li-ion and
lithium occupation in the interstitial sites. Similar to
LTO, low electronic and ionic conductivity of TiNb2O7

limit the electrochemical performance. To solve these
problems, Tang and co-workers [144] firstly prepared

“nano-pearl-string” 1D TiNb2O7 nanofibers with attached
TiNb2O7 nanoparticles by the electrospinning method.
A solution of PVP, niobium ethoxide (Nb(OC2H5)5) and
tetrabutyl orthotitanate (Ti(OC4H9)4) dissolved in a mixed
solvent of ethanol and acetic acid was firstly electrospun
to nanofibers. The as-spun nanofibers were calcined at
1000°C in air to produce TiNb2O7 nanofibers. As shown
in Figs 14a and b, the nanofibers displayed a uniform
diameter of ~500 nm and consisted of interconnected
nanoparticles (50–200 nm). Benefiting from the favorable
kinetics based on nanofibers, thematerial showed excellent
cyclability (a high capacity of 250 mA h g−1 after 50 cycles
at 1 C) and rate performance (198, 137 and 63 mA h g−1
at current densities of 2, 5 and 20 C, respectively) (Figs
14c and d). Moreover, Aravidan et al. [145] reported the
applications of electrospun TiNb2O7 nanofibers as inser-
tion-type anode material in Li-ion hybrid electrochemical
capacitors with high energy and power density.
In addition, iron oxides, cobalt oxides, manganese oxides

and nickel oxides are typical transition metal oxide anode
materials with the conversion reaction mechanism in LIBs.
During the conversion reaction, the transitionmetal oxides
react with Li  to form metal and  Li2O  and  generate  large
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Figure 12     (a) Schematic illustration of the electrospinning process of the multichannel hollow TiO2 nanofibers; (b) SEM, (c) TEM images and (d) rate
performance of multichannel hollow TiO2 nanofibers. Reproduced with permission from [135], Copyright 2012, Elsevier.

volume change of electrode materials, which would
limit the cyclability of electrode materials along with the
electronic insulating nature [146]. To improve the elec-
trochemical performance of this type anode materials,
electrospun CNFs and porous structures have been applied
to buffer the volume change and enhance the electron
transfer [133]. Fe2O3 and Fe3O4 are abundant, low-cost
and eco-friendly anode materials with high theoretical
capacities. To strengthen the kinetics of iron oxides in
conversion reaction with lithium, Ji et al. [147], Zhang et
al. [148], Wang et al. [149], and Gu et al. [150] synthesized
electrospun Fe2O3/carbon or Fe3O4/CNFs with iron oxides
nanoparticles embedded in conductive CNFs to improve
the electrochemical activity of iron oxides. In addition,
1D hollow nanofiber was another promising structure to
increase access of iron oxides to electrolyte and enhance
Li-ion diffusion [151–153]. By combining conductive
carbon matrix and hollow structures, Cho and co-work-
ers [154] prepared bubble-nanorod-structured Fe2O3-C

composite nanofibers with hollow Fe2O3 nanospheres en-
capsulated in amorphous carbon matrix. As shown in Fig.
15a, the as-spun nanofibers consisting of iron acetylaceto-
nate (Fe(acac)3) and PAN were first carbonized at 500°C in
Ar/H2 to form FeOx-CNFs. Then based on the Kirkendall
effect in the subsequent thermal treatment, hollow Fe2O3

nanospheres were prepared, accommodating the volume
change during cycling (Fig. 15b). The unique nanosized
Fe2O3 spheres-C nanofibers realized long-term cycling of
812 mA h g−1 at 1 A g−1 after 300 cycles (Fig. 15c).
Similarly, electrospinning was also applied to enhance

electronic and ionic conductivity of cobalt oxides (e.g.,
CoO and Co3O4) [155–157], manganese oxides (e.g.,
MnO) [158,159] and nickel oxides (e.g., NiO) [160,161],
preparing porous oxides nanofibers with connected oxide
nanoparticles, and oxide nanoparticles encapsulated in
CNFs [155–159]. The synthesized 1D metal oxide nano-
materials showed improved electrochemical performance.
SnO2-based materials have gained intensive attention as
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Figure 13     (a) TEM image and (b) schematic illustration of crystal structure of N-doped TiO2 (Reproduced with permission fromRef. [136], Copyright
2013, American Chemical Society); (c and d) SEM images of Ag nanoparticles decorated TiO2 hollow nanofibers (Reproduced with permission from
Ref. [139], Copyright 2013, Royal Society of Chemistry); (e) TEM and (f) HRTEM images of porous TiO2-CNFs (Reproduced with permission from
Ref. [143], Copyright 2014, Royal Society of Chemistry).

Figure 14    (a) SEM and (b) TEM images of “nano-pearl-string” TiNb2O7 nanofibers; (c) cycle performance of TiNb2O7 nanofibers at 1 C; (d) rate
performance of TiNb2O7 nanofibers at various rates. Reproduced with permission from Ref. [144], Copyright 2013, Wiley.
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Figure 15    (a) Schematic illustration of the formation of bubble-nanorod-structured Fe2O3-C composite nanofibers; (b) TEM image and (c) cycle
performance of Fe2O3-C composite nanofibers at 1 A g−1. Reproduced with permission from Ref. [154] , Copyright 2015, American Chemical Society.

one inexpensive and environmentally benign anode with
high theoretical capacity. The electrochemical reaction of
SnO2 with lithium is based on the conversion mechanism
of SnO2 reduced to Sn and Li2O, followed by alloying
mechanism of Sn with Li. While the first step of conver-
sion reaction is irreversible with a theoretical capacity of
~780 mA h g−1 in some previous reports [162,163], several
groups confirmed the reversibility of conversion reaction
of SnO2 with higher theoretical capacity of ~1493 mA
h g−1 [164,165]. The irreversible capacity resulted from
irreversible formation of Li2O and huge volume change
during cycling would induce limited cycle performance
of SnO2. One effective approach to modify the issues is
to synthesize 1D porous nanomaterials to accommodate
the volume variation. Hwang et al. [166] and Yang et al.
[167] produced porous SnO2 nanofibers and presented
enhanced cycle performance via electrospinning followed
by subsequent thermal treatment. In these two works,
Hwang et al. [166] reported a comprehensive study of
fibrous porous SnO2 nanofibers, which were obtained
by calcining the as-spun PVP-SnCl2·2H2O nanofibers at
750°C in air. As shown in Figs 16a–c, the fabricated porous
SnO2 nanofibers are composed of uniform SnO2 nanopar-
ticles (10–50 nm) with numerous void spaces between

the nanoparticles. Compared with the electrodes of com-
mercial SnO2 nanoparticles, the porous SnO2 nanofibers
displayed better cycle performance after 300 cycles, due
to the porous structure to buffer the volume change dur-
ing cycling (Fig. 16d). To further control the volume
change of SnO2 during cycling, Zhao et al. [168] fabricated
SnO2-ZnO composite nanofibers via electrospinning.
Benefiting from the buffering effect of ZnO nanoparticles,
the electrospun composite nanofibers showed improved
cyclability and rate capacity. Moreover, graphene sheets
[169,170], carbon matrix [171–174] and metal nanoparti-
cles [175] were also introduced by several groups to further
stabilize the structure during cycling and improve elec-
tronic conductivity. Zhou and co-workers [176] presented
hybrid nanofibers with uniformly embedded SnOx in
CNFs (U-SnOx/C nanofibers) as anode materials through
electrospinning. SnO2 nanoparticles were dispersed in
PAN/DMF solution, which was electrospun to nanofibers.
As shown in Fig. 17a, the fabricated U-SnOx/C nanofibers
after pyrolysis showed uniform diameter of ~250 nm with
no obvious SnOx particles. However, the SnOx is found to
be dispersed uniformly in the CNFs as shown in the STEM
and corresponding elemental mapping images in Fig. 17b.
Due  to  the  novel  dispersion  structure,  the  U-SnOx/C
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Figure 16    (a, b) SEMand (c) TEM images of porous SnO2 nanofibers; (d) cycle performance of porous SnO2 nanofibers and commercial SnO2 nanopar-
ticles. The insert shows the cross-sectional SEM images of porous SnO2 nanofibers and commercial SnO2 nanoparticles anode before and after 1, 50,
and 300 cycles. All the scale bars indicate 20 μm. Reproduced with permission from Ref. [166] , Copyright 2014, Elsevier.

nanofibers displays excellent electrochemical cyclability of
608 mA h g−1 after 200 cycles at 0.5 A g−1 and rate perfor-
mance of 663, 518 and 365 mA h g−1 at 0.5, 1, and 2 A g−1,
respectively (Figs 17c and d).

Metal sulfides
On the other hand, metal sulfides (e.g., NiS, SnS, WS2, and
MoS2) have been extensively explored in a variety of ar-
eas, such as sensors, solar cells and LIBs. When employed
as anode materials for LIBs, metal sulfides display high
theoretical capacity but low conductivity and poor struc-
tural stability during cycling. To overcome these draw-
backs, constructing carbon-metal sulfides hybrid materials
is one general solution.
Fei et al. [177] presented a series of electrospun metal

sulfide embedded in CNFs as free-standing anodes for
LIBs, including Cu1.96S, Co9S8, MnS, NiS and SnS. Among

them, NiS and SnS encapsulated in CNFs showed uniform
nanoparticles while the others displayed aggregation ten-
dency in CNFs. In addition, Zhao et al. [178] and Yu et
al. [179] prepared electrospun MoS2 nanoflakes and WS2
nanoplates dispersed in CNFs, respectively. To further
improve the structural stability and electronic conductiv-
ity, Zhi’s group presented preparation of SnS2@graphene
nanocables [180] andMoS2@graphene nanocables [181] as
anodematerials for LIBs. In the typical fabrication process,
a PVP solution containing metal source (i.e., Sn and Mo)
and tetraethylorthosilicate (TEOS) was first electrospun
to form composite nanofibers. The composite nanofibers
were then calcined at high temperature in methane (CH4)
to get graphene coating layers, followed by treatment with
H2S to get metal sulfides and subsequent HF to remove
SiO2. SnS2 or MoS2@graphene was finally obtained and
delivered excellent  capacity  retention  of  over  93.5%  for
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Figure 17    (a) TEM and (b) STEM& elemental mapping images of U-SnOx/C nanofibers. (c) Cycle performance at 0.5 A g−1 and (d) rate performance
of U-SnOx/C nanofibers. Reproduced with permission from Ref. [176], Copyright 2014, Wiley.

SnS2@graphene nanocable composite after 350 cycles and
almost 100% for SnS2@graphene nanocable composite
after 160 cycles. Different from the structure of metal
sulfides encapsulated in graphene nanocables, Liu’ group
presented CNFs@metal sulfides (i.e., MoS2 [182] and NiS
[183]) core/shell as flexible anode materials for LIBs. Liu
and co-workers first fabricated electrospun PAN-derived
CNFs as the matrix to load metal sulfides. Then the ob-
tained flexible CNF films were anchored with MoS2 via
a one-step solvothermal reaction or with NiS via a facile
low-temperature chemical bath deposition followed by
sulfidation. Here, CNFs acted as the conductive matrix to
buffer volume expansion of metal sulfides during cycling,
resulting in excellent cycling stability (736 mA h g−1 after
50 cycles at 50 mA g−1 of CNFs-MoS2 and 1020 mA h g−1
after 100 cycles at 100 mA g−1 of CNFs-NiS).

Cathode materials
Recent development in electrospun cathode materials in
LIBs focused on lithium-based transition metal oxides,
transition metal oxides, and transition metal sulfides, such
as LiCoO2, LiMn2O4, LiFPO4, V2O5 and FeSx (x = 1 or
2). Among them, LiCoO2 is one layered cathode material
used in current commercial LIBs with high specific energy
density. Electrospinning has been applied to fabricate
1D LiCoO2 nanowires to improve Li-ion diffusion rate
in interconnected LiCoO2 nanoparticles, leading to en-
hanced electrochemical activity and cyclability [184,185].

Additionally, Lu et al. [186] prepared electrospun LiCoO2

nanofibers coated with a lithium phosphorous oxynitride
(LiPON) layer to further improve the structural stability
of LiCoO2 during cycling, where the LiPON layer was
applied as a solid electrolyte layer. Compared with the Li-
CoO2 nanofibers without LiPON layers, the LiPON coated
one showed better cycle performance and rate capacity.
MgO layer has also been confirmed to be another promis-
ing coating layer to stabilize LiCoO2 nanofibers during
cycling by Gu and co-workers [187]. They employed
the typical coaxial electrospinning strategy to fabricate
LiCoO2-MgO/core-shell nanofibers, with one LiCoO2

spinnable sol and one MgO spinnable sol used as the inner
and outer precursor solution, respectively. As shown in
Figs 18a and b, the electrospun LiCoO2 nanofibers with
uniform diameter of ~1 μm were coated by a thin MgO
layer of around 5 nm, presenting enhanced cyclability (Fig.
18c).
As one environmentally benign and low cost cathodema-

terial, LiFePO4 (LFP) has received much interest with high
capacity and operating voltage, widely used in current com-
mercial LIBs. To further realize higher electrochemical ac-
tivity of LFP, the electronic and ionic transfer limitation
should be overcomed. Electrospun CNFs, as highly con-
ductive matrix, have been introduced to improve the elec-
tronic conductivity [188]. Dimesso and co-workers [189]
fabricated 3D electrospun CNFs deposited with LFP, dis-
playing improved cyclability and rate performance of LFP.
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Figure 18    (a) SEM and (b) TEM images of LiCoO2-MgO/core-shell nanofibers; (c) cycle performance of bare LiCoO2 and LiCoO2-MgO/core-shell
nanofibers. Reproduced with permission from Ref. [187], Copyright 2007, Royal Society of Chemistry.

Figure 19    (a) TEM and (b) HRTEM images of carbon-coated single crystalline LFP nanowires; (c) rate performance and (d) cycle performance at 1 C
of carbon-coated single crystalline LFP nanowires. Reproduced with permission from Ref. [193], Copyright 2011, Wiley.

Moreover, Toprakci et al. [190] prepared LFP nanocrys-
tals encapsulated in CNFs via electrospinning to ensure
effective electron transport paths along CNFs. To further
reduce electric resistance, Toprakci et al. [191] andHosono
et al. [192] introduced CNTs into electrospun LFP/CNFs
employed as one conductive additive. In addition, Zhu
and co-workers [193] reported single-crystalline LFP
nanowires (SCNW-LFP) coated by carbon layers through

electrospinning. They used an aqueous PEO solution with
LiH2PO4 and Fe(NO3)3 for electrospinning. After one
pyrolysis process at 600°C in Ar/H2, the as-spun composite
nanofibers converted to carbon-coated LFP nanowires
with uniform diameter of about 100 nm. As shown in Figs
19a and b, the prepared SCNW-LFP grew along the c axis,
shortening the diffusion length of ions along a and b direc-
tions. As the ionic and electronic transfer rate along the b
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direction was much faster than the a and c directions, fast
insertion/extraction of Li-ion was achieved in SCNW-LFP.
The thin carbon layer coated on SCNW-LFP of about ~3
nm thickness would further increase the electronic con-
ductivity along the 3D interconnected structure. Owing
to the benefit of the hybrid structure, the material showed
excellent rate performance (169, 162, 150, 113, and 93
mA h g−1 at 0.1, 0.5, 1 5, and 10 C, respectively) and cycle
performance at 1 C (Figs 19c and d).
Spinel phase LiMn2O4 is one promising cathode mate-

rial due to high operation voltage, low cost and environ-
mental benignity. Poor cycle life is a major issue limit-
ing the practical applications of LiMn2O4. For this matter,
Zhou and co-workers [194] synthesized 1D “network-like”
porous LiMn2O4nanowires (~150 nm in diameter) via elec-
trospinning. Compared with LiMn2O4 nanoparticles, the
as-prepared LiMn2O4 nanowires presented superior cycla-
bility and rate capability. Additionally, LiMn2O4 hollow
nanofiberswere prepared by Jayaraman et al. [195] through
the electrospinning method. Owing to facile lithium diffu-
sion along the porous hollownanofibers, thematerial deliv-
ered excellent capacity retention of 87% after 1250 cycles at
a current density of 1 C. Besides the aforementioned cath-
ode materials, the electrospinning strategy has also been
applied in other cathode materials to enhance the mass
and charge transfer and improve cyclability and rate perfor-

mance, such as Li3V2(PO4)3 [196,197] and LiMnPO4 [198].
Vanadium pentoxide (V2O5) is one promising cathode

material with a high theoretical capacity of 510 mA h g−1
but low electron and lithium diffusion rate. 1D nanosized
V2O5 has been proven to modify the electronic and ionic
conductivity. Ban et al. [199] prepared nanostructured
V2O5 via electrospinning and subsequent thermal treat-
ment. With an effective protective layer on V2O5 formed
from one electrolyte additive, lithium bis(oxalate)borate
(LiBOB), the nanostructured V2O5 showed acceptable
cyclability of 240 mA h g−1 after 25 cycles at 0.1 mA cm−2.
Although the nanostructured V2O5 fabricated by Ban and
co-workers cannot display traditional electrospun fibrous
structure, their study provided potential strategies to syn-
thesize 1D nanostructured V2O5 through electrospinning.
Later, Mai et al. [200] firstly presented ultra-long hier-
archical V2O5 nanowires synthesized by electrospinning.
An aqueous solution containing PVA and NH4VO3 was
electrospun to nanofibers, which were annealed at 480°C
to obtain V2O5 nanowires. As shown in Figs 20a and b, the
long V2O5 nanowires of diameter of 100–200 nm consist
of attached nanorods (about 50 nm in diameter and 100
nm in length). Owing to high specific surface area and
stable structure of the nanowires, the hierarchical V2O5

nanowires delivered improved capacity retention (Figs 20c
and d).  In addition,  Wang and co-workers [201] realized

Figure 20    (a and b) SEM images of ultra-long V2O5 nanowires; (c) cycle performance and (d) Coulombic efficiency of V2O5 nanowires at a current
density of 30 mA g−1. Reproduced with permission from Ref. [200], Copyright 2010, American Chemical Society.
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the morphology control of electrospun V2O5 nanostruc-
tures by tuning the subsequent annealing treatment. The
as-spun PVP and vanadium acetylacetone composite
nanofibers were firstly prepared, which were then cal-
cined at different temperature. As shown in Fig. 21, as
the annealing temperature increased, the morphology
of the annealed nanofibers evolved from nanofibers to
porous nanotubes, later hierarchical nanofibers, and finally
into nanobelts. Employed as cathode materials for LIBs,
the series of as-prepared nanostructured V2O5 exhibited
superior cyclability, ascribed to the unique 1D nanos-
tructure. Later, Cheah et al. [202] presented electrospun
Al-intercalated V2O5 nanofibers to further stabilize the
structure during cycling and Pham-Cong et al. [203]
fabricated electrospun V2O5 nanowires and conductive
graphene composites to enhance the electronic conduc-
tivity and electrochemical activity. In addition, Yan and
co-workers [204] realized preparation of electrospun V2O5

nanofibers with superior cyclability and high rate capacity
using commercial V2O5 through formation of VOC2O4

with H2C2O4·2H2O. Moreover, based on comprehensive
electrochemical test and discussion, the authors pointed
out the practical strategies to improve the electrochemical
performance of V2O5 cathode materials for LIBs, such as

increasing the electrode-electrolyte interface area, reduc-
ing the size of V2O5 particles and doping alien metal ions
into V2O5 crystals to enhance the electrochemical activity.
Iron sulfides (FeS and FeS2) have been investigated as

low-cost and eco-friendly cathode materials for LIBs with
high theoretical capacities (609 and 894 mA h g−1 for FeS
and FeS2, respectively) [205]. However, based on the con-
version mechanism, the formed Li2S would be isolated and
Fe nanoparticles would aggregate, decreasing the electro-
chemical activity of iron sulfides. Recently, Zhu et al. [206]
fabricated FeS nanoparticles dispersed in CNF matrix as
cathode for LIBs. Electrospun composite nanofibers with
Fe(NO3)3 and PVP were firstly prepared, which were con-
verted to Fe3C/carbon nanowires with Fe3C/graphitic car-
bon core-shell structure resulted from the catalytic effect of
Fe. After subsequent sulfidation, FeS nanodots (5–10 nm)
embedded in porous graphitic carbon nanowires (~100 nm
in diameter) (FS-ND�PGC-NW) were finally obtained, as
shown in Figs 22a and b. The FS-ND�PGC-NW delivered
outstanding cyclability of ~400 mA h g−1 after 50 cycles at
0.5 C (Fig. 22c) and a high discharge energy density of ~550
W h kg−1, even higher than that of LiCoO2 (Fig. 22d). Ad-
ditional protective layers, for example, Al2O3 would further
improve  structural  stability  during  cycling  and  finally

Figure 21    SEM images of nanostructured V2O5 annealed at (a) 350°C, (b) 400°C, (c) 450°C, (d) 500°C, (e) 550°C and (f) 600°C. (g) The transformation
of nanostructured V2O5 with the increase of annealing temperature. Reproduced with permission from Ref. [201], Copyright 2012, Wiley.
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Figure 22    (a) TEM and (b) HRTEM images of FS- ND�PGC-NW; (c) cycle performance and Coulombic efficiency and (d) discharge energy density
and energy efficiency of FS-ND�PGC-NW at a current rate of 0.5 C. Reproduced with permission from Ref. [206], Copyright 2015, Wiley.

maintain electrochemical performance. Recently, Zhu et
al. [207] synthesizedAl2O3-coated FeS2@CNFs by combin-
ing electrospinning and an atomic layer deposition (ALD).
Through the ALD strategy, the as-synthesized FeS2@CNFs
were uniformly coated with Al2O3 layers (~5 nm). Com-
paredwith the composite nanofibers without Al2O3 coating
layers, the Al2O3 coated one showed better electrochemi-
cal performance at one wide voltage range (1.0–3.0 V vs.
Li/Li+), owing to the protective effect of Al2O3 layers for
mechanical degradation.

ELECTROSPUN ELECTRODE MATERIALS
IN SODIUM-ION BATTERIES
NIBs have become one of the most promising alternative
for LIBs, especially applied in large-scale electric energy
storage systems, ascribed to low-cost and abundant re-
source. While NIBs display similar reaction mechanism
compared with LIBs, the larger ionic radius of sodium
leads to sluggish kinetics during cycling. Therefore, it is
crucial to design and prepare electrode materials with rea-
sonable structures to enhance the electrochemical activity

of electrode materials for NIBs. Recently, electrospun 1D
electrode materials have presented improved electrochem-
ical performance in NIBs owing to the enhanced effect
ascribed to 1D nanomaterials.

Anode materials
Graphite is one traditional carbonaceous anode ma-
terials applied in LIBs with a theoretical capacity of
372 mA h g−1 and excellent cyclability. However, the dis-
cordance of graphite layer distance (d(002)=0.334 nm) and
the larger ionic radius of Sodiun result in poor Na-ion stor-
age performance of graphite. Hence, the recent research on
carbonaceous anodematerials forNIBs focuses on disorder
porous carbon with various Na-ion storage sites. Among
them, 3D interconnected electrospun CNFs have gained
great interest applied as anode materials for NIBs due to
excellent cyclability and rate capability. Chen et al. [208]
presented improved Na-ion storage performance of elec-
trospun PAN-derived CNFs. Later, Jin et al. [209] studied
the influence of carbonization temperature on the electro-
chemical performance of electrospun PAN-derived CNFs,
figuring out that the different carbonization temperature
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leaded to different porous structure and sodium storage
capacity. In this work, 1250°C was the ideal temperature to
get the highest capacity. To further improve the capacity of
CNFs, nitrogen-doping and porous structure were applied
to increase the sodium storage sites [210–212]. Li et al.
[213] fabricated flexible electrospun PAN-derived PCNFs
(Fig. 23a) by utilizing one triblock copolymer F127 as one
soft template to create micropores in CNFs. As shown in
Fig. 23b, the as-fabricated PCNFs displayed uniform di-
ameter of ~280 nm and plenty of micropores. When used
as anode materials for NIBs, PCNFs delivered improved
capability of 266mAh g−1 after 100 cycles at 0.2 C, excellent
ultra-long cycle life of 71.5 % capacity retention after 1000
cycles at 2 C (Fig. 23c) and impressive rate capability of 90
and 40 mA h g−1 at 5 and 20 A g−1, respectively (Fig. 23d).
The excellent electrochemical performance of PCNFs is
ascribed to enhanced electronic conductivity from the 3D
interconnected conductive network and increased Na-ion
storage sites from a plenty of micropores.
Alloy-based anode materials include Si, Ge, Sn, Sb,

which are based on alloying/de-alloying reaction with
Na-ion during cycling [214–217]. As Si and Ge presented
limited Na-ion storage capacity ascribed to the sluggish
kinetics of electrochemical reaction, the recent study of
anode materials for NIBs mainly focus on Sb and Sn.
Zhu and co-workers [218] synthesized Sb nanoparticles
(NPs) embedded in 3D interconnected CNFs (SbNP@C)
as free-standing anode for NIBs via a facile electrospinning
strategy. As shown in Figs 24a and b, ~30 nm Sb NPs was
homogeneously dispersed in the 1D CNFs (about 400 nm
in diameter), showing highly stable cycle performance
of 422 mA h g−1 after 300 cycles at 0.1 A g−1 (Fig. 24c).
Moreover, the SbNP@C maintained enhanced rate capa-
bility at higher current densities (Fig. 24d). Almost at
the same time, Wu et al. [219] presented similar result
of Sb-C nanofibers as anode for NIBs. Similar to the
encapsulation structure in Sb-C nanofibers, the improved
sodium-storage performance was realized in electrospun
Sn NPs embedded in PCNF composites fabricated by Xu
et al. [220] and electrospun SnSb NPs embedded  in  CNF

Figure 23     (a) Digital photograph and (b) SEM image of free-standing and flexible PCNF film, the insert in (b) is the HRTEM image of PCNFs. (c)
Cycle performance at 2 C (500 mA g−1) and (d) rate performance of PCNFs. Reproduced with permission from Ref. [213], Copyright 2014, Royal
Society of Chemistry.
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Figure 24     (a) SEM and (b) TEM images of electrospun SbNP@C nanofibers; (c) cycle performance at 0.1 A g−1 and (d) rate performance of SbNP@C.
Reproduced with permission from Ref. [218], Copyright 2013, American Chemical Society.

composites by Shiva et al. [221] and Ji et al. [222].
As for electrospun metal oxide electrode materials

in NIBs, only several reports presented electrochemi-
cal performance about Li4Ti5O12, TiO2, and SnO2. Liu
et al. [223] presented tiny Li4Ti5O12 nanoparticles en-
capsulated in CNFs (Li4Ti5O12@C) as anode materials
for NIBs. As shown in Figs 25a and b, tiny and dense
Li4Ti5O12 nanoparticles were embedded in the conductive
1D CNFs, contributing to improved cyclability and rate
capability. Li4Ti5O12@C delivered a high initial capacity of
183 mA h g−1 with a high capacity retention of 82 % after
100 cycles at a current density of 0.2 C (Fig. 25c). When
cycled at higher current densities, Li4Ti5O12@C presented
a reversible capacity as high as 72 mA h g−1 at 2 C (Fig.
25d). Afterwards, Wang and co-workers [224] fabricated
CNT-enhanced Li4Ti5O12@CNFs as free-standing anode
for NIBs with promoted electronic conductivity and rate
performance. Similarly, Zhang’s group [225] fabricated
electrospun nanocrystalline TiO2@CNFs with good elec-
trochemical activity. Various metal oxides widely applied
in LIBs have not been extensively reported in NIBs, for
example, SnO2, possibly due to the severer volume change
and depressed kinetics in NIBs. Recently, Dirican and
co-workers [226] fabricated hierarchical carbon-confined
SnO2 electrodeposited PCNFs (PCNF@SnO2@C). Owing

to the interconnecting conductive PCNFs as matrix and
CVD carbon layer on the surface of SnO2 to accommodate
the volume change, impressive cyclability was obtained for
the PCNF@SnO2@C composite.
On the other hand, metal sulfides have got tremendous

attention as anode materials for NIBs due to high capacity,
such as SnS2 [227], SnS [228], Sb2S3 [229] and MoS2 [230].
Recently, Zhu et al. [231] fabricated single-layered MoS2
nanoplates embedded in CNFs via electrospinning. Inter-
estingly, the as-prepared CNFs were very thin, around 50
nm in diameter (Figs 26a and b) with uniformly dispersed
single-layered MoS2 nanoplates (0.4 nm in thickness, 4.0
nm in lateral dimension) (Figs 26c and d). As shown in
Fig. 26e, the ultra-small single layered MoS2 nanoplates
and conductive CNF matrix would not only alleviate the
mechanical stress resulted from the volume change dur-
ing cycling but also promote electronic and ionic transfer.
When tested as anode for NIBs, the composite nanofibers
delivered excellent rate capability of 854, 700, 623, 436, and
331 mA h g−1 at high current densities of 0.1, 0.5, 1, 5 and
10 A g−1, respectively (Fig. 26f) and impressive cyclability
of 484 mA h g−1 after 100 cycles at 1 A g−1 (Fig. 26g). More-
over, considering the structural stability of electrodes dur-
ing cycling, Ryu and co-workers [232] usedALDmethod to
coat  TiO2  layers on the electrospun MoS2 nanofiber elec-
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Figure 25     (a) TEM and (b) HRTEM images of electrospun Li4Ti5O12@C nanofibers; (c) cycle performance at 0.2 C and (d) rate performance of
Li4Ti5O12@C. Reproduced with permission from Ref. [223], Copyright 2013, Royal Society of Chemistry.

Figure 26     (a–c) TEM and (d) HRTEM images of single-layered MoS2 nanoplates embedded in CNFs. (e) Schematic representation based on TEM
modeling studies to demonstrate the unique morphology of the composite nanofibers. (f) Rate performance and (g) cycle performance of single-layered
MoS2 nanoplates embedded in CNFs at 1 and 10 A g−1. Reproduced with permission from Ref. [231], Copyright 2014, Wiley.

�	��   April 2016 | Vol.59 No.4
© Science China Press and Springer-Verlag Berlin Heidelberg 2016

������ SCIENCE CHINA Materials



trodes to enhance the cycling stability. Compared with the
MoS2 nanofibers electrodes without coating layers, the one
with TiO2 layers presented a promoted cyclability.

Cathode materials
Sodium super ionic conductor (NASICON)-type materials
have been investigated as promising cathode materials
for NIBs, due to native excellent Na-ion conductivity, for
example, Na3V2(PO4)3. However, the high electrical resis-
tance prevents Na3V2(PO4)3 from presenting ideal electro-
chemical performance. Decreasing the size of Na3V2(PO4)3
and fabricating Na3V2(PO4)3-carbon composites would
improve the electronic transfer in Na3V2(PO4)3 and fi-
nally maintain excellent cyclability. Liu and co-workers
[233] prepared a electrospun Na3V2(PO4)3/C composite as
cathode for NIBs with enhanced cycle performance and
rate capability. As shown in Figs 27a and b, Na3V2(PO4)3
nanoparticles (diameter ca. 20–30 nm) were embedded in
interconnecting conductive CNFs (diameter ca. ~250 nm).
As a result, the as-fabricated Na3V2(PO4)3/C showed a high
reversible capacity of 117 mA h g−1 at a current density
of 0.1 C and retained improved rate capacities at higher
current densities (Figs 27c and d). Similar electrospun
Na3V2(PO4)3/C composites have also been presented by
other groups but with worse cyclability and rate perfor-

mance [234,235].
In addition, other lithium-metal-oxides or sodium-

metal-oxides have been studied as cathode for NIBs. Dou’s
group presented electrospun Li1+x(Mn1/3Ni1/3Fe1/3)O2

[236] and P2-type Na2/3(Fe1/2Mn1/2)O2 [237] hierarchical
nanofibers as cathode materials for NIBs. Compared with
nanoparticles, these nanofibers showed improved cyclabil-
ity due to enhanced charge transfer along the nanofibers
and higher specific surface area of nanofibers. Moreover,
Niu and co-workers [238] presented one facile strategy to
fabricatemesoporous nanotubes via a gradient electrospin-
ning and controlled pyrolysis process and enhanced the
Na-ion storage performance of Na0.7Fe0.7Mn0.3O2 meso-
porous nanotubes. The formation of mesoporous nan-
otubes is based on the gradient of distribution of low-/mid-
dle-/high-molecular-weight PVA during electrospinning.
As shown in Fig. 28a, the precursor solution containing
the mixed gradient PVA and precursor inorganic materials
for Na0.7Fe0.7Mn0.3O2 was firstly electrospun to nanofibers.
During the process, the higher-molecular-weight PVA and
the smaller-molecular-weight PVA would be distributed
in the outer and inner layer due to the different viscosity.
Afterwards, based on different carbonization mechanism,
the PVA of smaller-molecular-weight in the inner layer
would be firstly pyrolyzed and move to the PVA of higher-

Figure 27     (a) TEM and (b) HRTEM images of the hierarchical Na3V2(PO4)3/C composite. (c) Cycle performance at 0.1 C and (d) rate performance
of Na3V2(PO4)3/C. Reproduced with permission from Ref. [233] , Copyright 2014, Royal Society of Chemistry.
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Figure 28     (a) Schematics of the controlled pyrolysis method to prepare mesoporous nanotubes; (b) TEM image of the Na0.7Fe0.7Mn0.3O2 mesoporous
nanotubes; (c and d) cycle performances of the Na0.7Fe0.7Mn0.3O2 mesoporous nanotubes at 100 mA g−1 (c) and 500 mA g−1 (d). Reproduced with
permission from Ref. [238], Copyright 2015, Nature Publishing Group.

molecular-weight, finally forming nanotubes. As shown
in Fig. 28b, the as-fabricated Na0.7Fe0.7Mn0.3O2 nanotubes
displays Na0.7Fe0.7Mn0.3O2 nanoparticles (~10 nm) encap-
sulated in ultrathin CNTs (diameter ca. ~200 nm). Owing
to the unique structure, excellent cyclability was obtained
when cycled at 100 mA g−1 (90% retention of the initial ca-
pacity after 1000 cycles) and 500 mA g−1 (80% retention of
the initial capacity after 5000 cycles) (Figs 28c and d).

ELECTROSPUN ELECTRODE
NANOMATERIALS BEYOND
LITHIUM-ION/SODIUM-ION BATTERIES
Besides LIBs and NIBs, lithium-sulfur (Li-S) batteries
have been considered as next-generation energy storage
systems, due to high theoretical volumetric energy density
of 2200 W h L−1 [239]. However, the practical applications
of S cathode are hindered by the native electrical insulation
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of S, the volume change during cycling and the dissolu-
tion issue of high-order lithium polysulfides. Up to date,
various electrospun nanofibers-S composite cathodes have
been prepared to address these matters. Numerous PCNFs
[240–245] have been reported to be effective matrixes to
load sulfur to enhance the electronic conductivity, and
confine the volume change and dissolution of lithium
polysulfides. Li and co-workers [246] fabricated a pie-like
freestanding sulfur cathode by combining interconnected
ethylenediamine-functionalized reduced graphene oxide
(EFG) layer with sulfur loaded electrospun multichan-
nel CNFs. Due to the nano-confinement and enhanced
electron/ion transfer of multichannel CNFs on sulfur and
accommodating effect of EFG layer on migrating poly-
sulfide intermediates, the electrode showed remarkable
improvement on electrochemical performance and energy
density. In addition, Yao et al. [247] prepared tin-doped
indium oxide nanoparticles (ITO) decorated by CNFs
to realize spatially controlled deposition of polysulfides
on the surface to enhance the cyclability of sulfur. The
fabricated conductive ITO nanoparticles on the surface of
CNFs would adsorb polysulfides owing to a strong bond-
ing intercalation between ITO with LixS. Benefiting from
the adsorption effect for polysulfides, the S-ITO-CNFs
delivered a high capacity of above 1000 mA h g−1 after

300 cycles at 0.2 C. Similar to the bonding intercalation
between ITO with LixS, Zeng and co-workers [248] fab-
ricated copper-stabilized sulfur-CNFs as flexible cathode
for Li-S batteries. The Cu embedded in the CNFs would
form a strong bond with S, leading to suppression of the
shuttle phenomena of polysulfides and excellent cycle
performance of 680 mA h g−1 after 100 cycles at a current
density of 50 mA g−1. Moreover, Ma et al. [249] prepared
electrospun TiO2 nanofibers/S composite and obtained
enhanced cycle performance, owing to the adsorption of
LixS by TiO2.
On the other hand, selenium (Se), one congener of sul-

fur, shows a high theoretical volumetric capacity density of
3253 mA h cm−3, comparable to that of S (3467 mA h cm−3)
and higher electronic conductivity than S [250]. However,
the similar dissolution of lithium selenides results in poor
cycle performance of Se. To address the issue, Zeng and
co-workers [251] prepared CNFs with micropores, which
would accommodate Se and restrain the dissolution of se-
lenides. As shown in Figs 29a and b, Se was encapsulated
in microporous CNFs with uniform diameter of ~250 nm.
The encapsulation situation of Se in microporous CNFs
was confirmed by Raman spectra in Fig. 29c, remarkably
decreased and blue shifted peak of Se in Se@PCNFs. Due
to the confined Se nanoparticles in 3D interconnected con-

Figure 29     (a) SEM and (b) HRTEM images of Se@PCNFs; (c) Raman spectra of Se@PCNFs and Se; (d) cycle performance of Se@PCNFs at a current
density of 500 mA g−1. Reproduced with permission from Ref. [251] , Copyright 2015, Wiley.
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ductive microporous CNFs, Se@PCNFs exhibited excellent
cycle performance of 516 mA h g−1 after 900 cycles at a
current density of 500 mA g−1.

CONCLUSIONS AND PERSPECTIVE
In this review, we summarized almost all the progress in
electrospun electrode nanomaterials for LIBs andNIBs and
briefly introduced the recent development in cathode ma-
terials for Li-S and Li-Se batteries. Moreover, this review
focuses on the evolution in structures and constitution
of electrospun electrode materials. By summarizing the
development of electrospun electrode materials, the elec-
trospinning strategy shows various distinctive advantages
in preparation of electrode materials: a) controllability
of electrospinning process. These related parameters of
electrospinning strategy are facile to be tuned to match
the needs for different electrode materials; b) diversity
of post-treatments. It is convenient to produce mate-
rials with hybrid structures via proper post-treatment
strategie; c) 3D interconnected nanofibers structures. The
obtained electrospun electrode materials tend to form
3D interconnected networks, which would enhance elec-
trochemical activity of electrode materials via facilitating
electronic/ionic transfer.
Currently, the development of the electrospinning

technique focuses on structure evolution of electrospun
nanofibers in the aspect of science and large-scale produc-
tion of electrospun nanofibers in the aspect of engineering.
Researchers have been designing and fabricating elec-
trospun nanofibers with controlled micro-structures via
adjusting parameters of electrospinning. On the other
hand, fabrication rate and cost are main concerns for the
large-scale production. Industry-grade electrospinning
machines have been fabricated via multi-spinnerets and
non-needle electrospinning systems. Through increas-
ing production rate and decreasing production time, the
cost would be reduced accordingly. Owing to the rapid
development in electrospinning, numerous electrospun
electrode materials showed excellent electrochemical per-
formance and hold great promise for practical application
in commercial LIBs and for substantial progress in NIBs,
Li-S batteries and other energy-related fields in the future.
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