
200       March 2016 | Vol.59 No.3         
© Science China Press and Springer-Verlag Berlin Heidelberg 2016

REVIEWS SCIENCE CHINA Materials
mater.scichina.com   link.springer.com Published online 30 March 2016 | doi: 10.1007/s40843-016-5026-4

Sci China Mater  2016, 59(3): 200–216

SPECIAL ISSUE: Emerging Investigators of Nanomaterials

Electrospun nanowire arrays  for electronics and 
optoelectronics
Zhi Zheng, Lin Gan and Tianyou Zhai*

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, 
Huazhong University of Science and Technology (HUST), Wuhan 430074, China
* Corresponding author (email: zhaity@hust.edu.cn) 

Electrospinning is a cheap and stable technique that 
allows the fabrication of continuous and uniform fibers, 
either organic or inorganic, with diameters ranging from 
tens of nanometers to several micrometers for mass pro-
duction [5−7]. Moreover, highly ordered aligned nanowire 
array (NWA) can also be easily achieved on various sub-
strates based on modified electrospinning, which is greatly 
beneficial to the following applications of NWs in various 
fields shown in Fig. 1. In this review, we provide a concise 
retrospection on the assembling methods and primarily 
highlight the electrospinning method and corresponding 
applications of NWA including electrodes, field effect tran-
sistors (FET), piezoelectric sensor, gas sensor, and photo-
detectors. We also give comments and prospection in the 

 ABSTRACT Alignment of NWs (NWs) is the core issue for 
integrating NWs into nanodevices in future. This review made 
a concise retrospect on reported assembling methods and 
mainly emphasized on the electrospinning method and its de-
velopments, as well as the following applications of the aligned 
nanowire array (NWA) in electronics and optoelectronics. First, 
we classified reported assembling methods into three catego-
ries: “grow then place”, “place then grow” and “grow and place” 
(electrospinning method). Then, we focused on the electrospin-
ning method and its modified method including field assisted 
method, rotating collector assisted method and near-field as-
sisted methods, as well as their merits and defects, respectively. 
Next, we illustrated the applications of the NWs arrays fabricat-
ed by electrospinning in field effect transistors (FET), gas sen-
sors, piezoelectric sensors and photodetectors. Finally, we made 
a short conclusion and prospection on electrospinning method. 
As an easy and cheap nanowire fabrication and alignment 
method, electrospinning has a bright future in one-dimensional 
materials based electronics and optoelectronics. 

Keywords: electrospinning, aligned nanowire array, electronics, 
optoelectronics

INTRODUCTION
One-dimensional (1D) semiconductor nanowires (NWs) 
are ideal building blocks for nano-circuit not only because 
of their unique electrical and optical properties [1−3], but 
also for their compatibility to be both conducting channel 
and connecting wires in the circuit. With the rapid develop-
ment of electronics and optoelectronics, the requirements 
on the miniaturization and functionalization of devices 
motivate fast growing researches in regarding to nano-
structures fabrication and alignment [4]. Furthermore, the 
improving integration density of nano-circuit requests a 
highly ordered arrangement for targeting nanostructures. 
Therefore, the alignment methods used to fabricate nano-
structures are significant. 

Figure 1  Applications of NWA in transparent electrodes, FET, gas sensor, 
photodetector and flexible displays.
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final section on the future development of electrospinning 
method. 

METHODS TO ASSEMBLE NWs 
Generally there are two modes of NWs assembly, that is, 
vertical and horizontal assemblies. However, for the verti-
cal NWs assembly methods, many excellent review papers 
have made comprehensively summaries on it [8−10], thus 
in this review, we exclusively concentrate on horizontal as-
sembly methods. Moreover, there is almost no restriction 
on the choice of substrates and depositing layer numbers 
and angles of NWs for horizontal asse mbly [11,12], which 
also make such an array mode important. In this review, we 
further classify all horizontal assembling into three kinds: 
“grow then place”, “place then grow” and “grow and place”, 
namely, electrospinning method as shown in Fig. 2.

“Grow then place” method 
As-synthesized NWs usually are randomly distributed 
[13−17]. To align those messy NWs, many strategies have 
been proposed, for instance, electric/magnetic-field, con-
tact/roll printing techniques, electrostatic interaction, 
Langmuir-Blodgett (LB), bubble-blown techniques, as 
shown in Fig. 3. In this section, we briefly introduce several 
important approaches [18].

As vividly reported by Yang et al. [19], LB is a technique 
that transfer nanomaterials onto a targeting substrate as a 
form of monolayer (LB film) with a high degree of struc-
ture order as shown in Fig. 3a [20]. This technique has been 
also extended to other 1D NWs such as Ag NWs [21], Ge 
NWs [22], V2O5 NWs [23], ZnSe NWs [24], PbS NWs and 
BaCrO4 nanorods [25,26]. However, surfactants are neces-
sary for this technique to modify the surface of NWs and 
prevent the aggregation of NWs. Blown bubble method is 
another method to prepare density controlled and well-
aligned NW pattern [27]. Generally, the aligned nanoma-

terials exist as a free standing films that can be transferred 
onto various substrates such as rigid, flexible and curved 
substrates (Fig. 3b) [11]. But the necessary shapable ma-
trix is difficult to remove after alignment. Direct interac-
tions between the NWs and the patterned surfaces can also 
be utilized to selectively align NWs [28,29]. Usually, the 
NWs exhibit strong affinity to polar self-assembled mono-
layer patterns, for example, single wall carbon nanotubes 
(SWCNTs) show strong affinity to most bare surfaces (Au, 
Si, Al, SiO2, and glass) (Fig. 3c) [30]. The drawback of this 
technique is that the alignment quality of NWs is low. Con-
tact printing is a method that can operate in a non-liquid 
environment [31−34]. Briefly speaking, this technique can 
transfer NWs from growth substrate to receiver substrate 
with the help of directional shear force as shown in Fig. 
3d [33]. During this process, the ends of NWs stick to the 
receiver substrate by the van der Waals interactions, and 
the remaining length is aligned by the pulling force. This 
method is fit to various materials, including Zn3As2 [35], 
X(In, Ga)P [36], Ge [37], Si [38], SWCNTs [39]. However, 
requirements that materials should typically grow vertical-
ly on the substrate may limit its application. Field assisted 
methods align NWs normally using the dielectrophoresis 
(DEP) or magnetic field [40,41]. This alignment mecha-
nism can be clearly illustrated in Fig. 3e. The existed charge 
neutral regions in the pn Si NWs will be polarized when 
exposed to a direct current electric field. Then the DEP 
forces will attract the pn Si NWs to the electrode edges, 
on the other side, NWs will be adjusted to parallel to each 
other. The drawback of this method is that prefabricated 
microelectrode arrays are needed and reorientation and 
aggregation of the NWs will occur if solvent is evaporated 
[42].

“Place then grow” method
The “grow then place” method can align NWs and control 
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Figure 2  Schematic illustration of methods for assembling NWs. (a) “Grow then place” method. (b) “Grow and place”, namely, electrospinning method. 
(c) “Place then grow” method.
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the locations in some degree. However, the “place” process-
ing is carried out in a transfer media and NWs should be 
modified with functional group which may influence the 
surface cleanness of the NWs and the device performance. 

Recently, a “place then grow” strategy was investigated 
by researchers. This technique refers to grow aligned NWs 
on specific locations and take a predetermined orientation 
with one step. A creative way is utilizing the growth of lat-
erally oriented Si NWs between vertical (111) Si planes 
via etching a (110)-oriented Si wafer as shown in Fig. 4a 
[43]. This is a facile way to construct electronic devices in 
nano scale. However, NW species, density and numbers 
are not easy to control. An easier way as shown in Fig. 4b 
is to sputter the Au pad using a metal mask on a quartz 
substrate. Li et al. [44] grow the ZnO bascule nanobridg-
es which have high sensitivity and fast response to the UV 
light. Controllable planar <110> GaAs NW array on GaAs 
(100) substrates can be obtained at higher growth tem-
perature (>450°C) as shown in Fig. 4c. Direction of growth 
between the NWs and planar can be adjusted by growth 
temperature [45]. Further, Tsivion et al. [46] can accurately 
control the growth morphology and crystallographic ori-
entation via vapor-liq  uid-solid (VLS) growth mode. The 
growth mode which decides the growth morphology has 

a close relationship to the substrates’ symmetry as follows: 
(a) growth along specific lattice directions, (b) graphoepi-
taxial growth along nanosteps, (c) graphoepitaxial growth 
along nanogrooves. This strategy is also fit to other inor-
ganic NWs such as GaN (Fig. 4d). However, it is difficult to 
obtain the substrate with different orientations to guide the 
growth. A confinement-guided growth method was adopt-
ed by Pevzner et al. [47] to predesign the synthesized NWs 
both in the chemical and physical attributes and the geom-
etry as illustrated in Fig. 4e. This technique can extend to 
various substrates such as silicon wafer, quartz and glass 
slides, and even plastic substrates [47]. Moreover, in-plane 
epitaxy method has important applications in fabricating 
the p-n junctions [48]. For example, Yu et al. [48] reported 
this strategy to grow p-Si NWs arrays on n-Si(100) sub-
strates by plasma enhanced chemical vapor deposition 
(PECVD) (Fig. 4f).

Above all, the “place then grow” approaches have a bet-
ter effect on alignment of NWs because the arrays are pre-
designed before NWs growth, in contrast with the “grow 
then place” strategy. However, this alignment may be lim-
ited to specific materials and substrates, such as Si NWs 
on (111) substrate of silicon. So a direct and much more 
universal assembling strategy should be explored. 
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Figure 3  Typical methods of “grow then place” strategy. (a) Assembling by LB method. Reprinted with permission from Ref. [20] (Copyright 2003, 
American Chemical Society). (b) Assembling by blown bubble method. Reprinted with permission from Ref. [11] (Copyright 2007, Nature Publishing 
Group). (c) Assembling by molecular inter-atomic forces. Reprinted with permission from Ref. [30] (Copyright 2003, Nature Publishing Group). (d) 
Assembling NWs by mechanical shear forces. Reprinted with permission from Ref. [33] (Copyright 2013, Nature Publishing Group). (e) Assembling 
NWs by electric field force. Reprinted with permission from Ref. [42] (Copyright 2010, American Chemical Society). 
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“Grow and place”—electrospinning method
Electrospinning is a low cost and versatile strategy for fab-
ricating NWs including organic and inorganic NWs [49]. 
Stable and rapid production process makes it one prom-
ising technique that meets the requirements of mass pro-
duction. The principle of electrospinning is similar to the 
electrospray process [50]. The precursor liquid forms a 
Taylor cone during the electrospinning process at first and 
then turns into a charged jet under high electrostatic volt-
age. The charged jet will be further elongated and thinned 
separately under electrostatic force and Coulomb repul-
sion during travelling from outlet of injector to collector. 
However, the random orientations of the NWs may limit 
the application in electronics and optoelectronics. To avoid 
the messy collection of NWs, some modifications on elec-
trospinning have been proposed as shown in Fig. 5. In the 
following part, we will give an introduction to such modi-
fications including field assisted method [51−53], rotating 
collector assisted m ethod [54−56] and near-field assisted 
method, etc. With the development of these improved 
techniques, electrospinning becomes a method that can 
conduct NWs growth and alignment simultaneously.

Field assist  ed method
In contrast to an integrated collecting electrode applied in 
conventional electrospinning method, well aligned NWs 
can be obtained by using two separated conductive sub-
strates as the collector. 

The precursor NWs are highly positively charged under 
high voltage, and the substrate is negatively charged. The 
movement of the NWs is influenced by two types of elec-
trostatic interactions, that is, electrostatic force between 
charged NWs and collectors and the Coulomb repulsion 
between NWs deposited on separated electrodes. As a re-
sult, NWs would deposit in parallel on the separated elec-
trodes. For example, Li et al. [12] use two pieces of silicon 
electrodes as the collector to align polymer NWs such as 
polyvinyl pyrrolidone (PVP), poly-(ethylene oxide) (PEO), 
polystyrene (PS), and polyacrylonitrile  (PAN), as well as 
inorganic NWA such as SnO2 and TiO2. Interestingly, hol-
low NWA can be obtained by using the electrospinning 
methods as shown in Figs 6a and b [57]. Aligned hollow 
TiO2 NWs can be obtained by calcinating the inside lay-
er of mineral oil. Besides, one can also fabricate the PVP 
NWA by electrospinning first, then deposit inorganic met-
al oxide materials followed by a heating process to obtain 
hollow NWs as shown in Fig. 6c [58]. Notably, external 
magnetic field could also be used to achieve similar results 
[59,60]. For example, Yang et al. [60] use two parallel-posi-
tioned permanent magnets to replace the electrodes, so the 
magnetic field will arrange the NWs containing magnetic 
nanoparticles under magnetic field (Fig. 6d).

Rotating collector assisted method
This method is to replace the static collector in convention-
al electrospinning method with a rotating collector [61]. 
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Figure 4  Schematic diagram of “place then grow” strategy. (a) Silicon nanobridges formed between two vertical silicon surfaces. Reprinted with per-
mission from Ref. [43] (Copyright 2004, IOP Publishing Ltd.). (b) Bridge growth pattern of the ZnO bascule. Reprinted with permission from Ref. [39] 
(Copyright 2010, IOP Publishing Ltd). (c) GaAs NWs on GaAs (100) substrates. Reprinted with permission from Ref. [40] (Copyright 2008, American 
Chemical Society). (d) ZnO bascule nanobridges self-assembled in the gap. Reprinted with permission from Ref. [41] (Copyright 2012, American 
Chemical Society). (e) Confinement-guided shaping growth of silicon NWs. Reprinted with permission from Ref. [42] (Copyright 2012, American 
Chemical Society). (f) In-plane epitaxial growth of silicon NWs. Reprinted with permission from Ref. [43] (Copyright 2014, American Chemical Society).
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Generally the rotation speed of the collector has a signifi-
cant influence on the alignment of the NWs [62]. Too high 
or too low speed will lead a disordered morphology. Re-
cently, different shapes of collectors including a wire drum 
[54], a disc or a cone have been used to improve the align-
ment of the NWs [63,64].

Katta et al. [54] used a copper wire-framed drum sup-
ported with two non-conducting disks as collectors to align 
NWs. Charged NWs will be stretched and span across the 

gap between the copper wires under electrostatic interac-
tions. This strategy can align NWs in a large scale and the 
alignment quality is mainly affected by the rotation rate as 
shown in Fig. 7a. Another mode is to align NWs by us-
ing the sharp edge of a disc collector which offers the jet a 
pulling force along the tangent line of disc. Highly ordered 
and dense NWA of poly(L-lactide-co-ε-caprolactone) 
[P(LLA-CL)] can be obtained on any substrates under an 
appropriate rotating speed (Figs 7b and c) [63,65].
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Figure 6  Asse  mbling NWs by electrospinning with field assisted. (a) Schematic diagram for assembling hollow NWs via a pair of parallel separate 
electrodes. (b) Scanning electron microscopy (SEM) image of aligned hollow TiO2 NWs. Reprinted with permission from Ref. [57] (Copyright 2004, 
American Chemical Society). (c) SEM image of aligned hollow ZnO NWs. Reprinted with permission from Ref. [58] (Copyright 2009, American 
Chemical Society). (d) Assembling NWs via magnetic-field-assisted method. Reprinted with permission from Ref. [60] (Copyright 2010, WILEY-VCH 
Verlag GmbH & Co. KGaA).

Figure 5  Schematic diagram for alignment via electrospinning, including field assisted method, rotating collector assisted method, and near-field 
method.
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Near-field elec  trospinning method and other modifications
Besides the two strategies mentioned above, more im-
provements such as conductive temp late method [66,67], 
centri fugal electrospinning [68−70], and n ear-field electro-
spinning methods [71−74] have also been developed. 

Conductive template method can be used to prepare 
NWs with complex ordered architectures and patterns 
[67]. Usually, the conductive templates are made of woven 
wires as shown in Fig. 8a. Coulomb   interactions between 
positive and negative charges will lead the NWs to align 
along the wires. Moreover, both diameter of the metal wire 
and distance between two protrusions have influence on 
the parallelism and density of the array, respectively. Small 
diameters of NWs are inclined to form parallel array and 
density increases with decreasing distance between the 
protrusions. These specifically designed conductive tem-
plate collectors have great potential for the fabrication of 
patterned fibrous mats which may be widely applied in 
biomedicine and its industry (Fig. 8b). A centrifugal or 
rotating jet method can also align NWs conveniently. The 
jet is cylindrical collector because of the opposite charges 
between the needle and the collector as shown in Fig. 8c. 
High density arrays even align 3D structure or any arbi-
trary shape by changing the geometry under a not very 
high voltage and easily operated process via this technique 
(Fig. 8d). Interestingly, Badrossamay et al. [68] combine 
centrifuge-spinning with traditional electrospinning which 
can fabricate superfine NWAs at low voltage (2.8−3 kV) 
and slow rotating speed (390 rpm).

Most of the above strategies can obtain large area NWAs, 
but it is hard to adjust individual NWs. Near field electro-
spinning is a high-speed, individually controlled NWAs 

fabrication method (Figs 8e and f). The distance between 
electrodes and collectors is very short (500 μm−10 mm) 
and the work voltage is low (0.5−1.5 kV). It is a so called 
“direct write” technique because it can accurately deposit 
NWs on the substrate just like writing [73]. Such a high-
ly controllable writing method benefits many applications 
like microelectronics and sensors [74].

APPLICATIONS BASED ON NWA
NWs fabricated by electrospinning methods can be direct-
ly deposited on the targeting substrate and therefore avoid 
the impurities or defects induced by transfer. Moreover, 
well aligned arrays can be utilized in electronics and op-
toelectronics based on 1D nanomaterials. In this part, we 
concentrate on the applications of NWA fabricated by elec-
trospinning in electronics and optoelectronics.

Electronic devices
Compared with traditional disordered NW film devices, 
NWA has direct and fast carrier transport channel which 
improves the electronic properties of devices, furthermore, 
this regular and uniform structure is beneficial to integra-
tion of electronic circuits. 

Electrodes and FET 
NWA can be utilized as both electrodes and conducting 
channel in devices. Lin et al. [75] synthesized ZnO NWs 
composited with Ag nanoparticles to study the electrical 
behavior with different Ag content. The schematic of de-
vice is shown in   Fig. 9a. Ag nanoparticles were doped by 
in situ photochemical reduction of silver nitrate mixed 
with zinc nitrate. I-V curves demonstrate that current is 

a b cSyringer
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Figure 7  Assembling NWs by electrospinning with rotating collector. (a) Nylon NWs are aligned on copper wires. Reprinted with permission from Ref. 
[54] (Copyright 2004, American Chemical Society). (b) Assembling NWs with a disk collector. (c) Optical image of aligned P(LLA-CL) NWs. Reprinted 
with permission from Ref. [63] (Copyright 2004, Elsevier).
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remarkably enhanced when Ag is added. The current is 
higher than that of pure ZnO NW device by seven orders 
of magnitudes when the Ag content was 50%, as shown in 
Fig. 9b. Detailed electronical intrinsic coefficient data as 
switch voltage (Vc) and electrical nonlinear coefficient α 
are shown in Fig. 9c. Vc decreases because Ag decreases the 
number of ZnO grain boundaries and metal Ag particles 
may lead to an increase of leakage current [76,77]. Organic 
NWs have the following advantages such as easy to design 
molecules to tune electronic properties and realize large-
scale synthesis at low cost, well flexibility and light weights 
[78,79]. They are also promising blockings for flexible elec-
tronic and optoelectronic devices [80,81]. Min et al. [82] 
use an organic NW printer to fabricate well-aligned P3HT-
PEO NWs with high-speed, to form an FET on 100 nm Au 
with bottom gate design. Transfer characteristics of P3HT-
NW FET with 30% PEO at different numbers of wires are 
shown in Fig. 9d, which demonstrates a p-type character-
istic. The maximal on-current increases as the number of 
NWs increases. Furthermore, this technique can be used 
to fabricate nano-channel transistors by printing another 
poly(9-vinyl carbazole) (PVK) NWAs followed a sonicating 
or adhesive tapes detaching process. Fig. 9e shows a p-type 

FET properties and a short channel effect [83]. Certainly, 
this technique is very convenient to fabricate a large-area 
NW transistor array on rigid or flexible substrate such as 
wafer or flexible plastic as shown in inset of Fig. 9f. The av-
erage mobility of FET is 3.8±1.6 cm2 V−1 s−1 (~100 devices), 
suggesting the promising future for mass production.

Gas sensor
Compared with disordered NW films, NWAs have a much 
large specific surface area as to the straight and parallel 
morphology. Nano-aligned fiber arrays will demonstrate a 
higher sensitivity [84]. Hollow ZnO NWAs were obtained 
via removing polyvinyl-acetate (PVAc) inside the compos-
ites [58]. SEM images of the as-spun PVAc fibers are shown 
in Fig.   10a. 

The left is the randomly distributed PVAc NWs, the 
right is the aligned arrays, inset in the right shows that the 
NWs are hollow structured, and diameter is about 500−600 
nm. As shown in Fig. 10  b, the quasi-aligned NWAs have 
a 2-fold higher sensitivity for NO2 compared with ran-
dom fibers. And this enhancement is also demonstrated at 
different concentrations (2,   4, 6, 8, 10 ppm, respectively). 
This work was followed by Liu et al. [85]. They adopted 
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Figure 8  Assembling NWs by electrospinning with other approaches. (a) SEM image of a patterned collector. (b) Optical image of electrospun mat 
collected using the collector in (a). Reprinted with permission from Ref. [67] (Copyright 2007, WILEY-VCH Verlag GmbH & Co. KGaA). (c) Schematic 
diagram of assembling NWs via rotary jet-spinning. (d) SEM image of the aligned polyethylene oxide (PEO) NWs. Reprinted with permission from Ref. 
[68] (Copyright 2010, American Chemical Society). (e) Schematic diagram of the printing process. (f) SEM images of printed PEO NWs. Reprinted with 
permission from Ref. [74] (Copyright 2011, American Chemical Society). 
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the same fabrication path and obtained ZnO nanotubes ar-
ray as shown in Fig. 10d. Furthermore, they investigated 
the response for 100 ppm H2 at different temperatures (Fig. 
10e.) The sensitivity of ZnO nanotubes sensor for 100 ppm 
N2 increases from 2.3 to 3.6 when the temperature increas-
es from 200 to 400°C.

Piezoelec  tric sensor
Semiconducting NWs with piezoelectric properties have 
attracted large research interest because of the potential ap-
plication in converting mechanical strains into electricity 
[86]. Generally, nanomaterials used in mechanical energy 
scavenging include: film based [87], and NW-based piezo-
electric sensor [88,89]. Two typical piezoelectric NWs are 
fabricated from lead zirconate titanate (PZT) or polyvi-
nylidene fluoride (PVDF) by electrospinning [90,91]. PZT 
NWs prepared by an electrospinning process exhibit an 
extremely high piezoelectric voltage constant (g33, 0.079 
V m N−1), high bending flexibility, and high mechanical 
strength [92]. Chen et al. fabricated aligned PZT NWs by 
depositing the NWs on the prepared electrodes using inter-
digitated platinum fine wire arrays, the bottom substrate is 
silicon. A layer of polydimethylsiloxane (PDMS) is used to 
transport applied pressure. Extraction electrodes to an ex-

ternal circuit are connected to the Pt electrodes as shown in 
Fig. 11a. The generated positive and negative voltage is in-
duced by the transient flow of electrons when external load 
is on and removed [93]. Furthermore, the voltage is related 
to the pressure which is applied on the piezoelectric sensor 
surface as demonstrated in Fig. 11b. However, in order to 
obtain a good piezoelectric property, a high temperature 
annealing (600°C) process for PZT NWs is generally re-
quired [94]. 

PVDF NWs may be a perfect candidate in wearable or 
implantable devices as to the combination of material prop-
erties in lightweight and flexibility [95]. Persano et al. [91] 
utilize the high speed rotating disk to obtain aligned PVDF 
NWAs in which the length of NWs can reach several cen-
timeters. Interestingly, mesoscopic joints with hundreds of 
nanometers are formed between overlapping fibers which 
will enhance the mechanical robustness. The schematic 
illustration of an analytical model for the response of ar-
rays of P(VDF-TrFe) fibers is shown in Fig. 11c, inset is the 
photograph for applying pressure. Piezoelectric effect for 
different effective lengths is investigated as shown in Fig. 
11d. Th  e voltage is increased as the pressure increases with 
a linear relationship. Moreover, the response slops, defined 
as sensitivity, also increases as the effective length increas-
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es from 3 to 6 mm. Theoretical pressure response consists 
with the experimental results at the effective length of 
6 mm. 

Photodetecto r
As mentioned above, electrospinn ing is a facile way to 
mass-produce aligned NWAs, and photodetectors based 
on NWA demonstrate a high photoconductivity and fast 
response speed compared with randomly oriented NW 
films [96−100]. 

Photodetector based on inorganic NWA
1D inorganic NWA have been extensively studied and used 
to fabricate high-performance optoelectronic devices due 
to the large surface to volume ratios and granular morphol-
ogy [2,101]. 

Liu et al. [102] reported a full printing method to ob-
tain ZnO NWA devices. Parallel arrays of NWs are formed 
on polyimide substrate when coupled with a programma-
ble step motion as shown in inset of Fig. 12a. The    number 
and the density of the ZnO NWs are tunable via adjusting 

the channel length of the electrodes. Taking five NWAs de-
vice as example, photocurrent at wavelength ranging from 
300−800 nm demonstrates four orders of magnitudes selec-
tivity higher for 365 nm than for 600 nm wavelength which 
is attractive for practical UV sensing (Fig. 12b) [103]. Much 
more details are shown in Fig. 12c. It can be seen that the 
responsivity is up to a level of 7.5×106 A W−1. This means 
that a low optical input can lead to a high photocurrent. In 
addition, the detectivity is as high as 1017 Jones which may 
due to the high photocurrent and low dark current at the 
same time. Generally electrospun NWs have larger surface 
area than commonly grown/synthesized NWs because of 
the rough surface and porous structure induced during the 
sintering process. Furthermore, grain boundaries lead to 
energy barriers that may block the carrier transport and 
introduce the additional band-edge modulation along axial 
direction which lead to a much lower dark current [104]. 
Carriers can easily pass through this axial energy barriers 
at the grain boundaries because the barrier height is low 
at the illumination of UV light. Further, this process is 
expected to be much faster than the oxygen adsorption/

Figure 10  Application for gas sensors. (a) SEM images for the hollow ZnO films and arrays. (b) Acetone sensitivity for thin film devices, random fiber 
and quasi aligned fibers. Reprinted with permission from Ref. [58] (Copyright 2009, American Chemical Society). (c and d) Photograph for hollow ZnO 
NWA and device schematic diagram. (e) Sensitivity at different temperatures. Reprinted with permission from Ref. [85] (Copyright 2011, Elsevier).
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desorption process which leads to a fast response. Based 
on the results above, our group fused cadmium oxide into 
zinc oxide NW to broaden the spectral response range of 
ZnO from UV to visible light [105]. The UV-vis absorption 
curve of ZnO-CdO hybrid NWs exhibits a mixture of indi-
vidual ZnO and CdO NWs absorption curves as shown in 
Fig. 12d. The appearance of peak at ~550 nm identifies the 
existence of CdO in hybrid NW. Moreover, a flexible pho-
todetector with high transparence of 95% was fabricated 
on mica substrate (Fig. 12e) to verify the good flexibility of 
hybrid NWs (Fig. 12f). 

Photodetector based on heterostructures NWA
Heterostructures which could lead to spatial separation of 
the photo-generated carriers, are designed to improve the 
photoelectric properties [106]. 

Huang et al. [107] combine the spin-coating with elec-
trospinning techniques to obtain p-type NiO films/n-type 

SnO2 NW heterojunction as shown in the schematic inset 
in Fig. 13a. Here, t  his heterojunction photodiode demon-
strates a photosensitivity of up to 105 at −10 V. This result is 
100 times higher than that of the previous SnO2 nanobelts 
photodetector [108]. This enhanced UV photoresponse is 
much obvious in the reverse bias region as shown in Fig. 
13b. At a rev erse bias of 5 V, the photoresponse curve re-
cord presents a more rectangular profile than the one at a 
forward bias of 5 V. Response time at −5 V is 10−20 s which 
is shorter than that in the 5 V bias. This improvement can 
also demonstrate that it is effective at the interface of in-
organic-organic structure [109]. Aligned TiO2 NWAs as 
an interfacial electron collection layer were inserted into 
the thieno[3,4-b]thiophene/benzodithiophene (PTB7) and 
[6,6]phenyl C71-butyric acid by Nie et al. Device architec-
ture is shown in Fig. 13c. The organic-based photodetectors 
(OPDs) with one-way aligned metal oxide NWs (AMONs) 
of TiO2 demonstrate a high detectivity of 1013 Jones in a 
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wide absorption range from 440 to 760 nm which is 10 
times higher than that of the OPDs. In addition, the devic-
es with one-way AMONs have a shorter response time and 
better stability than that without AMONs (Fig. 13d). No 
obvious change is observed in response time for devices 
with one-way AMONs of TiO2 even after 1010 times of elec-
trically read up, while for the OPDs, the stability decreases 
a lot when read 108 times. The reason may be that separated 
carriers will form at the inorganic-organic interface which 
could facilitate the charge transport which leads to the fast 
response speed [110]. In summary, these heterostructures 
provide innovative device architectures that enable high 
performance and broad-band spectral response.

Humidity assisted pho  todetector
Oxygen plays an important role in UV photoresponse of 
NWs, and this principle is also suitable to NWAs [111]. 
However, the environmental condition such as relative hu-
midity (RH) can influence the adsorption and desorption 
process of oxygen on the NW surface [112,113]. This in-
fluence was reflected on the response time and response 
speed as Lai et al. [113] investigated. Fig. 14a shows the 
response of ZnO nanowire at different humidity in the 
dark and UV illumination, respectively. In the dark, the 

response increases slowly at RH lower than 50%; howev-
er, this response increases quickly when RH is over 50%. 
Upon UV illumination, humidity influences the response 
obviously. This response increases from 1000 to 2000 when 
the RH increases from 10% to 57%. However, the response 
decreases quickly when the humidity is over than 57%. The 
rise and decay time of UV response is shown in Fig. 14b. As 
the humidity increases, the rise time decreases slowly from 
26.7 s to 10.6 s, while the decay speed may be three times 
quicker at RH of 81% compared with that at 10% RH. Our 
group attempted to construct ZnO-CdO hybrid NWAs 
based humidity sensors [105]. The photocurrent decreas-
es as the humidity increases and photoresponse increas-
es first and then decreases when the humidity is ranging 
from 10% to 70% as shown in Fig. 14c. The adsorption/
desorption of surface species and carrier transport process 
in the dry air and high RH condition is shown in Fig. 14d. 
At low RH, H2O molecules replace original ionized oxygen 
and distribute independently. Therefore, the released elec-
trons by the oxygen ions will contribute to the conductivity 
in the dark when the RH is low. The water may gradually 
form a monolayer on the NW surface when the RH is high 
and leads to a water dissociation process. The conductivity 
will have a sharp increase because the H+ and OH− can pro-
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vide ionic conductivity. When the UV light is on under the 
dry air, photo-generated holes will combine with oxygen 
ion, increase of conductivity is induced by the remaining 
photo-generated electrons. However, when the UV light is 
on under high RH air, the dissociated H2O molecules will 
capture electron and hole at the same time, which leads to 
a low density of carriers, quick recombination and subse-
quently fast photocurrent decay will occur when the UV 
light is switched off [114]. 

CONCLUSIONS
In this review, we made a concise retrospection on reported 
assembling methods for NWs, and primarily highlighted 
the importance of electrospinning method for NW fabri-

cation and alignment as well as the substantial improve-
ment of this method, such as field assisted method, rotating 
collector assisted method and near-field assisted method. 
Highly ordered NW structures showed improvements in 
various areas of electronics and optoelectronics including 
flexible electrodes, FET, sensors, as well as photodetectors, 
which also pave the way for future development of high in-
tegration density circuits.   

However, there are also some deficiencies of electro-
spinning method needed to be improved. Field assisted 
method cannot precisely control the number of electro-
spun NWs; rotating collector assisted method has a prob-
lem of low-quality alignment; near field assisted method is 
not suitable for mass production. Moreover, the kinds of 
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conductive polymer which suit for electrospinning are still 
rare, while for insulating polymers generally high tempera-
ture are required to remove them before utilization which 
would result in deformation of NWAs. Therefore, there is 
still giant room for improving the electrospinning method 
both in technique and materials choice. As for technique, 
we consider the alignment quality and mass production are 
the main issues in the future, which finally decides the po-
tential of practical application. With regards to materials 
choice, we hold the opinion that hybrid and complementa-
ry materials are the future researching hot spots, which can 
be fabricated into specific morphologies like core-shell to 
extend the application field of devices. 
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静电纺丝法制备纳米线阵列及其在电子与光电子领域中的应用
郑志, 甘霖, 翟天佑

摘要    一维纳米线的有序化排列问题, 是决定其未来在高集成微纳电路中应用前景的关键因素. 本综述对目前能够实现纳米线有序化排列的技
术方法做了一个简要的归纳, 重点阐述静电纺丝技术在纳米线制备和有序化排列方面的优势及相关技术和应用进展. 本文首先按技术特点将目
前纳米线有序化排列技术大致分为“先生长后排列”, “先排列后生长”以及“边生长边排列(即静电纺丝技术)”三大类, 并对各类方法的优缺点进行
了简要评述. 然后着重介绍静电纺丝技术及其相关技术进展, 并进一步展示了当前基于静电纺丝技术制备的纳米线阵列在微纳电极、场效应晶
体管、传感器以及光探测器等方向的应用. 最后就静电纺丝技术的未来发展做了简要展望. 综上, 由于静电纺丝技术在一维材料制备及其有序化
排列方面的简便性和低成本优势, 其必将在基于一维材料的电子学/光电子学领域具有广阔的应用前景.
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