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Abstract
This paper addresses the adaptive wavelet estimations for density derivatives by using
data-driven methods. Based on the classical linear wavelet estimator of density deriva-
tives, we provide a point-wise estimation under the local Hölder condition firstly.
Moreover, we introduce a data-driven wavelet estimator for adaptivity and prove a
point-wise oracle inequality, which does not require any assumption on the underlying
function. Finally, by using the point-wise oracle inequality, the point-wise estimation
under the local Hölder condition and L p-risk (1 ≤ p < ∞) estimation on Besov
spaces are investigated respectively.

Keywords Wavelet · Density derivative · Data-driven · Local Hölder condition ·
Besov space

Mathematics Subject Classification 42C40 · 62G07 · 62G20

1 Introduction

The estimations of density derivatives play important roles in the exploration of struc-
tures in curves, comparison of regression curves, analysis of human growth data, mean
shift clustering and hypothesis testing [16]. More precisely, let (�,F , P) be a prob-
ability measurable space and X1, . . . , Xn be independent and identically distributed
(i.i.d.) random sampleswith an unknowndensity function f . The purpose is to estimate
the density derivative f (d) with d ∈ N from the observed data X1, . . . , Xn .

In particular, the density derivative estimation model can be reduced to the density
one, when the order d = 0. For density estimations, the classical kernel methods give
nice estimations [9, 19, 21]. Compared with kernel estimators, the wavelet ones have
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better performances because of they can provide more local information and have
fast wavelet algorithm [5, 15]. For instance, Donoho et al. [6] have made almost per-
fect achievements in wavelet estimations, which established an adaptive and optimal
estimation (up to a logarithmic factor) for a univariate density function over L p-risk
(1 ≤ p < ∞) on Besov spaces.

In contrast to the traditional adaptive estimations, Goldenshluger and Lepski [7]
constructed a kernel estimator for density functions by using data-driven methods,
and provided L p-risk (1 ≤ p < ∞) estimations over anisotropic Nikol’skii classes
in 2014. Five years later, Liu and Wu [13] introduced a data-driven wavelet esti-
mator and considered point-wise density estimations under the local anisotropic
Hölder condition. Recently, Cao and Zeng [1] investigated the adaptive L p-risk
(1 ≤ p < ∞) estimations under the independence hypothesis on Besov spaces by
using the data-driven wavelet estimator.

Along with the density estimations, it is often necessary to estimate the derivatives
of density function. Müller and Gasser [18] discussed kernel estimations for density
derivatives over L2-risk on Sobolev spaces. Then in 1996, Rao [20] explored wavelet
density derivative estimations over L2-risk on Sobolev spaces. Moreover, Rao’s esti-
mates were generalized to unmatched Besov spaces Bs

r ,q and L p-risk (1 ≤ p < ∞)
in Ref. [3]. In 2013, Liu and Wang [12] defined the new linear and nonlinear wavelet
estimators for density derivatives, and provided L p-risk estimations on Besov spaces,
respectively.

This paper investigates the adaptive wavelet estimations for density derivatives.
Based on the classical linear wavelet estimator for density derivatives, we show the
point-wise estimations under the localHölder condition firstly. Furthermore,motivated
by the works of Goldenshluger and Lepski [7] and Cao and Zeng [1], we introduce a
data-driven wavelet estimator for adaptivity and prove a point-wise oracle inequality,
which does not require any assumption on the underlying function f or f (d) (except for
the restrictions ensuring the existence of the model and of the risk). Finally, by using
the point-wise oracle inequality, we give the point-wise estimations under the local
Hölder condition and L p-risk (1 ≤ p < ∞) estimations on Besov spaces respectively.

1.1 Wavelets and Function Spaces

We begin with an important concept in wavelet analysis in this subsection. A Mul-
tiresolution Analysis (MRA, [8, 17]) is a sequence of closed subspaces {Vj } j∈Z of the
square integrable function space L2(R) satisfying the following properties:

(i). Vj ⊂ Vj+1, j ∈ Z;
(ii).

⋃
j∈Z Vj = L2(R) (the space

⋃
j∈Z Vj is dense in L2(R));

(iii). f (2·) ∈ Vj+1 if and only if f (·) ∈ Vj for each j ∈ Z;
(iv). There exists ϕ ∈ L2(R) (scaling function) such that {ϕ(· − k), k ∈ Z} forms an

orthonormal basis of V0 = span{ϕ(· − k), k ∈ Z}.

Moreover, a wavelet function ψ can be derived from the scaling function ϕ in a
simple way such that for fixed j0 ∈ N, both {ϕ j0k, ψ jk} j≥ j0,k∈Z and {ψ jk} j,k∈Z are
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orthonormal bases (wavelet bases) of L2(R), where h jk(·) := 2
j
2 h(2 j ·−k) for h = ϕ

or ψ . Hence, for each f ∈ L2(R),

f =
∑

k∈Z
s j0kϕ j0k +

∑

j≥ j0

∑

k∈Z
d jkψ jk

holds in L2-sense, where s jk := 〈 f , ϕ jk〉 and d jk := 〈 f , ψ jk〉. When ϕ is t regular,
the above identity holds in L p-sense (p ≥ 1). Here and after, a scaling function ϕ

is called t regular [4] (t ∈ N), if ϕ ∈ Ct (R) and |ϕ(r)(x)| ≤ C(1 + |x |2)−l for any
l ∈ Z (r = 0, 1, . . . , t). For instance, Daubechies’s scaling function D2N is t regular
for large N and Meyer’s function possesses any order of regularity. Furthermore, it is
easy to verify that the regularity of ϕ implies the regularity of ψ .

As usual, the notation Pj stands for the orthogonal projection operator from L2(R)

onto the scaling space Vj with the orthonormal basis {ϕ jk}k∈Z. Thus, for each f ∈
L2(R),

Pj f =
∑

k∈Z
s jkϕ jk

with s jk := 〈 f , ϕ jk〉. If ϕ satisfies condition (θ ), i.e.,

�ϕ(·) :=
∑

k∈Z
|ϕ(· − k)| ∈ L∞(R),

then Pj f is well-defined for f ∈ L p(R) (1 ≤ p ≤ ∞). Furthermore, Condition (θ )
can be followed by the regularity of ϕ.

As in Refs. [13, 14], we shall investigate the point-wise estimations under the local
Hölder condition. For a univariate function f , the local Hölder condition of order
s > 0 at the point x0 ∈ R means that for a fixed constant L > 0 and each x, y ∈ �x0
(a neighbourhood of the point x0),

| f ([s])(y) − f ([s])(x)| ≤ L|y − x |s−[s],

where [s] stands for the largest integer strictly small than s. Here, all those functions
are denoted by Hs(�x0). Obviously, f ∈ Hs+d(�x0) if and only if f (d) ∈ Hs(�x0)

with d ∈ N.
The following lemma is necessary for the point-wise estimations.

Lemma 1.1 [14, 22, 23] Let ϕ ∈ L2(R) be t regular scaling function and ψ be the
corresponding wavelet. If f ∈ Hs(�x0) ∩ L2(R) with s > 0 and t ≥ [s], then for
x ∈ �x0 and sufficiently large j ,

(i). f (x) = ∑

k∈Z
s j0kϕ j0k(x) +

∞∑
j= j0

∑

k∈Z
d jkψ jk(x) holds pointwisely;

(ii). sup
x∈�x0

sup
f ∈Hs (�x0 )∩L2(R)

| f (x) − Pj f (x)| � 2− js .
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Here and throughout, A � B stands for A ≤ cB with some constant c > 0; A � B
means B � A; A ∼ B denotes both A � B and A � B.

In this paper, the notation Hs+d(�x0 , M) with d ∈ N means that

Hs+d(�x0 , M) := { f ∈ Hs+d(�x0), ‖ f (d)‖1 ∨ ‖ f (d)‖∞ ≤ M},

where M is a positive constant and a ∨ b := max{a, b}.
On the other hand, the Besov spaces are needed in order to establish L p-risk

estimations. Let Wn
r (R) be the Sobolev space with a non-negative integer exponent

n,

Wn
r (R) := { f ∈ Lr (R), f (n) ∈ Lr (R)},

and ‖ f ‖Wn
r

:= ‖ f ‖r +‖ f (n)‖r .Then Lr (R) can be seen asW 0
r (R). For 1 ≤ r , q ≤ ∞

and s = n + α with α ∈ (0, 1], a Besov space Bs
r ,q(R) is defined by

Bs
r ,q(R) := { f ∈ Wn

r (R), ‖t−αω2
r ( f

(n), t)‖∗
q < ∞}

with the norm ‖ f ‖Bs
r ,q

:= ‖ f ‖Wn
r

+ ‖t−αω2
r ( f

(n), t)‖∗
q . Here, ω2

r ( f , t) :=
sup|h|≤t ‖ f (· + 2h) − 2 f (· + h) + f (·)‖r denotes the smoothness modulus of f
and

‖h‖∗
q :=

⎧
⎨

⎩

(
∫ +∞
0 |h(t)|q dt

t )
1
q , if1 ≤ q < ∞;

ess sup
t∈R

|h(t)|, ifq = ∞.

Then for f ∈ Lr (R), f ∈ Wn+d
r (R) if and only if f (d) ∈ Wn

r (R), since f (n+d) ∈
Lr (R) implies f ( j) ∈ Lr (R) ( j = 1, 2, . . . , n+d) (seeRef. [8]).Hence, f ∈ Bs+d

r ,q (R)

if and only if f (d) ∈ Bs
r ,q(R).

One advantage of wavelet bases is that they can characterize Besov spaces.

Lemma 1.2 [17]Letϕ be t regularwith t > s > 0 andψ be the correspondingwavelet.
Then for f ∈ Lr (R) and r , q ∈ [1,∞], the following conditions are equivalent:

(i). f ∈ Bs
r ,q(R);

(ii). {2 js‖Pj f − f ‖r } j∈Z ∈ lq(Z);
(iii). {2 j(s− 1

r + 1
2 )‖{d j ·}‖lr } j∈Z ∈ lq(Z).

The Besov norm of f can be given by

‖ f ‖Bs
r ,q

:= ∥
∥{s j0·}

∥
∥
lr +

∥
∥
∥
∥

{
2 j(s− 1

r + 1
2 )
∥
∥{d j ·}

∥
∥
lr

}

j≥ j0

∥
∥
∥
∥
lq

.

Furthermore, Lemma 1.2 (i) and (ii) show that ‖Pj f − f ‖r � 2− js holds for
f ∈ Bs

r ,q(R).When r ≤ p, Lemma 1.2 (i) and (iii) imply thatwith s′− 1
p = s− 1

r > 0,

Bs
r ,q(R) ↪→ Bs′

p,q(R),
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where A ↪→ B stands for a Banach space A continuously embedded in another Banach
space B. All these claims can be found in Refs. [11, 24].

In this paper, the notation Bs+d
r ,q (M) with M > 0 stands for

Bs+d
r ,q (M) := { f ∈ Bs+d

r ,q (R), ‖ f ‖Bs+d
r ,q

∨ ‖ f (d)‖∞ ≤ M}.

and

Bs+d
r ,q (M, T ) := { f ∈ Bs+d

r ,q (M), supp f ⊆ [−T , T ] with some T > 0}. (1.1)

Moreover, L∞(M) is defined by the way. On the other hand, it follows form f ∈
Bs+d
r ,q (M) that f (d) ∈ Bs

r ,q(R) and ‖ f (d)‖Bs
r ,q

≤ M .

1.2 Our Results

As in [3, 20], the linear wavelet estimator for density derivatives is introduced by

̂
f (d)
j (x) :=

∑

k∈Z
α̂ jkϕ jk(x), (1.2)

where α̂ jk := (−1)d

n

∑n
i=1[ϕ jk](d)(Xi ) and ϕ is t regular with t ≥ d. Clearly, E α̂ jk =

α jk := 〈 f (d), ϕ jk〉 and E
̂
f (d)
j = Pj f (d).

Next, we are in a position to introduce our results in this paper. The first theorem
gives a linear wavelet point-wise estimation for density derivatives under the local
Hölder condition.

Theorem 1.1 Let ϕ be t regular with t ≥ d ≥ 0 and
̂
f (d)
j∗ be the linear wavelet

estimator in (1.2). Then for 0 < s < t and 2 j∗
∼ n

1
2s+2d+1 ,

sup
x∈�x0

sup
f ∈Hs+d (�x0 ,M)∩L∞(M)

E

∣
∣
∣
∣
̂
f (d)
j∗ (x) − f (d)(x)

∣
∣
∣
∣

p

� n− sp
2s+2d+1 .

Remark 1.1 When the order d = 0, the density derivative estimation model can be
reduced to the classical density one, and Theorem 1.1 coincides with the conclusion
of Theorem 3 in one dimension in Ref. [13].

Remark 1.2 Note that the parameter j of the linear wavelet estimator depends on the
smoothness index s of unknown density function f in Theorem 1.1, and the estimator
in (1.2) is non-adaptive[6, 10, 11].

Motivated by theworks inRefs. [1, 2, 7, 14],we provide a selection rule of parameter
j in (1.2) only depending on the observed data X1, . . . , Xn , which is so called data-
driven version and totally adaptive estimator.
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Let H :=
{
0, 1, . . . , � 1

2d+1 log2
n
ln n �

}
with �a� denoting the integer part of a.

Thus, the selection rule of j = j0 in (1.2) is given by

R̂ j (x) : = sup
j ′∈H

[∣
∣
∣
∣
̂
f (d)

j∧ j ′(x) −̂
f (d)

j ′ (x)

∣
∣
∣
∣− τn( j ∧ j ′) − τn( j

′)
]

+
, (1.3)

j0 = j0(x) = arginf
j∈H

[
R̂ j (x) + 2τn( j)

]
. (1.4)

Here and throughout, a ∧ b := min{a, b}, a+ := max{a, 0} and

τn( j) :=
(

λ2 j(2d+1) ln n

n

) 1
2

, (1.5)

where λ > 0 is a constant determined later on. Clearly, it only depends on the observed
data X1, . . . , Xn . Thus, the data-driven wavelet estimator is obtained by

̂
f (d)
n (x) := ̂

f (d)
j0

(x) =
∑

k∈Z
α̂ j0kϕ j0k(x) (1.6)

with j0 ∈ H being given in (1.4).
To introduce Theorem 1.2, let

Bj (x, f ) := |Pj f
(d)(x) − f (d)(x)| and Sn(x, j) := ̂

f (d)
j (x) − E

̂
f (d)
j (x) (1.7)

be the bias and the stochastic error of
̂
f (d)
j , respectively. Furthermore, we define

B∗
j (x, f ) := sup

j ′∈H, j ′≥ j
B j ′(x, f ) and ℵn(x) := sup

j∈H

[
|Sn(x, j)| − τn( j)

]

+,(1.8)

where τn( j) is given by (1.5).
Then the following point-wise oracle inequality is established, which plays the key

roles in the proofs of Theorems 1.3–1.4.

Theorem 1.2 For any x ∈ R, the estimator
̂
f (d)
n (x) in (1.6) satisfies that

|̂f (d)
n (x) − f (d)(x)| ≤ inf

j∈H

{
5B∗

j (x, f ) + 5τn( j)
}

+ 5ℵn(x),

where τn( j) is given by (1.5) and B∗
j (x, f ), ℵn(x) are determined by (1.8).

Moreover, by using Theorem 1.2, we obtain the adaptive point-wise estimation and
L p-risk (1 ≤ p < ∞) estimation based on the data-driven estimator in (1.6).
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Theorem 1.3 Let ϕ be t regular with t ≥ d ≥ 0. Then for 0 < s < t , the data-driven

estimator
̂
f (d)
n in (1.6) satisfies

sup
x∈�x0

sup
f ∈Hs+d (�x0 ,M)∩L∞(M)

E |̂f (d)
n (x) − f (d)(x)|p �

( ln n

n

) sp
2s+2d+1

.

Remark 1.3 The same as Remark 1.1, when d = 0, Theorem 1.3 can be reduced to
the conclusion of Theorem 4 in one dimension in Ref. [13].

Theorem 1.4 Let ϕ be t regular with t ≥ d ≥ 0. Then for 0 < s < t , r , q ∈ [1,∞]
and p ∈ [1,∞), the data-driven estimator

̂
f (d)
n in (1.6) satisfies

sup
f ∈Bs+d

r ,q (M,T )∩L∞(M)

E‖̂f (d)
n I[−T ,T ] − f (d)‖p

p �
( ln n

n

)θ p
,

where

θ :=

⎧
⎪⎪⎨

⎪⎪⎩

s
2s+2d+1 , 1 ≤ p < 2sr

2d+1 + r;
sr

(2d+1)p , p ≥ 2sr
2d+1 + r , s ≤ 1

r ;
s− 1

r + 1
p

2(s− 1
r )+2d+1

, p ≥ 2sr
2d+1 + r , s > 1

r .

Remark 1.4 According to Theorem 3.3 and Theorem 4.3 in Ref. [12], the convergence
rates in Theorem 1.4 are optimal (up to a logarithmic factor) for the case of s > 1

r .
However, the situation is unclear for s ≤ 1

r . Therefore, one of our future work is to
determine the optimality of this statistical model for the case s ≤ 1

r .

Remark 1.5 When d = 0 and s > 1
r , the convergence rate θ = min

{
s

2s+1 ,
s− 1

r + 1
p

2(s− 1
r )+1

}

coincides with the works of Donoho et al. in Ref. [6]. In addition, the estimation for
the case s ≤ 1

r is considered in Theorem 1.4.

2 Some Lemmas and Propositions

In this section, we provide some lemmas and propositions which are necessary in the
proofs of main results. Rosenthal’s inequality is introduced first.
Rosenthal’s inequality [8]. Let p > 0 and X1, X2, . . . , Xn be the independent ran-
dom variables satisfying EXi = 0 and E |Xi |p < ∞ (i = 1, 2, . . . , n). Subsequently,
there exists C(p) > 0 such that

E

∣
∣
∣
∣
∣

n∑

i=1

Xi

∣
∣
∣
∣
∣

p

≤ C(p)

⎧
⎨

⎩

n∑

i=1

E |Xi |p I{p>2} +
(

n∑

i=1

EX2
i

) p
2

⎫
⎬

⎭
.
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Next, the following lemma is established, which is important for the proof of
Theorem 1.1.

Lemma 2.1 Let ϕ be t regular with t ≥ d and α̂ jk be defined in (1.2). Then for
f ∈ L∞(M) with M > 0 and 2 j ≤ n,

E |α̂ jk − α jk |p � n− p
2 2 jdp,

where the constant in “ � " only depends on ϕ and M.

Proof According to the definition of α̂ jk , one has E α̂ jk = α jk and

E |α̂ jk − α jk |p = 1

n p
E

∣
∣
∣
∣
∣

n∑

i=1

{
[ϕ jk](d)(Xi ) − E[ϕ jk](d)(Xi )

}
∣
∣
∣
∣
∣

p

= 1

n p
E

∣
∣
∣
∣
∣

n∑

i=1

ηi

∣
∣
∣
∣
∣

p

,

(2.1)

where ηi := [ϕ jk](d)(Xi ) − E[ϕ jk](d)(Xi ). Clearly, {ηi }ni=1 are i.i.d. samples and
Eηi = 0, i = 1, . . . , n.

On the other hand, for i = 1, . . . , n,

E |ηi |2 ≤ E
(
[ϕ jk](d)(Xi )

)2 = 2 j22 jd
∫

R

[ϕ(d)(2 j x − k)]2 f (x)dx � 22 jd

and ‖ηi‖∞ � ‖[ϕ jk](d)‖∞ � 2 j( 12+d) by the regularity of ϕ and ‖ f ‖∞ � 1. These
with Rosenthal’s inequality and 2 j ≤ n show that

E

∣
∣
∣
∣
∣

n∑

i=1

ηi

∣
∣
∣
∣
∣

p

�
n∑

i=1

E |ηi |p I{p>2} +
(

n∑

i=1

Eη2i

) p
2

� n
p
2 2 jdp[(n−12 j )

p
2 −1 I{p>2} + 1] � n

p
2 2 jdp. (2.2)

Finally, the desired conclusion is concluded by (2.1) and (2.2). The proof is
done. ��

We give the next lemma in order to prove Proposition 2.1.

Lemma 2.2 Let K j (v, x) := (−1)d
∑

k∈Z[ϕ jk](d)(v)ϕ jk(x) and ϕ be t regular with
t ≥ d ≥ 0. Then for f ∈ L∞(M),

|K j (v, x)| ≤ M12
j(d+1) and E |K j (X1, x)|2 ≤ M12

j(2d+1),

where M1 ≥ 1 is some constant.
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Proof By the definition of K j (v, x), one finds easily that

|K j (v, x)| =
∣
∣
∣
∣
∣
2 j(d+1)

∑

k∈Z
ϕ(d)(2 jv − k)ϕ(2 j x − k)

∣
∣
∣
∣
∣
≤ ‖�ϕ‖∞‖ϕ(d)‖∞2 j(d+1)

(2.3)

because of the regularity of ϕ. On the other hand,

∫

R

|K j (v, x)|dv ≤ 2 j(d+1)
∫

R

∑

k∈Z
|ϕ(d)(2 jv − k)||ϕ(2 j x − k)|dv

= 2 j(d+1)
∑

k∈Z
|ϕ(2 j x − k)|

∫

R

|ϕ(d)(2 jv − k)|dv

≤ ‖�ϕ‖∞‖ϕ(d)‖12 jd .

Furthermore,

E |K j (X1, x)|2 ≤ ‖�ϕ‖∞‖ϕ(d)‖∞‖ f ‖∞2 j(d+1)
∫

R

|K j (v, x)|dv

≤ ‖�ϕ‖2∞‖ϕ(d)‖∞‖ϕ(d)‖1M2 j(2d+1). (2.4)

Choosing M1 := max{‖�ϕ‖∞‖ϕ(d)‖∞, ‖�ϕ‖2∞‖ϕ(d)‖∞‖ϕ(d)‖1M, 1}, then it
follows from (2.3)–(2.4) that the final conclusions. ��

To show Proposition 2.1, we need another well-known inequality.
Bernstein’s inequality [8]. Let η1, . . . , ηn be i.i.d. random variables with Eηi = 0,
Eη2i ≤ σ 2 and |ηi | ≤ M (i = 1, 2, . . . , n). Then for any ε > 0,

P

{∣
∣
∣
∣
∣

1

n

n∑

i=1

ηi

∣
∣
∣
∣
∣
≥ ε

}

≤ 2 exp
{

− nε2

2(σ 2 + Mε/3)

}
.

Now, we introduce the first proposition which plays important roles in the proofs
of Theorems 1.3–1.4.

Proposition 2.1 Let f ∈ L∞(M) and ϕ be t regular with t ≥ d ≥ 0. Then for each
x ∈ R and p ∈ [1,∞), there exists λ > 6M2

1 p
2 such that

E[ℵn(x)]p �
(
ln n

n

) p
2

,

where ℵn(x) is given by (1.8) and M1 ≥ 1 is the constant in Lemma 2.2.

Proof For each j ∈ H, one denotes

τn( j) :=
(
6M2

1 p2
j(2d+1)λ j

n

) 1
2

, (2.5)
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where λ j := max{(2d + 1)pj ln 2, 1}. Note that the inequality λ ln n ≥ 6M2
1 pλ j

holds for large n, since λ > 6M2
1 p

2 and j ∈ H. Hence, τn( j) ≤ τn( j) thanks to (1.5)
and (2.5). Moreover,

[
|Sn(x, j)| − τn( j)

]

+ ≤
[
|Sn(x, j)| − τn( j)

]

+. (2.6)

For any t ≥ 0,

P
{[|Sn(x, j)| − τn( j)

]
+ > t

}
= P

{
|Sn(x, j)| − τn( j) > t

}
.

Therefore,

E
[
|Sn(x, j)| − τn( j)

]p

+ = p
∫ ∞

0
t p−1P

{
|Sn(x, j)| − τn( j) > t

}
dt .

This with variable substitution t = ωτn( j) shows that

E
[
|Sn(x, j)| − τn( j)

]p

+ ≤ p
∫ ∞
0

[ωτn( j)]p−1P
{
|Sn(x, j)| > τn( j)(ω + 1)

}
τn( j)dω

= p[τn( j)]p
∫ ∞
0

ωp−1P
{
|Sn(x, j)| > τn( j)(ω + 1)

}
dω. (2.7)

On the other hand, it is easy to see that the estimator
̂
f (d)
j (x) in (1.6) can be rewritten

as

̂
f (d)
j (x) = 1

n

n∑

i=1

K j (Xi , x),

because K j (v, x) := (−1)d
∑

k∈Z[ϕ jk](d)(v)ϕ jk(x) in Lemma 2.2. This with (1.7)
and Lemma 2.2 implies that Sn(x, j) = 1

n

∑n
i=1[K j (Xi , x) − EK j (Xi , x)] and

|K j (Xi , x)| ≤ M12
j(d+1), E |K j (Xi , x)|2 ≤ M12

j(2d+1).

Furthermore,

P
{
|Sn(x, j)| > τn( j)(ω + 1)

}

≤ 2 exp

{

− n[τn( j)]2(ω + 1)2

2[M12 j(2d+1) + 2M12 j(d+1)τn( j)(ω + 1)/3]

}

(2.8)

thanks to Bernstein’s inequality.
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For j ∈ H, τn( j) =
(
6M2

1 p2
j(2d+1)λ j
n

) 1
2 ≤ 3M1 p holds for large n. Thus,

2[M12
j(2d+1) + 2M12

j(d+1)τn( j)(ω + 1)/3] ≤ 6M2
1 p2

j(2d+1)(ω + 1)

due to M1, p ≥ 1 and ω > 0. Substituting this above estimate into (2.8), one obtains
that

P
{
|Sn(x, j)| > τn( j)(ω + 1)

}
≤ 2e−λ j (ω+1).

Then it follows from λ j = max{(2d + 1)pj ln 2, 1} ≥ 1 that

P
{
|Sn(x, j)| > τn( j)(ω + 1)

}
≤ 2e−λ jωe−λ j ≤ 2e−ωe−λ j .

Combining this with (2.7) and τn( j) :=
(

6M2
1 p2

j(2d+1)λ j
n

) 1
2

, one concludes that

E
[
|Sn(x, j)| − τn( j)

]p

+ � [τn( j)]pe−λ j

∫ ∞
0

ωp−1e−ωdω �
(
6M2

1 p2
j(2d+1)λ j

n

) p
2

e−λ j .

Hence, according to λ j � ln n and e−λ j ≤ 2−(2d+1)pj , one knows

∑

j∈H
E
[
|Sn(x, j)| − τn( j)

]p

+ �
∑

j∈H

(
ln n

n

) p
2

2(d+ 1
2 )pj2−(2d+1)pj �

(
ln n

n

) p
2

.

This with (1.8) and (2.6) leads to

E[ℵn(x)]p � E sup
j∈H

[
|Sn(x, j)| − τn( j)

]p

+ �
∑

j∈H
E
[
|Sn(x, j)| − τn( j)

]p

+ �
(
ln n

n

) p
2

,

which completes the proof. ��
To introduce Proposition 2.2, we also need the following notations:

M(x, f ) : = inf
j∈H

{B∗
j (x, f ) + τn( j)}, (2.9)

�m : = {x ∈ [−T , T ], 2mδn < M(x, f ) ≤ 2m+1δn}, (2.10)

where δn = (C ln n
n )

s
2s+2d+1 , C > 1 is some constant and T > 0 is defined by (1.1).

Note that M(x, f ) ≤ c0 := supx M(x, f ), if ϕ is t regular and ‖ f (d)‖∞ � 1.
Then there exists

m2 := min{m ∈ Z, 2mδn ≥ c0} (2.11)
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such that �m = ∅ for each m > m2. Obviously, m2 > 0 for large n.
Next, another useful proposition is provided which is one of the main ingredients

in the proof of Theorem 1.4.

Proposition 2.2 Let f ∈ Bs+d
r ,q (M) and ϕ be t regular with t ≥ d ≥ 0. Then for m ∈ Z

satisfying 0 ≤ m ≤ m2 and each p ∈ [1,∞),

Qm :=
∫

�m

[M(x, f )]pdx � 2m(p−r− 2sr
2d+1 )δ

p
n ;

Moreover, if s > 1
r and r ≤ p, then with s′ := s − 1

r + 1
p ,

Qm =
∫

�m

[M(x, f )]pdx � 2− 2ms′ p
2d+1 δ

s′
s p
n ,

where M(x, f ) and �m are defined in (2.9)–(2.10) respectively.

Proof The proof is similar to the second part of Proposition 3.2 in Ref. [2]. Here, one
provides only some important steps to prove this proposition.

Take j2 satisfying c12
2m

2d+1 δ
− 1

s
n ≤ 2 j2 ≤ c22

2m
2d+1 δ

− 1
s

n , where two positive constants

c1, c2 satisfy (2M)
1
s I{r=∞} < c1 < c2 < min

{
C
4c20

, C
4λ

} 1
2d+1

. Then j2 ∈ H and

τn( j2) ≤ 2m−1δn for large n and 0 < m ≤ m2.
Clearly, by �m = {x ∈ [−T , T ], 2mδn < M(x, f ) ≤ 2m+1δn},

Qm =
∫

�m

[M(x, f )]pdx ≤ (2m+1δn)
p|�m |, (2.12)

where |�m | stands for the Lebesgue measure of the set �m . On the other hand,

|�m | ≤ |{x ∈ [−T , T ], B∗
j2(x, f ) > 2m−1δn}|. (2.13)

When 1 ≤ r < ∞, according to Chebyshev’s inequality, (1.8), (2.13) and f ∈
Bs+d
r ,q (M), one has

|�m | ≤
∑

j∈H, j≥ j2

|{x ∈ [−T , T ], Bj (x, f ) > 2m−1δn}|

≤
∑

j∈H, j≥ j2

‖Bj (·, f )‖rr
(2m−1δn)r

� 2−mrδ−r
n 2− j2sr . (2.14)

Substituting (2.14) into (2.12), one obtains that

Qm � (2m+1δn)
p2−mrδ−r

n 2− j2sr � 2m(p−r)δ
p−r
n 2− j2sr � 2m(p−r− 2sr

2d+1 )δ
p
n
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due to 2 j2 ∼ 2
2m

2d+1 δ
− 1

s
n .

For the case r = ∞, it follows from f ∈ Bs+d
r ,q (M) and m > 0 that B∗

j2
(x, f ) =

sup j ′≥ j2 Bj ′(x, f ) ≤ M2− j2s ≤ Mc
−s

1 2− 2ms
2d+1 δn ≤ 2m−1δn thanks to the choice of

2 j2 ≥ c12
2m

2d+1 δ
− 1

s
n with c1 > (2M)

1
s . Thus, |�m | = 0 because of (2.13). Furthermore,

it reduces to Qm ≤ (2m+1δn)
p|�m | = 0 by (2.12).

Finally, one discusses the case of s > 1
r and r ≤ p. Note that f (d) ∈ Bs

r ,q ↪→ Bs′
p,q

with s′ = s − 1
r + 1

p . Similar to (2.14),

|�m | ≤
∑

j∈H, j≥ j2

‖Bj (·, f )‖p
p

(2m−1δn)p
� 2−mpδ

−p
n 2− j2s′ p.

This with (2.12) and 2 j2 ∼ 2
2m

2d+1 δ
− 1

s
n implies that

Qm � (2m+1δn)
p2−mpδ

−p
n 2− j2s′ p � 2− j2s′ p � 2− 2ms′ p

2d+1 δ
s′
s p
n .

The proof is done. ��

3 Proofs of Theorems 1.1–1.4

This section is devoted to give the proofs of Theorems 1.1–1.4.

Proof of Theorem 1.1 . By the definition of
̂
f (d)
j∗ (x) and E α̂ j∗k = α j∗k , it is clear to

see that

E
∣
∣
∣
̂
f (d)
j∗ (x) − E

̂
f (d)
j∗ (x)

∣
∣
∣
p = E

∣
∣
∣
∣
∣

∑

k

(α̂ j∗k − α j∗k)ϕ j∗k(x)

∣
∣
∣
∣
∣

p

Moreover, it follows from the Hölder inequality with 1
p + 1

p′ = 1 (p > 1) that

E
∣
∣
∣
̂
f (d)
j∗ (x) − E

̂
f (d)
j∗ (x)

∣
∣
∣
p ≤ E

∑

k

|α̂ j∗k − α j∗k |p|ϕ j∗k(x)|
[
∑

k

|ϕ j∗k(x)|
] p

p′

≤ n− p
2 2 j∗dp

[
∑

k

|ϕ j∗k(x)|
]1+ p

p′
= n− p

2 2 j∗dp
[
∑

k

|ϕ j∗k(x)|
]p

� 2 j∗ p(d+ 1
2 )n− p

2

(3.1)

thanks to Lemma 2.1. When p = 1, the above estimate can be concluded directly
without using the Hölder inequality.
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On the other hand, Lemma 1.1 leads to sup
x∈�x0

sup
f ∈Hs+d (�x0 ,M)

∣
∣
∣E

̂
f (d)
j∗ (x) −

f (d)(x)
∣
∣
∣
p

� 2− j∗sp. This with (3.1) and 2 j∗
∼ n

1
2s+2d+1 shows

sup
x∈�x0

sup
f ∈Hs+d (�x0 ,M)∩L∞(M)

E
∣
∣
∣
̂
f (d)
j∗ (x) − f (d)(x)

∣
∣
∣
p

� sup
x∈�x0

sup
f ∈Hs+d (�x0 ,M)∩L∞(M)

[
E

∣
∣
∣
∣
̂
f (d)
j∗ (x) − E

̂
f (d)
j∗ (x)

∣
∣
∣
∣

p
+
∣
∣
∣
∣E

̂
f (d)
j∗ (x) − f (d)(x)

∣
∣
∣
∣

p ]

� 2 j
∗ p(d+ 1

2 )n− p
2 + 2− j∗sp � n− sp

2s+2d+1 .

The proof is completed. ��

Proof of Theorem 1.2 . According to (1.3) and (1.5), one obtains that

∣
∣
∣
̂
f (d)
j∧ j0

(x) −̂
f (d)
j0

(x)
∣
∣
∣ ≤ R̂ j (x) + τn( j ∧ j0) + τn( j0) ≤ R̂ j (x) + 2τn( j0). (3.2)

The same arguments as (3.2) implies

∣
∣
∣
̂
f (d)
j0∧ j (x) −̂

f (d)
j (x)

∣
∣
∣ ≤ R̂ j0(x) + 2τn( j). (3.3)

Moreover, combining (3.2) and (3.3), one concludes

∣
∣
∣
̂
f (d)
j0∧ j (x) −̂

f (d)
j0

(x)
∣
∣
∣+

∣
∣
∣
̂
f (d)
j0∧ j (x) −̂

f (d)
j (x)

∣
∣
∣ ≤ 2R̂ j (x) + 4τn( j) (3.4)

due to
̂
f (d)
j0∧ j = ̂

f (d)
j∧ j0

and the selection of j0 in (1.4).
Clearly, by (1.8), |Sn(x, j)| ≤ [|Sn(x, j)| − τn( j)]+ + τn( j) ≤ ℵn(x) + τn( j).

This with (1.7) and (1.8) shows that

∣
∣
∣
̂
f (d)
j (x) − f (d)(x)

∣
∣
∣ ≤ Bj (x, f ) + |Sn(x, j)| ≤ B∗

j (x, f ) + ℵn(x) + τn( j).(3.5)

On the other hand, by using (1.3) and (1.7),

R̂ j (x) = sup
j ′∈H

[
|̂f (d)

j∧ j ′(x) −̂
f (d)

j ′ (x)| − τn( j ∧ j ′) − τn( j
′)
]

+

≤ sup
j ′∈H

[
|E ̂

f (d)

j∧ j ′(x) − E
̂
f (d)

j ′ (x)|

+|Sn(x, j ∧ j ′)| − τn( j ∧ j ′) + |Sn(x, j ′)| − τn( j
′)
]

+.
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This with sup j ′∈H |E ̂
f (d)

j∧ j ′(x) − E
̂
f (d)

j ′ (x)| ≤ sup{ j ′∈H, j ′≥ j}{Bj∧ j ′(x, f ) +
Bj ′(x, f )} and (1.8) leads to

R̂ j (x) ≤ 2B∗
j (x, f ) + 2ℵn(x). (3.6)

Hence, it follows from (3.4)–(3.6) that

∣
∣
∣
̂
f (d)
j0

(x) − f (d)(x)
∣
∣
∣ ≤

∣
∣
∣
̂
f (d)
j0∧ j (x) − ̂

f (d)
j0

(x)
∣
∣
∣+

∣
∣
∣
̂
f (d)
j0∧ j (x) − ̂

f (d)
j (x)

∣
∣
∣+

∣
∣
∣
̂
f (d)
j (x) − f (d)(x)

∣
∣
∣

≤ 5B∗
j (x, f ) + 5ℵn(x) + 5τn( j)

holds for each j ∈ H. Furthermore,

∣
∣
∣
̂
f (d)
n (x) − f (d)(x)

∣
∣
∣ =

∣
∣
∣
̂
f (d)
j0

(x) − f (d)(x)
∣
∣
∣ ≤ inf

j∈H

{
5B∗

j (x, f ) + 5τn( j)
}

+ 5ℵn(x)

thanks to
̂
f (d)
n (x) = ̂

f (d)
j0

(x) in (1.6). Hence, Theorem 1.2 is proved. ��

Proof of Theorem 1.3 . Take j1 satisfying 2 j1 ∼ ( n
ln n )

1
2s+2d+1 . Then j1 ∈ H for large n

and s > 0. Moreover, Theorem 1.2 yields that

E
∣
∣
∣
̂
f (d)
n (x) − f (d)(x)

∣
∣
∣
p

� [B∗
j1(x, f )]p + [τn( j1)]p + E[ℵn(x)]p (3.7)

holds for any x ∈ �x0 .

By (1.5) and the given choice 2 j1 ∼ ( n
ln n )

1
2s+2d+1 , one finds easily

[τn( j1)]p + E[ℵn(x)]p �
( ln n

n

) sp
2s+2d+1

(3.8)

due to Proposition 2.1. On the other hand, (1.7)–(1.8) and Lemma 1.1 lead to

[B∗
j1

(x, f )]p :=
[

sup
j ′∈H, j ′≥ j1

B j ′(x, f )

]p

=
[

sup
j ′∈H, j ′≥ j1

|Pj ′ f
(d)(x) − f (d)(x)|

]p

� 2− j1sp

holds for any x ∈ �x0 and f ∈ Hs+d(�x0 , M). This with the choice 2 j1 ∼

( n
ln n )

1
2s+2d+1 implies that

sup
x∈�x0

sup
f ∈Hs+d (�x0 ,M)

[B∗
j1(x, f )]p � 2− j1sp �

( ln n

n

) sp
2s+2d+1

. (3.9)

Finally, the desired conclusion can be concluded from (3.7)–(3.9). The proof is
finished. ��
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Proof of Theorem 1.4 . Recall that�m = {x ∈ [−T , T ], 2mδn < M(x, f ) ≤ 2m+1δn}
due to (2.10). Define�−

0 := {x ∈ [−T , T ], M(x, f ) ≤ δn}with δn = (C ln n
n )

s
2s+2d+1 .

Then for each p ∈ [1,∞),

E‖̂f (d)
n I[−T ,T ] − f (d)‖p

p = E
∫ T

−T

∣
∣
∣
̂
f (d)
n (x) − f (d)(x)

∣
∣
∣
p
dx

�
∫ T

−T
[M(x, f )]pdx +

∫ T

−T
E[ℵn(x)]pdx

�
∫

�−
0

[M(x, f )]pdx +
m2∑

m=0

∫

�m

[M(x, f )]pdx +
( ln n

n

) p
2

�
m2∑

m=0

Qm + δ
p
n (3.10)

thanks to supp f ⊂ [−T , T ], Theorem 1.2, (2.9) and Proposition 2.1.
To complete the proof, one divides (3.10) into three regions. Recall that 2m2 ∼ δ−1

n

and δn ∼ ( ln nn )
s

2s+2d+1 by (2.10)–(2.11). By Proposition 2.2, the following estimations
are established.

(i). For 1 ≤ p < 2sr
2d+1 + r ,

m2∑

m=0

Qm + δ
p
n � δ

p
n �

( ln n

n

) sp
2s+2d+1

. (3.11)

(ii). For p ≥ 2sr
2d+1 + r ,

m2∑

m=0

Qm + δ
p
n � 2m2(p−r− 2sr

2d+1 )δ
p
n + δ

p
n �

( ln n

n

) sr
2d+1

. (3.12)

(iii). For the case p ≥ 2sr
2d+1 + r and s > 1

r , take m1 ∈ Z satisfying

2m1 ∼ δ

s′ p( 1s − 1
s′ )

( 2s′
2d+1+1)p− 2sr

2d+1−r

n . (3.13)

Clearly, 0 < m1 < m2 due to r < p, p ≥ 2sr
2d+1 + r and s > 1

r . Therefore,

m2∑

m=0

Qm + δ
p
n ≤

m1∑

m=0

Qm +
m2∑

m=m1

Qm + δ
p
n

� 2m1(p−r− 2sr
2d+1 )δ

p
n + 2− 2m1s

′ p
2d+1 δ

s′
s p
n + δ

p
n .
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This with (3.13), δn ∼ ( ln nn )
s

2s+2d+1 and s′ = s − 1
r + 1

p tells that

m2∑

m=0

Qm + δ
p
n �

( ln n

n

) s′ p
2(s− 1

r )+2d+1 .

Finally, the desired conclusion follows from (3.10)–(3.12), which completes the proof.
��
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