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Inorganic lanthanide nanoprobes for background-free 
luminescent bioassays
Ping Huang1, Datao Tu1, Wei Zheng1, Shanyong Zhou1,2, Zhuo Chen2 and Xueyuan Chen1,2*

Luminescent bioassay techniques have been widely adopted in a 
variety of research and medical institutions. However, conven-
tional luminescent bioassays utilizing traditional bioprobes like 
organic dyes and quantum dots often suffer from the interfer-
ence of background noise from scattered lights and autofluores-
cence from biological matrices. To eliminate this disadvantage, 
the use of inorganic lanthanide (Ln3+)-doped nanoparticles 
(NPs) is an excellent option in view of their superior optical 
properties, such as the long-lived downshifting luminescence, 
near-infrared triggered anti-Stokes upconverting luminescence 
and excitation-free persistent luminescence. In this review, we 
summarize the latest advances in the development of inorgan-
ic Ln3+-doped NPs as sensitive luminescent bioprobes from 
their fundamental physicochemical properties to biodetection, 
including the chemical synthesis, surface functionalization, 
optical properties and their promising applications for back-
ground-free luminescent bioassays. Future efforts and pros-
pects towards this rapidly growing field are also proposed.

  INTRODUCTION
Sensitive and specific bioassay of trace amount of target 
analytes is   essential for a variety of biomedical applica-
tions ranging from pharmaceutical preparation to disease 
diagnosis and therapy [1–3]. Among various bioassay 
methods, luminescent bioassay has received particular at-
tention because of its high sensitivity and good specific-
ity [4,5]. Conventional luminescent bioassay techniques 
such as enzyme-linked immunosorbent assay (ELISA), 
time-resolved (TR) fluoroimmunoassay (TRFIA), Förster 
resonance energy transfer (FRET) and TR-FRET assays 
have laid the foundation for many modern clinical appli-
cations [6–11]. However, these bioassays are impeded by 
the availability of traditional bioprobes like organic dyes, 
lanthanide (Ln3+) chelates and    quantum dots (QDs). The 
use of these bioprobes has a number of limitations. Organic 
dyes commonly possess poor photochemical stability and 
suffer from serious photobleaching [12]. The applicability 
of QDs is compromised by photoblinking and high toxic-
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ity of heavy metal elements like cadmium and selenium, 
especially for in vivo biosensing [13,14]. Moreover, both 
organic dyes and QDs may induce high background noise 
and considerable photodamage to the biological samples 
under   ultraviolet (UV) excitation, which   deteriorates their 
detection sensitivity for bioassays [15,16]. Although such 
background noise can be suppressed by the technique of 
TR photoluminescence (PL) through the use of the long-
lived luminescence of Ln3+-chelates, the poor photochem-
ical stability, long-term toxicity and high cost of Ln3+-che-
lates remain a major issue [17]. These concerns fuel a 
crucial demand for the development of a new generation 
of luminescent bioprobes to circumvent the limitations of 
traditional ones.

Recently, with the explosion of nanoscience and nan-
otechnology, there is a growing dedication towards the 
development of diverse luminescent nanoprobes for bio-
detection and bioimaging. Representative of these nano-
probes includes Au nanoparticles (NPs) [18,19], carbon 
nanomaterials   (e.g., carbon dots and graphenes) [20–22], 
polymer NPs [23], silicon NPs [24] and inorganic Ln3+-
doped NPs [16,25], etc. Among these nanomaterials, Ln3+-
doped NPs are most intriguing due to their   superior phys-
icochemical properties, such as long-lived luminescence 
(from several to tens of milliseconds), large antenna-gen-
erated Stokes or anti-Stokes shifts, narrow emission bands, 
high resistance to photobleaching and photobleaking, and 
low toxicity [23,24]. Therefore, they are emerging as prom-
ising next-generation luminescent nano-bioprobes for ver-
satile biomedical applications. Particularly, the   long-lived 
downshifting luminescence (DSL) and high photochemi-
cal stability of Ln3+-doped NPs make them ideal alterna-
tive to Ln3+-chelates for TRPL biodetection to eliminate 
  the short-lived background noise from scattered lights and 
autofluorescence from the biological samples [26,27]. Such 
unwanted background noise can also   be overcome by using 
the unique anti-Stokes upconverting luminescence (UCL) 
and persistent luminescence of Ln3+-doped NPs. The large 

mater.scichina.com   link.springer.com Published online 4 February 2015 | doi: 10.1007/s40843-015-0019-4
Sci China Mater  2015, 58: 156–177



February 2015 | Vol.58 No.2     157
© Science China Press and Springer-Verlag Berlin Heidelberg 2015

SCIENCE CHINA Materials REVIEWS

anti-Stokes shift of UCL under near-infrared (NIR) exci-
tation produces a neat emission spectrum without any in-
terference of the excitation lights and biological autofluo-
rescence [28,29]. The long-lasting phosphorescence (LLP) 
nature of persistent luminescent NPs (PLNPs) allows op-
tical excitation before signal collection, thus providing an 
effective strategy to thoroughly suppress the background 
noise originating from in situ excitation [30–32]. These fea-
tures promise Ln3+-doped NPs as sensitive nanoprobes for 
background-free luminescent bioassays.

This review summarizes the most recent advances in the 
development of inorganic lanthanide nano-bioprobes and 
their salient applications for background-free luminescent 
bioassays. To begin with, we present a brief overview of 
the chemical synthesis and surface functionalization of the 
nanoprobes. Next, we highlight the novel optical properties 
of Ln3+-doped NPs including DSL, UCL and LLP. Then, we 
exemplify several key applications of these nano-bioprobes 
for sensitive in vitro luminescent bioassays, with an em-
phasis on the background-free TRPL, UCL a nd LLP assays 
(Fig. 1). Finally, some important emerging trends and fu-
ture efforts towards this active field are envisioned.

  CHEMICAL SYNTHESIS AND SURFACE 
FUNCTIONALIZATION
For biomedical applications, there are some rigorous re-
quirements for the bioprobes, such as bright luminescence, 
small size, biocompatibility and biosafety [33–36]. To meet 
these requirements, many efforts have been dedicated to 
the chemical synthesis and surface functionalization of 
inorganic Ln3+-doped NPs. In this section, we provide a 
brief overview of the general routes to the fabrication of 
inorganic lanthanide luminescent nanoprobes especially 
for bioassay applications, including controlled synthesis, 
surface modification and bioconjugation.

Controlled synthesis
In the past decade, a variety of approaches have been devel-
oped for the synthesis of high-quality Ln3+-doped lumines-
cent NPs with controlled crystalline phases, morphologies, 

sizes and desirable optical properties [37–42]. Among the 
established approaches, thermal decomposition [43–46], 
high-temperature coprecipitation [47–49] and hydro (sol-
vo) thermal methods [50–52] are the most popular syn-
thetic routes. These methods commonly make use of the 
organic surfactants to control the nucleation and growth 
of the nanocrystals. The available surfactants are either 
hydrophilic or lipophilic. The use of hydrophilic surfac-
tants such as ethylenediaminetetraacetic acid (EDTA) [53], 
polyethylenimine (PEI) [54], polyethylene glycol (PEG) 
[55], polyacrylic acid (PAA) [56] and 2-aminoethyl dihy-
drogen phosphate (AEP) [27] allows for one-step synthesis 
of hydrophilic and biocompatible NPs, but the poor uni-
formity and monodispersity and the low PL efficiency of 
the resulting NPs restrict their widespread applications 
[16,57]. Instead, the lipophilic ligands such as oleic acid 
(OA), oleylamine (OM) and tri-n-octylphosphine oxide 
(TOPO) combined with other high boiling organic solvents 
like 1-octadecene (ODE) and trioctylamine (TOA) provide 
a mild solution for the synthesis of high-quality NPs with 
a narrow size distribution, good crystallinity and excellent 
optical properties, and thus are most frequently used in 
the synthesis of Ln3+-doped NPs [43,47,50]. For instance, 
through the thermal decomposition and high-temperature 
coprecipitation methods in the presence of OA, OM and 
ODE, we have fabricated a series of monodisperse Ln3+-
doped fluoride NPs with intense DSL and/or UCL, such as 
NaYF4 [58], NaGdF4 [59], NaScF4 [60], LiYF4 [61], LiLuF4 
[62], KYF4 [63], KLaF4 [64], CaF2 [65], BaF2 [65], SrF2 [65], 
and Sr2YF7 [66], etc.

On the nanoscale, surface quenching effect is the prima-
ry influential factor that deteriorates the PL efficiency of 
Ln3+-doped NPs, especially their UCL [67]. To surmount 
this disadvantage, surface passivation through core-shell 
architectures is a good choice. Also, the core-shell nano-
structure design may endow the NPs with novel optical 
properties or integration of other functional modalities 
for diverse bioapplications [68–70]. For instance, through 
seed-mediated epitaxial layer-by-layer (LBL) growth, we 
have synthesized CaF2:Ln3+@CaF2 NPs with multi-shells 
and ultrasmall particle sizes ranging from ~4 nm to ~10 
nm (Figs 2a–e) [65]. It was found that the overall UCL in-
tensity of Er3+ and Tm3+ in 3-monolayer (ML) core-shell 
NPs was enhanced by factors of ~92 and ~1,700, respec-
tively, relative to their core-only counterparts. However, 
such seed-mediated heat-up synthesis is still laborious 
and time-consuming due to the tedious multi-cycle batch 
operations. Recently, more convenient approaches such 
as self-focusing by Ostwald ripening and one-pot succes-
sive LBL (SLBL) strategy through the alternate injection 
of different shell precursors have been developed to syn-
thesize Ln3+-doped core-shell NPs [71–73]. Inspired by the 

TRPL
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Figure 1  Schematic illustration of inorganic lanthanide nanoprobes for 
background-free luminescent bioassays based on their TRPL, UCL and 
LLP.
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SLBL method, we further designed a unique strategy for 
the synthesis of multi-shell LiLuF4 : Ln3+@LiLuF4 upcon-
version (UC) NPs via thermal decomposition (Figs 2f–i) 
[62]. It was observed that the overall UCL intensity was 
remarkably enhanced upon successive shell passivation. 
The absolute UC quantum yields (QYs) of Er3+ and Tm3+ 
were, respectively, improved from 0.11% and 0.61% in the 
core-only NPs to 5.0% and 7.6% in 16-ML core-shell NPs, 
upon 980 nm laser excitation at a power density of 127 
W cm−2. To the best of our knowledge, the UC QYs of 5.0% 
and 7.6% for Er3+ and Tm3+ are the highest among those 
Ln3+-doped UCNPs ever reported, under NIR excitation 
at equivalent power density. Compared with the previous 
methods, our strategy is much easier to handle without 

the need for the precipitation of core NPs and the tedious 
multi-cycle operations or the alternate injection of differ-
ent shell precursors, thus providing a more facile and gen-
eral synthetic route for Ln3+-doped core-shell NPs  .

Surface modification
The synthesized Ln3+-doped NPs aforementioned, in most 
cases, are hydrophobic and incompatible with biological 
systems due to the lipophilic ligands such as OA or OM 
capping on their surface. A general solution to this problem 
is the surface modification of the hydrophobic NPs with a 
hydrophilic ligand bearing appropriate functional groups 
[74]. For this purpose, a number of surface modification 
strategies such as ligand exchange [75–77],  ligand oxida-
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Figure 2 (a) Seed-mediated heat-up synthesis of CaF2:Ln3+@CaF2 core-shell NPs via a high-temperature co-precipitation route. TEM images of 
CaF2:Yb,Er (b) core-only, (c) 1-ML, (d) 2-ML, and (e) 3-ML core-shell NPs. (a–e, Adapted with permission from Ref. [65]. Copyright 2013, W   iley-
VCH Verlag GmbH & Co. KGaA). (f) SLBL method for the synthesis of LiLuF4:Ln3+ core-shell UCNPs via thermal decomposition. TEM images of 
LiLuF4:Yb,Er (g) core-only and core-shell UCNPs with (h) 8 MLs and (i) 16 MLs. (f–i, Adapted with permission from Ref. [62]. Copyright 2014, 
W   iley-VCH Verlag GmbH & Co. KGaA).
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tion [78,79], ligand-free synthesis [80], ligand attraction 
[81,82], electrostatic layer-by-layer assembly [83,84] and 
surface silanization [85,86] have been established (Fig. 3). 

Ligand exchange is one of the most general and efficient 
approaches to convert hydrophobic Ln3+-doped NPs into 
hydrophilic ones. In a typical ligand exchange procedure, 
organic molecules or polymers with hydrophilic moieties 
(e.g., PEI, PEG, PAA and AEP) are employed to exchange 
the lipophilic surfactants of the original NPs, which endow 
the NPs with high water solubility and additional func-
tional groups (e.g., amino, carboxylic and thiol groups) 
for subsequent bioconjugation [75–77]. Ligand oxidation 
is primarily based on the oxidation of the unsaturated 
carbon-carbon double bonds of the capping ligands (e.g., 
OA), and thus is only applicable to a limit number of or-
ganic surfactants [78,79]. The capping ligands anchored on 
the surface of the original NPs can be removed through a 
simple acid (or excess ethanol) treatment process to yield 
water-soluble and ligand-free NPs. The removal of the 
capping ligands makes the positively charged Ln3+ ions ex-
posed on the surface of the ligand-free NPs, enabling the 
NPs for direct conjugation with electronegative groups of 
hydrophilic and biocompatible molecules for further bio-
applications [80,87,88]. The approach of ligand attraction 
mainly takes advantage of hydrophobic-hydrophobic van 
der Waals interactions between selected amphiphilic poly-
mers and original lipophilic ligands to realize phase trans-
formation of the NPs. In a typical ligand attraction process, 
the hydrophobic portion of the amphiphilic polymers in-
teracts with the organic layer of the NPs via hydrophobic 
attraction, while the hydrophilic portion facing outwards 
interacts with the aqueous solvent and renders the NPs 
water-soluble [81,82]. Besides the hydrophobic-hydro-
phobic interactions, the electrostatic attraction between 
oppositely charged organic species such as poly(allylamine 

hydrochloride) (PAH) and poly(styrene sulfonate) (PSS) 
can also be utilized to obtain hydrophilic NPs through 
LBL assembly around the hydrophobic NPs [83,84]. Sur-
face silanization or silica coating commonly makes use of 
an inorganic amorphous silica shell to fabricate a hybrid 
core-shell nanocomposite. Such an amorphous silica shell 
is water-soluble, photostable and biocompatible, which al-
lows easy surface carboxyl-functionalization (or amine-func-
tionalization) for further bioconjugation [85,86]. Specifical-
ly, the mesoporous silica (mSiO2) shell or yolk shell coating 
endows the NPs with excellent loading capabilities with 
diverse biological molecules or other functional moieties, 
making them ideal candidates for applications in multi-
modal bioimaging, targeted drug delivery and photody-
namic therapy [89–92].

Bioconjugation
Bioconjugation of specific biomolecules to the surface of 
Ln3+-doped luminescent NPs is essential for their bioana-
lytical applications. The conjugation of biomolecules could 
impart the NPs with both biocompatibility and desired 
functionality such as the ability of specific recognition 
[87,93–95]. The available biomolecules cover from small 
biomolecules like biotin and folic acid to biomacromole-
cules like avidin, streptavidin, antibodies, peptides, aptam-
ers and DNA, subjected to the expected target capabilities.

In general, the bioconjugation methods for Ln3+-doped 
NPs are based on either physical adsorption or chemi-
cal bonding or their combinations (Fig. 4) [96–99]. With 
known isoelectric points, the ζ potentials of the NPs and the 
conjugating biomolecules can be readily tuned in opposite 
charges by adjusting the pH value of the reaction buffers, 
which allows for direct bioconjugation of the NPs via elec-
trostatic attraction [100]. For example, by utilizing the pos-
itively charged Ln3+ ions exposed on ligand-free LiLuF4:Yb, 
Er UCNPs, we have succeeded in the avidin functionaliza-
tion of the UCNPs through electrostatic interaction [62]. 
Likewise, Lu and coworkers [101] developed an exception-
ally simple strategy for the direct synthesis of DNA-func-
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Figure 3  Typical surface modification strategies to render the hydropho-
bic Ln3+-doped NPs hydrophilic and simultaneously endow them with 
designed functional groups.   Reprinted with permission from Ref. [87]. 
Copyright 2014, Royal Society of Chemistry.
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Figure 4 Schematic illustration of general bioconjugation methods 
through (a) physical adsorption and (b) chemical bonding.
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tionalized NaYF4:Yb,Er UCNPs from as-prepared hydro-
phobic ones through electrostatic interaction between the 
negatively charged phosphates of the DNA and the naked 
Ln3+ ions on the surface of the NPs. However, such physical 
adsorption is not steady enough and usually yields unsta-
ble biofunctionalized NPs. By contrast, chemical bonding 
provides a robust and stable conjugation force, thus is more 
favorable for the bioconjugation of Ln3+-doped NPs. In 
most cases, the functional groups of the conjugating bio-
molecules can be activated to react with those of the NPs 
and form a tight covalent bond (e.g., amide bond). Func-
tional groups like maleimide, thiol, carboxylic, aldehyde 
and amine are usually used for the attachment of biomole-
cules [25,87]. For example, by utilizing the free carboxylic 
groups on the surface of NaYF4 : Yb, Er UCNPs, Li and co-
workers [83] demonstrated the conjugation of streptavidin 
to the surface of the NPs through a standard ethyl(dime-
thylaminopropyl) carbodiimide (EDC)/N-hydroxysuccin-
imide (NHS) bioconjugation protocol. Similarly, we con-
jugated amine-functionalized ZrO2 : Ln3+ and CaF2 : Ln3+ 
NPs with biotin and amino-terminal fragment (ATF) of 
urokinase plasminogen activator (uPA) in N,N-dimethyl-
formamide (DMF) by using o-Benzotriazole-N,N,N',N'-te-
tramethyluronium-hexafluoro-phosphate (HBTU) and 
N,N-diisopropylethy (DIEA) as cross-linking reagents 
[65,102]. Despite the validity of these methods, the func-
tional groups are omnipresent in biological systems and 
cannot be labeled specifically in complex biological sys-
tems. In this sense, the so-called “click-chemistry” is an at-
tractive alternative because the functional groups involved 
(e.g., azido and alkyne) are hardly present in biomolecules 
including proteins and oligomers and thus high selectivity 
and high yields of biomolecules conjugation can be guar-
anteed [103,104]. In addition, the strong coordination ca-
pability of the naked metal ions such as Ln3+ on the surface 
of ligand-free NPs can be exploited for direct bioconjuga-
tion. For example, we synthesized biotinylated NaEuF4 and 
Sr2YF7 NPs based on the strong chelation of the exposed 
Ln3+ ions on the surface of their ligand-free counterparts, 
which can be steadily dispersed in varied buffer solutions 
for months without any observable aggregates [66,105].

It is worthy of noting that the bioactivity of the conjugat-
ing biomolecules and the dispersability of the NPs should 
be guaranteed during bioconjugation. Furthermore, to 
avoid non-specific binding in subsequent bioanalytical ap-
plications, it is necessary to block the residual binding sites 
of the NPs after the conjugation. Bovine serum albumin 
(BSA) and human serum albumin (HSA) are frequently 
used for this purpose.

OPTICAL PROPERTIES
Trivalent lanthanide ions have abundant electronic energy 

levels in the [Xe]4f N (N = 0−14) electronic configuration 
with unfilled 4f N electron shell shielded by filled 5s25p6 
subshells. This unique electronic structure enables Ln3+ 
as excellent luminescent centers in inorganic NPs to emit 
photons efficiently in a broad spectral region from UV to 
visible and NIR. Owing to the parity-forbidden nature of 
the intra-4f N transitions within Ln3+ and their peculiar elec-
tronic structures, Ln3+-doped NPs possess superior optical 
characteristics, such as sharp emission peaks, large antenna- 
generated Stokes or anti-Stokes shifts, long PL lifetimes 
and high photochemical stability, which make them ex-
tremely suitable for use as an alternative to traditional lu-
minescent bioprobes for versatile biomedical applications. 
In this section, we highlight the distinct optical properties 
of Ln3+-doped luminescent NPs, including their long-lived 
DSL, NIR-triggered UCL and excitation-free LLP that are 
unique for background-free luminescent bioassays.

Downshifting luminescence
DSL refers to the phenomenon that one high-energy pho-
ton is transformed into one or more lower energy photons. 
Although DSL is expected for most Ln3+ ions in theory, in-
tense and practically useful DSL in the visible region is gen-
erally produced by those Ln3+ ions with large energy gaps 
between the emitting energy levels and the next low-lying 
states, such as Eu3+, Tb3+, Sm3+, and Dy3+. Since the emis-
sions via 4f–4f transitions are parity-forbidden, these DSL 
emitters usually have a long PL lifetime (μs-ms range). The 
long-lived DSL of Ln3+ can be easily distinguished from the 
short-lived background noise from biological substances by 
setting appropriate delay time and gate time, thus is favor-
able for background-free TRPL biodetection [17,106−110].

To achieve efficient DSL from Ln3+-doped NPs, it is es-
sential to select desirable host materials and optimize the 
dopant concentrations. Ideal host materials should possess 
adequate transparency within the wavelength range of in-
terest, low phonon energy, high chemical stability, close-
matched lattice and low local site symmetry for Ln3+ dop-
ants [111–113]. In this sense, inorganic compounds (e.g., 
fluoride, oxide, phosphate, vanadate, borate, tungstate and 
molybdate)   containing rare earth ions, alkaline earth ions, 
and a number of transition metal ions (e.g., Zr4+, Ti4+, and 
Mn2+) are suitable candidates for Ln3+ doping to generate 
efficient DSL. The dopant concentrations are usually kept 
low to avoid the concentration quenching of Ln3+ lumines-
cence, especially for those Ln3+ ions with smaller energy 
gaps. For example, the optimized dopant concentrations 
in β-NaYF4 NPs are normally below 10 at.% for Tb3+ and 
Eu3+ and below 3   at.% for Sm3+ and Dy3+ [114–116]. More 
importantly, as Ln3+ ions typically have a low extinction 
coefficient with a narrow bandwidth due to the parity-for-
bidden nature of intra-4f N transitions, it is highly demand-
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ed to introduce an antenna that can effectively harvest the 
incident light and sensitize the Ln3+ luminescence. Optical 
entities with large absorption cross-sections such as Ce3+, 
Bi3+, [VO4]3−, and Ln3+-O2− charge transfer states as well as 
the host absorption from Gd3+ and exciton recombination 
from semiconductor NPs can be utilized to sensitize the 
DSL of Ln3+ [117,118]. For instance, Ce3+ and Bi3+ are fre-
quently co-doped with Tb3+ and Eu3+, respectively, in NPs 
to sensitize their luminescence [119,120]. Previously, we 
realized the incorporation of Ln3+ into the lattice of a series 
of semiconductor NPs (e.g., ZnO, TiO2, SnO2, ZrO2, Ga2O3 
and In2O3) where strong host-sensitizing Ln3+ PL occurred 
[121–133]. Likewise, through the sensitization of Gd3+, we 
obtained intense red, green and blue emissions in Eu3+, 
Tb3+ and Dy3+ singly-doped KGdF4 NPs with their Stokes 
shifts larger than 250 nm and PL lifetimes of ~10.3, ~9.5, 
and ~1.6 ms, respectively (Figs 5a and b) [111]. Through 
the control of dopant concentrations and combinations, ef-
ficient multicolor emissions can also be tuned in Eu3+, Dy3+ 
and Sm3+ co-doped YVO4 NPs through the sensitization of 
[VO4]3− upon UV excitation at 280 nm (Fig. 5c) [112].

Although the visible DSL of Ln3+-doped NPs is favorable 
for in vitro biodetection, it is not appropriate for in vivo 
bioapplications as the UV excitation light could damage 
biological specimens. Recently, with the rapid advances 
in deep-tissue bioimaging, there has reviving interest for 
NIR-to-NIR Ln3+-doped DSL NPs, because of their high PL 
efficiency and the minimal response of the cells and tissues 
to NIR light [134–137]. The available NIR emitters include 
Nd3+, Yb3+, Ho3+, Er3+ and Tm3+, which are also key dopants 
in UCNPs for producing efficient anti-Stokes UCL, as will 
be overviewed in the following subsection.  

Upconverting luminescence
UCL is a nonlinear optical process that converts two or 
more low-energy pump photons into a higher-energy out-
put photon. Different from the UC processes via virtual en-
ergy states such as multiphoton absorption or second har-
monic generation that require expensive ultra-short pulse 
lasers to perform the excitation, Ln3+-doped UCNPs gener-
ally take advantage of a more efficient energy transfer UC 
(ETU) process through the real intermediary levels of Ln3+, 

a

10

1

0.1

3

2

1

0
500 550 600 650 700 0 20 40 60

Time (ms)Wavelength (nm)

In
te

ns
ity

 (a
.u

.)

Eu
Tb
DyEu

Tb

Dy

b

c

0.0 0.2

YVO4:P/Dy YVO4:P/Eu YVO4:P/Sm

0.5 1.0 2.0 5.0 0.2 0.5 1.0 2.0 5.0 0.2 0.5 1.0 2.0 5.0
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thus can be excited by using a low-cost continuous-wave 
NIR diode laser. Owing to the remarkable light penetration 
depth and the absence of autofluorescence in biological 
specimens under NIR excitation, Ln3+-doped UCNPs are 
ideal for use as alternatives to conventional DSL bioprobes 
for various biomedical applications [29,138].

The commonly used UCL activators are those Ln3+ ions 
with metastable and long-lived intermediary energy levels 
acting as storage reservoirs for the pump energy, such as 
Er3+, Tm3+ and Ho3+ (Fig. 6a). To facilitate the ETU process 
and enhance the UCL efficiency, Yb3+ ions, with a larger 
NIR (~980 nm) absorption cross-section, are often co-
doped as sensitizers. The sensitizer Yb3+ ions are usually 
heavily doped to maximize the absorption, while the dop-
ing concentrations of the activators are kept low to mini-
mize the energy loss through cross relaxation. The typical 
dopant concentrations in β-NaYF4 UCNPs are 2 at.%, 0.5 

at.% and 20 at.% for Er3+, Tm3+ and Yb3+, respectively [139]. 
The selection criterion for the hosts of UCNPs is identi-
cal to that of their DSL counterparts. So far, the most effi-
cient and widely used UCNPs is Yb/Er or Yb/Tm co-doped 
β-NaYF4, though some novel UC host materials such as 
β-NaLuF4 and tetragonal-phase LiLuF4 have been newly re-
ported to have a higher UCL efficiency [62,140–143]. 

Recently, with the rapid development of Ln3+-doped 
UCNPs, many interesting UCL properties such as multi-
color emission, single-band emission, broad-band emis-
sion, stimulated emission and lasing, and UCL lifetime 
multiplexing have been explored [144–153]. For instance, 
by the control of the doping concentrations of Er3+, Tm3+ 
and Yb3+, multicolor UCL was obtained in NaYF4, NaGdF4 
and YF3 NPs upon single-wavelength excitation at 980 nm 
(Fig. 6c) [154–158]. Based on energy transfers between 
Mn2+ and Ln3+ (e.g., Er3+, Tm3+ and Ho3+), single-band UCL 
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Figure 6  (a) Emission spectra of Yb/Er, Yb/Ho, and Yb/Tm co-doped NaYF4 NPs under 980 nm excitation. Note that all the emission spectra were nor-
malized at their maximal emission peaks. (b) Emission spectra of NaGdF4:Yb,Tm@NaGdF4:Ln3+ (Ln = Tb, Eu, Dy, and Sm) core–shell NPs for EMU 
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was realized in KMnF3 : Ln3+ and NaYF4 : Ln3+,Mn2+ UCNPs 
[159,160]. Mn2+ ions can also serve as activators with the 
sensitization of Yb3+ to generate broad-band UCL or as a 
bridge of energy transfer from Yb3+ to Eu3+ to yield pure 
Eu3+ UCL [161,162]. The UCL of Eu3+ as well as other DSL 
emitters like Tb3+, Sm3+ and Dy3+ that lack of long-lived 
intermediary energy levels matchable to Yb3+, can also be 
realized through a novel energy migration-mediated UC 
(EMU) process (Figs 6b and d) [59,115,163]. Such UCL 
of Mn2+ and Ln3+ ions, which is inaccessible in traditional 
Ln3+-activated UCNPs, provide new opportunity and flex-
ibility for the optical design of Ln3+-doped UCNPs. Addi-
tionally, the excitation wavelength of Ln3+-doped UCNPs 
can be broadened or shifted beyond 980 nm by utilizing 
the absorptions of other Ln3+ ions (e.g., Er3+ at ~1530 nm, 
Ho3+ at ~1160 nm, or Nd3+ at ~808 nm) or by introducing 
external fluorophores (e.g., NIR dyes) as antennae [164–
172]. In particular, the newly-developed Nd3+-sensitized 
UCNPs are more advantageous for in vivo bioimaging than 
common Yb3+-sensitized UCNPs, since the laser-induced 
tissue overheating effect can be minimized by virtue of the 
Nd3+ absorption at ~808 nm where the water absorption 
cross-section is much smaller than that at 980 nm [168–
172]. Moreover, the commercially available inexpensive 
808 nm NIR diode laser makes Nd3+-sensitized UCNPs 
more appealing in certain bioapplications.

Currently, the major bottleneck of Ln3+-doped UCNPs 
towards their commercialization is the relatively low UC 
QYs due to the nonlinear UC optical nature. Therefore, it 
is of fundamental significance to improve both the abso-
lute UC QYs and the absorption efficiency of Ln3+-doped 
UCNPs for practical applications. Several strategies can be 
exploited to enhance UCL, including multi-wavelength or 
pulse excitation, crystal-field modification, surface passiv-
ation, antenna effect, plasmonic enhancement and external 
electromagnetic-field enhancement, etc.

Long-lasting phosphorescence
LLP is an optical    phenomenon that the excitation light can 
be stored by the material within a few minutes followed by 
 slowly releasing upon thermal activation to emitting cen-
ters, resulting in light emission that can   last for minutes 
to hours [173]. This phenomenon is also called afterglow 
or persistent luminescence. LLP is of particular interest for 
both in vitro biodetection and in vivo bioimaging, because 
the PLNPs can be excited before signal acquisition, which 
allows   for real-time   monitoring of the target analytes for 
more than 1 h without the need for any external illumi-
nation. Such a removal of in situ excitation in the signal 
analysis process provides a unique solution to circumvent 
the interference from tissue autofluorescence and the pho-
totoxicity of the NPs, thereby offering high   signal-to-noise 

ratio and sensitivity for biosensing [174]. 
In order to interpret the occurrence of LLP, various 

mechanisms ranging from basic conceptual models to 
complex systems have been proposed in the past decades 
[175]. It is generally accepted that upon excitation, charge 
carriers could be caught by the so called “traps”, which are 
long-lived energy levels inside the band gap of the host 
material. Initiated by the absorption of thermal energy,   the 
charge carriers are then gradually released from these traps 
and return to the emitters to produce LLP. For example, 
in   BaAl2O4: Eu2+, Dy3+ phosphors, the introduction of Dy3+ 
creates trapped centers, and Eu2+ ions act as the emitters via 
receiving energy from the recombination of electron-hole 
pairs (Fig. 7a). The excitation energy was firstly accepted 
by traps and then thermally transferred to Eu2+ to emit 
photons lasted for several hours [176].

Different from DSL or UCL that are easily achieved in 
a variety of host materials through Ln3+ doping, LLP can 
only be produced in rather small number of host matri-
ces. Hitherto, most of the LLP studies focus on a handful 
of host materials such as aluminates, silicates, sulfides and 
phosphates [177]. The most famous LLP activators are Eu2+ 
ions, though some other ions like Tb3+, Eu3+, Mn2+, Cr3+ and 
Ti4+ were occasionally documented as efficient LLP emit-
ters [175,178]. Along with the activators, some rare earth 
ions (  e.g., Nd3+, Dy3+) are frequently co-doped as electron 
traps to achieve longer and brighter LLP [177]. By proper 
selection of the host materials and dopant ions, intense and 
multicolor LLP with afterglows ranging from several min-
utes to hours can be realized (Fig. 7b) [179].

Besides these traditional visible-emitting LLP phos-
phors, there has   been increasing interest in the develop-
ment of NIR-emitting PLNPs. The afterglow wavelength 
of these NPs falls within the tissue transparency window, 
which is advantageous for long-term in vivo biosensing 
with deep penetration. For instance, in 2007, le Masne de 
Chermont and coworkers [32] pioneered the synthesis of 
Ca0.2Zn0.9Mg0.9Si2O6: Eu2+, Mn2+, Dy3+ NPs with broad NIR 
LLP (600–800 nm) for in vivo imaging for more than 1 h, 
which is an important milestone for the application of LLP 
nano-bioprobes. Encouraged by this seminal work, Rich-
ard and coworkers [180] demonstrated the first-time use of 
CaMgSi2O6 : Eu2+, Mn2+, Pr3+ NPs that exhibited strong NIR 
LLP at 685 nm for real-time in vivo bioimaging in mice. 
Recently, Yan and coworkers [181] realized long-term 
monitoring of tumors based on Zn2.94Ga1.96Ge2O10:Cr3+, Pr3+ 
PLNPs. Unfortunately, the preparation of all the PLNPs 
aforementioned requires high-temperature calcination, 
while their afterglow time is not long enough for long-
term in vivo probing yet. Nowadays, the major challenge of 
PLNPs towards biomedical applications is the synthesis of 
monodisperse and size-controlled PLNPs. In addition, in 
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order to improve the afterglow intensity and lasting time, 
it is also urgent to unravel the trapping and de-trapping 
mechanisms responsible for LLP in the future.

BACKGROUND-FREE LUMINESCENT 
BIOASSAY
By utilizing the long-lived DSL, NIR-triggered anti-Stokes 
UCL and excitation-free LLP of Ln3+-doped NPs, the back-
ground noise from scattered lights and autofluorescence 
from biological samples can be completely ruled out, thus 
providing a background-free signal for biodetection and a 
remarkable sensitivity than conventional fluorescent im-
munoassays. These NPs can be used either as direct biola-
bels in heterogeneous assays or as energy transfer donors 
in homogeneous FRET assays. The analyte concentration 
in both types of bioassays can be quantified by measuring 
the PL signal of the NPs labels and the FRET signal, respec-
tively. Based on the unique features of these NPs, a series of 
sensitive luminescent bioassay techniques, such as hetero-

geneous TRPL bioassay, dissolution-enhanced luminescent 
bioassay (DELBA), UCL bioassay, homogenous TR-FRET, 
UC-FRET and LLP-FRET assays have been developed in 
recent years. In this section, we overview the latest pro-
gresses of these bioassay techniques based on inorganic 
lanthanide nanoprobes for background-free luminescent 
biodetection.  

Time-resolved luminescent bioassay  
By employing organic dye rhodamine B isothiocyanate 
(RBITC) as a phantom of short-lived background fluo-
rescence and GdF3 : Dy3+ NPs as the nanoprobes, we first 
demonstrated the effectiveness of the TRPL technique in 
removing the undesired background noise in 2011 (Fig. 8a) 
[26]. It was observed that the steady-state PL spectrum for 
the mixture of GdF3 : Dy3+ and RBITC was dominated by 
the emission of RBITC upon excitation at 272 nm, whereas 
only the Dy3+ emission from the NPs was detected in the 
TRPL spectrum with a delay time of 50 μs and a gate time 
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Figure 7  (a) LLP mechanism of Eu2+ in BaAl2O4: Eu2+, Dy3+ phosphors (Adapted with permission from Ref. [176]. Copyright 2012, Optical Society 
of America). (b) The afterglow characteristics of some typical LLP materials as a function of time. The first column represents the light emission of 
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of 0.8 ms (Fig. 8b). Moreover, the PL intensity of RBITC 
under UV irradiation gradually decreased with the time, 
whereas that of GdF3 : Dy3+ NPs kept nearly constant, indi-
cating the superior photostability of GdF3 : Dy3+ NPs (Fig. 
8c). After biotinylation, the GdF3 : Tb3+ NPs were further 
explored as sensitive nanoprobes   in a heterogeneous TRPL 
bioassay to detect trace amounts of avidin with a limit of 
detection (LOD) down to 74 pM. On the basis of similar 
protocol, we have recently extended the TRPL bioassay 
technique to other Ln3+-NPs like CaF2 : Ce,Tb and to the 
assay of tumor markers such as carcinoembryonic antigen 
(CEA), alpha-fetoprotein (AFP) and prostate-specific anti-
gen (PSA) with LODs ranging from several to tens of pM 
[65].

Besides the application in heterogeneous TRPL bioas-
says, Ln3+-doped NPs are also regarded as excellent energy 
donors in homogeneous TR-FRET assays. In a typical TR-
FRET process, the energy transfer from Ln3+-NP donor will 
apparently lengthen the PL lifetime of the acceptor such as 
organic dyes that are intrinsically short-lived, due to the 
slow population of the acceptor’s excited-state from the 
long-lived Ln3+’s excited state [27]. When the TR technique 
is applied, the PL of the acceptor lengthened by the FRET 
process can be readily distinguished from their intrinsical-
ly short-lived PL co-excited under UV excitation. Such a 
signal screening guarantees both reliability and sensitivi-

ty of the assay. By employing biotinylated NaYF4:Ce,Tb 
NPs as an energy donor and fluorescein isothiocyanate 
(FITC)-labeled avidin as an energy acceptor, we construct-
ed the first TR-FRET pair for the detection of avidin with 
an LOD of ~4.8 nM [27]. Later on, this novel TR-FRET 
technique was refined and extended to other Ln3+-NPs such 
as KGdF4 : Tb3+ and ZrO2 : Tb3+ NPs for avidin assays with 
LODs of ~5.5 nM and ~3.0 nM, respectively [102,111]. 

Since the efficiency of nonradiative FRET relies heav-
ily on the distance between the donor and acceptor and 
competes with the radiative transitions of the donor, small 
particle size and long PL lifetime of the donor are highly 
desirable. To maximize the FRET efficiency and achieve 
a lower detection limit, we developed a unique strategy 
through sodium co-doping for the synthesis of ultrasmall 
(~3.8 nm) and highly emissive (QY of 51%) CaF2 : Ce,Tb 
NPs with a long PL lifetime (~12.5 ms) for TR-FRET bioas-
say [65]. As a proof-of-concept experiment, the biotinylat-
ed CaF2 : Ce,Tb NPs and FITC-labeled avidin were selected 
to construct a TR-FRET pair, where the excitation energy 
was transferred from the NP donor to a nearby acceptor 
FITC through specific binding (Fig. 9a). As a result, avidin 
can be quantified by measuring the ratio of the integrat-
ed PL intensities of FITC and Tb3+, as denoted by FITC520/
Tb491. The FITC520 for the TR-FRET signal was gradually 
enhanced at the expense of the Tb491 signal with the in-
creased amount of avidin (Fig. 9b), indicating the specific 
binding between avidin and biotin as well as the occurrence 
of FRET. By contrast, in non-binding control experiments 
where the biotinylated NPs (or FITC-labeled avidin) were 
replaced with non-biotinylated NPs (or FITC labeled BSA) 
under otherwise identical conditions, the TR-FRET signal 
was hardly observed, thus verifying the high specificity of 
the assay. Benefiting from the enhanced FRET efficiency 
through the use of ultrasmall NPs, an improved LOD of 
~164 pM was realized for avidin as compared to previous 
TR-FRET bioassays (Fig. 9c). Furthermore, for the first 
time, we explored these TR-FRET nano-bioprobes for the 
detection of an important tumor marker soluble uPA re-
ceptor (suPAR) with an LOD of ~328 pM, which is compa-
rable to the serum level in cancer patients (Figs 9d and e).

Despite these achievements, inorganic Ln3+-NPs still 
suffer from a low brightness (i.e., external QY) when com-
pared with Ln3+-chelates due to their weak absorption, 
which limits their detection sensitivity in bioassays. To cir-
cumvent this limitation, the antenna of Ln3+-chelates can be 
hybridized with Ln3+-NPs to enhance their PL and simulta-
neously increase the labeling ratio of Ln3+ per biomolecule 
in bioassays. Following this concept, we recently developed 
a unique and ultrasensitive bioassay method, namely DEL-
BA, by simply replacing Ln3+-chelates with inorganic Ln3+-
NPs in the labeling process of commercial dissociation-en-
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Verlag GmbH & Co. KGaA.
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hanced lanthanide fluoroimmunoassay (DELFIA) (Fig. 10) 
[105]. As a result of the highly concentrated Ln3+ ions in 
a single NP, a much higher labeling   ratio of Ln3+ ions per 
biomolecule (~4300 vs. ~30) can be achieved. Upon dis-
solution of the NPs by the enhancer solution, a myriad of 
Ln3+ ions can be released and transformed into highly lu-
minescent Ln3+ micelles, which significantly amplifies the 
TRPL signal and thus greatly improves the detection sensi-
tivity. By employing sub-10 nm NaEuF4 NPs along with the 
2-naphthoyltrifluoroacetone (β-NTA) enhancer solution, 
an unprecedented amplification (106 times) of the PL sig-
nal of the dissolved NPs was obtained. Utilizing such in-
tense dissolution-enhanced PL, we achieved the detection 
of CEA in human serum samples with an LOD as low as 0.1 

pg mL−1 (0.5 fM), which was an improvement of 3 orders of 
magnitude on that of commercial DELFIA. The CEA lev-
els derived from DELBA were compared with those mea-
sured independently using a commercial DELFIA kit, and 
a good agreement was found between both methods (Table 
1), with a correlation coefficient value of ~0.98. Parameters 
including the coefficient of variations (CVs; < 8%) and the 
recoveries (in the range of 95%–105%) of the assays fur-
ther confirmed the excellent accuracy and precision of the 
proposed DELBA. These findings offer new opportunities 
towards advances in clinical bioassays, thereby opening up 
new avenues for the exploration of inorganic Ln3+-NPs in 
versatile bioapplications, such as early-stage cancer diag-
nosis.
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Upconverting luminescent bioassay
  Since the first demonstration of UCL bioassay in 1999 
[182], there has been an extensive research on Ln3+-doped 
UCNPs in various bioassay applications [183–186]. One 
representative paradigm was reported by Tanke and co-
workers [187], who employed Y2O2S : Yb,Er submicrons 
as UCL probes in DNA microarrays for the detection of 
nucleic acid hybrids. Owing to the absence of autofluo-
rescence under NIR excitation, the use of UC phosphors 
yielded a 4-fold improved LOD of 1 ng μL−1 over that using 
conventional DSL probe cyanin 5. For point-of-care test-
ing, Hampl, Zuiderwijk and Niedbala et al. [188–190] inde-
pendently developed a lateral-flow strip for heterogeneous 
UCL bioassays. In their proof-of-concept experiment, 
Hampl and coworkers [188] demonstrated the application 
of Y2O2S : Yb,Er submicrons as UCL reporters in the lat-
eral-flow strips for the assay of human chorionic gonad-
otropin (hCG) with an LOD down to 10 pg mL−1, which 
was at least a 10-fold improvement over the conventional 

DSL reporter systems such as colloidal gold or colored la-
tex beads. To amplify the optical signal and improve the 
detection sensitivity, Wang and Li [184] proposed a unique 
UCL bioassay technique through magnetic separation. 
Specifically, Wang and coworkers [191] developed multi-
plex aptasensors for the simultaneous detection of three 
pathogenic bacteria by using aptamer-functionalized mul-
ticolor NaYF4 : Ln3+ UCNPs as bioprobes and oligonucle-
otide-conjugated Fe3O4 NPs as magnetic separators (Fig. 
11). Through magnetic separation and concentration, ex-
tremely high sensitivity and selectivity were achieved with 
LODs of 25, 10, and 15 cfu mL−1 for Staphylococcus aureus, 
Vibrio parahemolyticus, and Salmonella typhimurium, re-
spectively. 

More recently, we designed a novel UCL biodetection 
system for high-throughput bioassay based on a commer-
cial microplate reader (Synergy 4, BioTek) integrated with 
a 980 nm NIR diode laser as the excitation source. By em-
ploying the surface-functionalized Ln3+-doped UCNPs as 
nano-bioprobes, a number of important tumor markers 
like CEA, AFP, PSA, β-hCG and suPAR were successfully 
detected. For instance, utilizing the avidin-functionalized 
LiLuF4 : Yb,Er@LiLuF4 core-shell UCNPs as the nano-
probes, we realized the detection of β-hCG in the UCL mi-
croplate assay (Fig. 12a) [62]. It was observed that the UCL 
intensity of the nanoprobes gradually increased with the 
increased amount of β-hCG antigen and exhibited a lin-
ear dependence with the concentration of β-hCG at 0–310 
ng mL−1 (Figs 12b and c). For comparison, in non-binding 
control experiment, where BSA instead of β-hCG antigen 
was used under otherwise identical conditions, the UCL 
signal was hardly detectable, thus confirming the high 
specificity of the assay. The LOD was determined to be ~3.8 
ng mL−1, comparable to the normal range of human serum 
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Figure 10  Schematic representation of (a) conventional DELFIA based on Ln3+ chelates and (b) the proposed DELBA based on inorganic Ln3+-NPs. 
Adapted with permission from Ref. [105]. Copyright 2014,   Wiley-VCH Verlag GmbH & Co. KGaA.

Table 1  Comparison of the CEA levels in 20 human serum samples 
independently determined by DELBA based on NaEuF4 NPs and com-
mercial DELFIA kit using Eu3+-DTTA complex, respectively. Data rep-
resent the mean of three independent experiments. The unit of the CEA 
levels is ng mL−1 [105]

Samples DELBA DELFIA Samples DELBA DELFIA
1 133.56 127.38 11 15.12 14.71
2 15.15 17.71 12 27.88 19.63
3 32.53 29.07 13 3.13 2.97
4 27.15 15.85 14 1.19 1.24
5 53.84 44.48 15 0.68 1.03
6 52.90 63.99 16 0.52 1.05
7 11.63 5.71 17 0.96 2.29
8 25.37 31.98 18 0.65 3.01
9 20.62 11.65 19 1.16 0.45

10 12.73 5.26 20 1.82 1.03
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β-hCG level.
Apart from functionalizing as direct labels in heteroge-

neous UCL assays, Ln3+-doped UCNPs are also frequently 
used as energy donors in homogenous UC-FRET assays 
[65,66]. The UC-FRET assay brings together both advan-
tages of background-free signal from the UCNP donor and 
separation-free convenience from the homogeneous FRET 
assay, thus is considered as one of the most convenient 
bioassay methods for fast detection in practical applica-
tions. In a typical UC-FRET process, NIR excitation of the 
UCNP donor triggers an energy transfer from the donor to 
a nearby acceptor through molecular recognition, leading 
to the luminescence quenching of the donor or the emis-
sion of the acceptor, subject to the type of acceptor used 
(fluorescent or not). The commonly used acceptors are 
those molecules or nanomaterials with a large absorption 
band overlapped with the emission bands of UCNPs. For 
instance, based on different acceptor entities such as organ-
ic dyes, Au NPs, MnO2 nanosheets, carbon NPs, graphene 
and graphene oxide (GO), Liu and coworkers [192–200] 
proposed a series of UC-FRET pairs for the detection of 
diverse biomolecules including glucose, thrombin, DNA, 
matrix metalloproteinase-2 (MMP-2), CEA, and Kanamy-
cin, etc. For point-of-care testing, they further designed a 
straightforward paper-based microfluidic device (namely 
UC-μPAD) for UC-FRET assays based on a normal office 
printing sheet with a simple plotting method [192]. Simi-
lar paper-based UC-FRET platforms were also developed 
by Krull and coworkers [201,202] for DNA hybridization 

assays. 
For the detection of human immunodeficiency virus 

(HIV) antibody, Chu and coworkers [185] designed an 
UC-FRET biosensor by using the peptide-functionalized 
NaYF4 : Yb,Er UCNPs as energy donors and GO as ener-
gy quenchers. The UCNP donors were initially adsorbed 
on the surface of GO via π-π stacking interactions and 
hydrophobic interactions between the peptides and GO, 
which resulted in a complete UCL quenching of the do-
nor through energy transfer or electron transfer processes. 
Upon addition of anti-HIV-1 gp120 antibody, the adsorp-
tion was cleaved through the formation of peptide-anti-
body complexes, leading to the decrease in quenching effi-
ciency and the recovery of UCL (Fig. 13a). It was observed 
that the UCL intensity of the nanoprobes increased linearly 
with the increased concentration of HIV-1 antibody in the 
range from 5 to 150 nM, and the LOD was calculated to be 
2 nM according to the 3σ rule (Figs 13b and c). Similarly, 
by employing β-cyclodextrin (β-CD) derivative-modified 
NaYF4:Yb,Er UCNPs (CD-Cit-UCNPs) as the energy do-
nor and rhodamine B (RB) as the energy quencher, Ding 
and coworkers [203] developed a novel UC-FRET platform 
for the sensing of cholesterol (Cho) (Fig. 14). At the begin-
ning, β-CD inclusion of RB (RB  -CD-Cit-UCNPs) initiat-
ed the FRET process due to the close contact between the 
donor and nearby quencher, resulting in the quenching of 
the green UCL (515–565 nm) of the donor. Upon addition 
of cholesterol, the FRET was switched off as a result of the 
cholesterol-induced release of RB from the cavity of β-CD, 
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giving rise to the recovery of the green UCL. By using the 
red UCL (640–685 nm) as an internal reference, ratiomet-
ric detection of cholesterol was realized in the dynamic 
range of 10–110 μM, with an LOD down to ~3.0 μM. The 
cholesterol levels in human serum samples determined by 
the platform were compared with those measured via en-
zymatic method and a good agreement was found. These 
efforts suggest that Ln3+-doped UCNPs are excellent donor 
labels in homogeneous FRET assays and may play a critical 
role in clinical, food and environmental monitoring.

Persistent luminescent bioassay
The rapid advances in the field of PLNPs open a new av-
enue for background-free luminescent bioassays. With 
the benefit of afterglow nature, the PLNPs allow optical 
excitation before signal acquisition and thus permit bio-
detection without real-time external illumination, which 
provides a unique solution to overcome the interference 
of excitation light and biological autofluorescence arising 
from in situ excitation [30–32].

The concept of bioassay based on PLNPs was first 
demonstrated by Yan and coworkers [30] for the detec-
tion of AFP in a homogeneous LLP-FRET assay. In their 
pioneering work, PEI-capped Ca1.86Mg0.14ZnSi2O7 : Eu2+, 
Dy3+ PLNPs and AFP antibody-conjugated Au NPs were 
selected as the energy donor and quencher, respectively, 
to construct an inhibition FRET pair. The FRET process 

was   initiated between the energy donor and quencher in 
close proximity via electrostatic interaction, giving rise to 
the quenching of LLP of the donor centered at ~521 nm. 
Once AFP was added, such a FRET process was inhibited 
due to desorption of Au NPs from the PLNPs, resulting in 
an obvious recovery of the LLP intensity (Fig. 15a). As a 
result, AFP can be quantified by directly measuring the en-
hanced LLP intensity. Note that the PLNP donor was irra-
diated for 10 min before detection to eliminate the need for 
further excitation during the PL analysis. It was observed 
that the LLP intensity of the PLNPs increased linearly 
with the added AFP concentration in the range from 0.8 
to 45.0 μg L−1 with a correlation coefficient of 0.990 (Figs 
15b and c). The LOD was determined to be 0.41 μg L−1, 
comparable to those of most fluorescent and electrochem-
ical sensors for AFP. The AFP levels in six human serum 
samples were also detected, which agreed well with those 
measured independently using a commercial ELISA kit. 
However, the poor dispersibility and broad size distribu-
tion of the PLNPs synthesized at a high temperature may 
severely deteriorate their detection sensitivity and reliabil-
ity in practical applications. To increase the sensitivity and 
reliability of persistent luminescent assay, monodisperse 
and uniform-sized PLNPs with a high LLP intensity and a 
long afterglow time are highly demanded. To this end, wet 
chemical synthesis of PLNPs at lower temperature may be a 
good option, though it is currently of great challenge.
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from Ref. [203]. Copyright 2014, Royal Society of Chemistry.



February 2015 | Vol.58 No.2     171
© Science China Press and Springer-Verlag Berlin Heidelberg 2015

SCIENCE CHINA Materials REVIEWS

CONCLUSIONS AND PROSPECTS  
Inorganic Ln3+-doped NPs have received extensive interest 
in recent years because of their excellent physicochemical 
characteristics, which make them extremely suitable for 
use as alternative to traditional fluorescent bioprobes like 
organic dyes, Ln3+-chelates and QDs for background-free 
luminescent bioassays. These nano-bioprobes, while be-
ing in its infancy, have been rapidly developed and pushed 
forward to a new horizon for diverse bioassays. Substantial 
progresses have been gained very recently, for their size/
morphology control, functionalization design, optical 
property optimization as well as their applications for back-
ground-free luminescent bioassays. Meanwhile, it remains 
many new challenges to be solved in an effort to fulfill all 
requirements for commercial applications.

Firstly, it is fundamentally important to develop general 
and economic protocols for the synthesis, surface modi-
fication and bioconjugation of high-quality Ln3+-doped 
luminescent nanoprobes that are optimized for bioassay 
applications without any concerns of biocompatibility, sta-
bility and long-term toxicity. It is highly demanded to es-
tablish a wet chemical synthetic route for the fabrication of 
monodisperse and uniform-sized PLNPs. Secondly, the PL 
efficiency of Ln3+-doped NPs should be further improved 
in order to increase their detection sensitivity for diverse 
disease biomarkers. To this end, the antenna ligand that 
has very large extinction coefficient might be exploited as 
the sensitizer to enhance their external DSL and UCL ef-
ficiency. The capability of energy storage of PLNPs can be 
controlled through cation incorporation and the choice of 
novel host materials so as to enhance their LLP intensity 

and lengthen the afterglow time. Thirdly, with the growing 
demands for in vivo tracking and imaging of biological ac-
tivities, it is highly desirable to developed NIR luminescent 
bioprobes. Ln3+-doped NIR TRPL and LLP NPs are favor-
able for this purpose in view of their high PL efficiencies. 
Last but not the least, thanks to their extremely high sensi-
tivity, all background-free luminescent bioassay techniques 
based on inorganic lanthanide nanoprobes such as DELBA 
can be further explored for non-invasive analysis of human 
glandular secretions such as saliva and urine where the an-
alyte concentration might be orders of magnitude lower 
than in human serum. Such saliva or urine based bioassays 
may bring new opportunity for early detection or screening 
of cancer, and would ultimately revolutionize current se-
rum-based bioassays in future community or family med-
ical service.
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中文摘要   荧光生物分析技术在科研及医疗机构已获得广泛应用. 常规的荧光免疫分析方法由于采用传统生物探针(如荧光染料及量
子点等)作为标记, 易受到杂散光及生物组织自荧光的干扰. 利用无机稀土纳米荧光探针优异的发光性能, 如长荧光寿命的下转移发
光、近红外激发的上转换发光以及无需激发源的长余辉发光, 可有效解决背景荧光的干扰. 本文从基础的物理化学性能到生物应用角
度出发综述了无机稀土纳米发光材料的最新进展, 包括材料的控制合成、表面功能化、光学性能及其在无背景荧光生物分析方面的
应用示范, 并对该类材料未来的发展趋势与努力的方向作了进一步的远景展望.
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