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Abstract

In this paper, we investigate the existence of traveling wave solution for temporally
discrete Lotka Volterra competitive system with delays. By using the cross iteration
method and Schauder’s fixed point theorem, we reduce the existence of traveling wave
solutions to the existence of a pair of upper and lower solutions. The obtained results
makes up and improves the results of the existence of traveling wave solutions for this
systems.
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1 Introduction

Traveling wave solutions have been widely investigated for reaction diffusion sys-
tems, such as Britton [1], Hosono [2], Guo and Liang [3], Huang and Han [4]and the
references cited therein. For time delayed reaction diffusion equations such as [5—
12]and the references cited therein. For discrete reaction diffusion equations [13—15]
and the references cited therein. For delayed lattice differential equations, Wu and Zou
[16]use iterative scheme and the upper-lower solution method to prove the existence of
traveling wave fronts of lattice differential equation. The problems on traveling wave
solutions for other types of spatio-temporal delays see [15, 17-20], and references
therein.
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For some organisms of non-overlapping generations,temporally discrete and spa-
tially continuous diffusion model will be more suitable than its corresponding time
continuous diffusion model to study the dynamic behavior of a single species that
living in a spatially continuous habitat in population ecology. Thus the study of the
time discontinuous model is necessary, Lin and Li [21] used the same approach as
[16] presented a temporally discrete reaction diffusion equation with delay

up(x) —up—1(x) = dAup(x) + fup(x), up—(x)), ne€N,x€R, (n

which can be considered as a temporal discretization of the following differential
equation

2
Wt 9) T L ,ut— ) 120, xeR @)
at ax?

Wang and Zhang [22] by using Schauder’s fixed point theorem for (1) and establish
the existence of traveling wave fronts. For more researches on this topic see [23-27].
In nature, the populations of both species are affected by their respective the effect
of inherent growth rate, at the same time, in time of  and r — 7; (i = 1, 2, 3, 4), as the
population density of both its own and competing species increases, the growth rate of
population density declined for both species.This suggests that the population density
of both competing species is affected separately by their own time 7, — 7; (i = 1, 3),
and competing species density at timez,t — 1; (i = 2,4) is affected. the model is as
follows:
% = Dlazg(T’;’t) +riulx, )1 —aju(x,t) — bju(x,t — 11)
—crv(x, ) —div(x, t — )],
= Dzazg(T’;”) + rv(x, H[1 —axv(x,t) —byv(x,t — 13)
—cu(x,t) —du(x,t —t4)].

3

Ju(x,t)
at

In system (3), if a; = 0,c; = 0,a2 = 0,c2 = 0, the equations was considered by Li
[11], they use a cross iteration scheme and Schauder’s fixed point theorem established
the existence of traveling wave solutions. Xia and Yu [23] apply nonstandard finite
difference schemes and Euler’s method to the models of [11] and obtain the existence
of traveling wave solutions for a class of temporally discrete reaction-diffusion systems
with delays.

Motivated by the above works, we apply nonstandard finite difference schemes and
Euler’s method to the models (3) and can obtain the discrete-time models

up(x) —up—1(x) = D1 Auy(x) + riup (0)[1 — ajuy (x) — bruy ¢ (x)
—c1vp(x) — divp—r, (X)], @)
Vp (X)) = Up—1(x) = D2Av, (%) + 120, (X)[1 — a2, (x) — bovy g5 (x)
— oy (x) — datty—gy (X)],

where u,(x), v,(x) are the densities of populations of two species at time n and
location x respectively, x € R, n € Z. An interesting problem is that whether (3) and
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(4) can have similar dynamical behavior. In this paper,we will consider the existence
of traveling wave solution of (4) by using the cross iteration method and Schauder’s
fixed point theorem,which was used by [9, 10].

The organization of this paper is as follows. In section 2, we introduce abstract
results and obtain the existence of traveling wave solutions for more general equations
with discrete delays under some conditions. Section 3 is invoked to derive the existence
of travelling waves by constructing a pair of upper and lower solutions for temporally
discrete diffusion-competition systems (4).

2 Preliminaries

In this section, we will consider the existence of traveling wave solution for more

general equations, its generalization with delays can be written as
Up(x) —up—1(x) = D1 Auy(x) + f1(un—r,(X), Vy—1,(x)), )
Up(x) — vp—1(x) = D2Av,(x) + f2(un7t3 (x), Un—1y (x)),

where Dy, D, > 0, fi : C([—cr, 0], R?) — R is a continuous function, T =

max {T;}.
15154{ i}

A traveling wave solution of (5) is a special solution with the form u,(x) =
¢ (x + cn), vy (x) = ¥ (x + cn), where ¢, ¥ € C*>(R, R) and ¢ is a positive constant
corresponding to the wave speed. Substituting u, (x) = ¢ (x +cn), v, (x) = ¥ (x+cn)
into (5) and denoting ¢ (t) = ¢ (t + 5),¥(t) = ¥ (¢t + 5) and x + cn by ¢, we obtain
the following system

{ Di1g’ (1) = ¢(0) + ¢t = &) + fildi(—en). Y(—c12)) =0, ©
Doy (1) = (@) + ¥t —c) + fa(pi(—c13), Y (—cTa)) = 0,

here, (¢, ) is called a profile of the traveling wave solution. Motivated by the

background of traveling wave solution, we also require that (¢ (¢), ¥ (¢)) satisfy the
following asymptotic boundary conditions

dim g0 =¢-. lim ¢()=¢s. lim y) =y, lm v =1y

(N

where (¢_, ¥_) and (¢4, Y¥4+) are two equilibria of (5). Without loss of generality,
we may assume that ¢_ = 0, ¥_ = 0 and ¢+ = k; > 0, ¥ = ko > 0. Thus (7)
reads as

lim ¢() =0, lim ¢@&)=k;, lim @) =0, Ilim @) =k. (8)
t——00 t—+00 t——00 t——+00
For convenience of statements, we make the following hypothesis:
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(P1) There exists k = (ky, kp) with k; > 0 such that
fi(0,0) = fitki, ko) =0, fori =1,2.
(P2) There exist two positive constants L; > 0 and L, > 0 such that
|f1(P1, ¥1) — fi(d2, ¥2)| = Li||® — W,

|f2(p1, Y1) — f2(¢2, ¥2)| < Lo|| @ — W],

for ® = (¢1, Y1), ¥ = (¢, ¥2) € C([—c7, 0], R?) withO < @i (s), ¥ (s) < M;, s €
[—cz,0]for M = (M1, M2), M; >kj, T = ]max4{1:,~}.

Denote
Clo.m(R,R?) = {(¢,¥) € C(R,R?) : 0 < ¢(s) < M,0 < ¥(s) < M, s € R}.

For any given positive constants 81 > 0, B2 > 0, define the operator H = (Hy, H») :
Cro.m (R, R?) — C(R, R?) by

Hi(p, ¥) (@) = fi(¢(—ct), Yi(=cm2)) + (B1 — Do) + (1 —0), (9
Hy (¢, ¥)(1) = fa(pi(—c13), Yy (—=c14)) + (B2 — DY () + ¥t — ). (10)

In terms of the expressions of H; and H», system (5) can be rewritten as

{d@”(z) — Bi1o(1) + Hi (¢, ¥)(1) = 0, an

" (1) — B (1) + Halg, ¥) (1) = 0.

For (¢, ¥) € Cio.m (R, R?), define F = (Fy, F») : Cjo.m (R, R?) — C(R, R?)
by

1 1
Fi@. )0 = gl [ MUV H (@, ) (s)ds

+/ " RO Hy () ()ds ),
t

! ! A3 (t—s)
m[f_me Hy (¢, ¥)(s)ds

+ / ) Hy (6, 4 (5)ds ],
t

B1 B1 B2 B2
M=—[—, M= ]—, M3=—_|—, A=_—.
1 a2 a0 5o &

Fy (¢, ¥)(1) =

where
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It is easy to show that FF = (Fj, F) is well defined and for any (¢, ¢¥) €
Cio.m(R, R?), Fi (¢, ) and F>(¢, ) satisfy

{ diFi(§.9) (1) = FLFA (. ¥)(0) + Hi($,9)(1) =0, (12)
h @) (1) = P29 9)(0) + Ha(d. ¥)(1) =0.

Thus, if F(¢, ) = (F1(¢, V), Fa(d, V) = (¢, V), i.e., (¢, V) isafixed point of F,
then (11) has a solution (¢, v). If this solution further satisfies the boundary condition
(8), then it is a traveling wave solution of (5).
In order to obtain a fixed point of F,we propose a condition on the reaction terms:
(P3) There exist two positive constants §; and B, such that

J1(p1(=ct1), Y1(=c2)) = fi(¢a(—ct1), Y1(—c12)) + (B1 — D[¢1(0) —¢2(0)] = 0,

f1(@1(=ct1), Y1(=c12)) — f1(P1(—cT1), Y2(—cT2)) <O,
f2(P1(—c13), Y1(—c14)) — f2(P1(—cT3), Y2(—cT4)) + (B2 — D[¥1(0) —y2(0)] = 0,
f2(@1(=c13), Y1(—ct4)) — fa(Pp2(—c13), Y1(—cT4)) < O,

for any ¢1(s), ¢2(s), ¥i(s), Ya(s) € C([—ct, 0], R) with

(1) 0= ¢a(s) = pi1(s) = M1,0 = Y2(s) = Yi(s) < Ma, s € [—cr, 0],

(i) eP[p1(s) — ¢pa(s)] and P25 [y (s) — ¥(s)] are nondecreasingin s €
[—cT, 0].

In the following, we give the definition of weak upper and lower solutions of system

(5).

Definition1 A pair of continuous functions ®(t) = (¢(t), ¥ (t)) and ®(r) =
(¢ (1), £ (t)) are called a pair of weak upper and lower solutions of (5), respectively,

if there exist constants T; (i = 1,2, --- ,m) such that ® and ® are two continuously
differentiable functions in R\ {7;,i =1, 2, - - - , m} and satisfy

dig (1) — 1)+t — ) + f1(§,(—ct), ¥, (—c2))
<0,t e R\ {T;,i =1,2,---,m},

BT () = F@O) + Pt — ) + @ (—c3). T (—cTa))
<0,t e R\{T;,i =1,2,---,m},

and

di¢" (1) — (1) + Bt — ) + fi(¢,(—cT1), ¥, (—cT2))
>0,t e R\ {T;,i =1,2,---,m},

Ay (1) = Y (O) + Yt — ) + f2(§,(—c13), ¥ (—cTa))
>0, e R\(T;,i=1,2,--- ,m}.
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For i € (0, min{As, A4}), C(R, R?) can be equipped with the exponential decay
norm defined by |®|, = sup |®(r)[e "I, Let

teR
B,(R,R?) = {® € C(R,R?) : |®], < oo}.

Then it is easy to check that (B, (R, R?), | - ) is a Banach space.
In what follows, we assume that there exists a pair of weak upper and lower solutions

(@(1), ¥ (1) and ($(2), ¥ (1)) to (5) satisfying
(A1) (0,0) < (¢(1), ¥ (1) < (P(1), ¥ (1)) < (M, My),
(A2) t_l)ir_noo@(t),mt)) = (0,0), lim (1), ¥ (1) = tl_i)ngo(a(t), V) =
(kl’ kZ)’ —/ —/ —/ —/
A3) ') <) T <T@, ¢ =), Y =),
Define the set of profiles by

I = {(¢.¥) € ComR R : (1) < () < p(1) and Y (1) < Y (1) < Y (1)}

It is easy to see that I' is nonempty. In fact, by (A1), we know that (¢(7), ¥ (1)) and

(@(t), ¥ (1)) satisfy. Moreover, it is obvious that I is convex, closed and bounded in
B, (R, R?).
Now we explore some basic properties of the operator H and F.

Lemma 1 Assume that (P1),(P2) and (P3) hold. Then we have

Hi (o, ¥r1)(t) < Hi(¢1, Y1) (@),
Hi (g1, Y1) () < Hi(g1, ¥2) (1),
Hy(¢2, ¥2)(t) < Ha(1, Y)(1),

and

Fi(¢2, yr1)(t) < Fi(é1, ¥1)(1),
Fi(¢1, Y1) (@) < Fi(¢1, ¥2)(@),
Fy(¢2, ¥2)(1) < Fa(1, v)(@),

for any ¢;, i € C([—ct,0l,R), i = 1,2, with0 < ¢p(s) < ¢1(s) < My, 0 <
Ya(s) = ¥(s) < Mo.

Next, we further explore the profile of the operator F'.

Lemma 2 Assume (P1),(P2) holds, then F = (F, F3) is continuous with respect to
the norm | - |, in B, (R, R2).

In order to apply Schauder’s fixed point theorem, we must prove
Lemma 3 If(P3) hold, then F(I') C T.

Lemma4 If (P3) hold, then the operator F : I' — T is compact with respect to the
delay norm | - | .

@ Springer



Traveling Wave Solutions in Temporally... Page70f15 168

Since the proofs of lemmal—4 are similar to [11, 20, 23], so we omit it here.
Now, we are in the position to state and prove the following existence theorem.

Thegem 5 Auppose that (P1),(P2) and (P3) hold. If (5) has a pair of weak upper
(¢, ¥) and weak lower solutions (¢, V) satisfying (A1)-(A3), then system (5) has a
traveling wave solution.

Proof Itis easy to verify that I' is a nonempty, closed and convex subset of B, (R, R?),
combining lemma 1-4 with schauder’s fixed theorem, we know that there exists a
fixed point (¢*(¢), ¥*(z)) of F in I". In order to show this fixed point is traveling wave
solution, we need to verify the boundary condition (8).

By (A2) and the fact that 0 < (¢(t), ¥ (1)) < (¢*(1), ¥*(1)) < (P(1). Y (1)) <
(M1, M3), we know that [_l)imoo(fﬁ*(?), Y*(1) = (0,0), and t_l)iinoo@*(t), Yr(@) =
(k1, k2). Therefore, the fixed points (¢*(t), ¥ *(¢)) satisfies the boundary conditions.
This completes the proof. O

3 Traveling Wave Solutions of (4)

In the section, we shall apply the result of section 2 to temporally discrete for com-
petitive system (4). Let aj + by > ¢ + da, a» + by > c1 + dj, system (4) have
four steady states namely E;(0, 0),E2(0, m), E3(ﬁ,0), E4(ky, ky), where

_ (ap+by)—(c1+d)) _ (a1 +b1)—(co+dp)
ky = (a1+b1)(a2+b2)—(c1+d))(c2+d2) > 0,k = @b @by —(c1+dNcatd) ~ 0.
Assume that ¢ > 0, and substituting

up(x) = p(x +cn) = ¢(), va(x) =Y (x+cn) =y (@), t =x+cn,

into equation (4) then the corresponding wave system is

Di¢" (1) — (1) + ¢t — &) +r19p )1 —a1p(1) — b1 (t — c11)
— gllﬂ(l) —diy(t —cr)] =0,

Doy (t) — ¥ () + Y (1 — ¢) + (D1 — axyr(t) — bar(t — cT3)
—¢p(t) —dap(t —ct4)] =0,

13)

where, ¢, ¥ € c¢([—crt, 0], R),r = max{r, 1, 13, 74}. We are interested in solution
of (13) satisfy the following asymptotic boundary condition

lim ¢(t) =0, lim ¢(¢) =k, lim ¥@) =0, lim ¥(#) =k. (14
t—>—00 t—+00 t——00 t—+00

Define f (¢, ¥) = (f1(¢, V), f2(¢, ¥)) by
1@, ¥) =r1do(O)[1 —a1¢(0) — b1 (—ct1) — 1Y (0) — d1 Y (—cm2)],

f2(p, ¥) = Y (O)[1 — axy (0) — by (—c13) — 20(0) — d2p(—c14)].

Obviously, fi and f; satisfies (P1) and (P2). Now, let us prove that f (¢, 1) satisfies
P3).
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Lemma 6 When t, t3 are small enough, the function f (¢, V) satisfies (P3).

Proof For any 0 < ¢2(s) < ¢1(s) < M1,0 < Yn(s) < Yi(s) < Mas €
[—ct, O],where M| > ki,M> > k».

J1(d1, ¥1) — fi(g2, Y1)

= [r1 —r1a1(¢1(0) + $2(0)) — ric1¥1(0)1(¢1(0) — ¢2(0))
—dir¥1(=ct)[¢1(0) — $2(0)] — b171[P1(0)d1(—cT1) — $2(0)p2(—cT1)]

> [r1 = 2riai My — riciMy — diry M2](91(0) — ¢2(0))
—birig1(—ct)[¢1(0) — ¢2(0)] — biri[d1(—ct1) — ¢a(—ct1)]

> rill —2a1My — by My — c1 My — diM2](¢1(0) — ¢2(0))
— biri$a(0)e” T e PN [ (—cT1) — da(—cT)]

> ri[l — 2a\ My — by My — ciMa — dy My — by M1eP'“™1($1(0) — ¢2(0)).

If we choose 81 > 0, such that
B — 1 >ri2aiMy +2b1 M + ci Mz + di M — 1],
then, for 71 small enough, we obtain
Bi — 1 > ril2a1 My + b1 M + c1Ma + dy Maby My eP 1™ — 1].

Thus
S1(@1, Y1) — fi(d, Y1) + (B1 — D(#1(0) — ¢2(0)) > 0.
On the other hand,
J1(@1, Y1) — f1(¢1, ¥2) < 0.

In a similar way, there exists 8o > 0 such that (¢, ¥1) — fo(¢1, ¥2) + (B2 —
D (#1(0) — ¥2(0)) = 0and f2(p1, Y1) — f2(¢2, Y1) < 0. The proof is completed. O

we need to construct a weak upper and a weak lower solution of (13)satisfying the
conditions in Theorem 2.1.
Define
Aic() = Did? e — 1,

Asc() = D2d? + e 4y — 1,
then it easy obtain the following lemma

Lemma7 LetO <r; < 1,0 < rp < 1. Then there exists ¢* > 0 such that for ¢ > c*,
A1c(V), Aze(R), respectively, has two positive real roots A1, A, A3, Ag with A1 < Ay,
A3 < Agq. Moreover,

>0, fork <Ay >0, fork<A3;
Are(WM) =1 <0, forke (i, r2); and Ar(M) =1 <0, forke (A3, A4);
>0, fork> Ay, >0, fork> 4.
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The proof of the Lemma is easy and we omit it.

From now on, we assume that ¢ > ¢* with ¢* given by lemma 7.
For fixed n € (1, min{2, if ’\;‘ M;M A1+’\3 D, and a large constant ¢ > 0, we
define two functions g; (1) = ! — ge"*!! and g2(t) = ™' — ge™3! then it easily
learn that g1 (¢) and g»(¢) have global maximum m 1, m», respectively, and there exist
f = M(r; I oo 1 < 0and 3 = mln% < 0 with &Mt — ge™l =
M gehih = mz. Therefore, for any given A > 0 there exist &, > 0 and g4 > 0
such that k; — eae ™ = my, k3 — gae™53 = my.

Since a; + by > ¢ +da, ar + by > c1 + dj, there exist &g > 0,67 > 0,653 > 0
such that

(a1 + by)er — (c1 +di)es > o, (a1 + b1)ex — (c1 +dr)ez > &, (15)
(a2 + b2)e3 — (c2 + dr)er > &9, (a2 + br)eg — (2 + d2)e1 > &, (16)

Let g > 0 large enough and A > 0 small enough be given, for the above constants
and suitable constants 7, 74, define the following continuous functions

g M, 1<, T = e, t <,
ki +e1e™™, t>1, ky +eze ™, t >t
(0) = eMt qe“”, t<t, 0o = et qe"“’, t <13,
2Tk —epe™™™, > 1, 2N T Nk —gqe™, 1> 1.

obviously, M| = supd)(t) > k1, M> = sup w(z‘) > kp, and qb(t) ¢(t) 1//(1:) w(t)
satisfy (A1)-(A3), and e

min{z, 4} — cmax{l, 71, 12, 73, T4} > max{zy, 13}.

In the following, we prove that (a(t), W(r)), (Q (1), £ (t)) are a pair of weak upper
and weak lower solutions of (6), respectively.

Lemma8 LetO<ri <1,0<rn <1 and suppose that (15), (16) are satisfied. Then
(@ (1), ¥ (1)) is a weak upper solution of (13).

Proof we first prove o(t)isa weak upper solution. _
() For 1 < 1, ¢(1) = "', §(t =) = 79, ¢t —ct)) = 0¥(1) = 0
Y (t —cr) > 0, we have

Dig (1)~ B+t —c)
+rigO[1 —a1¢@) — b1t —ct) —a1y (1) —diy(t — c2)]

<Dip (1) — () + 6t — ) +r15(0)
=M (DM +e M+ — 1) =0.
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(i) Fort <t < tr+cty, ¢(t) = ki +e1e7, p(t — 1)) = M) Gt —
c) = M=o, V() = ky —eqe™, Yt —ca) = ko — gqe =) note that

ki + g1e M2 = ¢M2 we obtain

DiF (1) = &) +§(t — )

+r1p)[1 — a1 (t) — bip(t — c1) — 1Y (1) — di (1 — c2)]

= Dlalkze_)‘t — (k1 + 816_M) + MU0 4 ri(k; + Ele_M)[l —ay(k; + 816_)‘[)
e R R )

< Digin2e™ — (ki +e1e™) + M2 +ri(ky + ere )1 — ar (ky + e1e™)
—b1e" 27N — ¢y (ky — eae™) — di(ky — ege” M)

= D181)»2€_M — Sle_M + Sle_Mz +rik; + Sle_)‘t)[blkl — alele_“
—b1e Mk + g1e7M2) 4 crege ™ + dysge ™))

=1L,

since 71 small enough, there exist e*(0 < * < —2—), such that 1 —&* < ¢~ *1¢T1,
g by (ky+er)

it follows that (a; + b1)e1 — (c1 + di)es > €9, we have

I1(0) < ri(k1 + e1)[brky —arer — bi(1 — ") (k1 + 1) + c164 + di&4]
=ri(k1 +e1)lc1e4 + digs — are1 — bre1 + bie™ (k1 + &1)]
<0,

therefore, there exist a A} > 0 such that /;(1) < 0 for A € (0, A}).
_ (ii)Forra+c7y <t <h+c, o) =k +ere™M, p(t —cty) = ky +e1eM 0T,
Gt —c) =M Y (t) =ky —eqe™, Yt — cT2) = ky — £4¢ ™), we have

DI (1) =0+t — o)
+r1¢(O[1 —a1p(t) —b1gp(t — cty) — 1Y () —d Y (t — c12)]
= D]elkze_)" — (k1 + sle_)‘t) + MU0 4 ri(k; + sle_“)[l —ay(ky + 8]€_M)
—by (k1 + 1M U) — ¢y (ky — ege ™M) — dy (kg — ege M)
< DyepZe ™ — (kj +e1e M) + M2 4 r (k) + e1e M) [creae M + djege M)
_alele—kt _ blgle—k(t—crl)]

= Dlsl}»ze_)‘t — ele_}‘t + sle_)‘tz +ri(ky + sle_)")[clme_)‘t +djege
f)\(tfcn)]

—A(t—c12)

—alslef)‘t —brere
= D),

since (a1 + b1)er — (c1 + dy)eq > &g, we have Ir(0) = ri(k; + e1)[(c1 +d1)eq —
(a1 + b1)e1] < 0, therefore, there exist a A5 > 0 such that I5(1) < 0 for A € (0, A3).
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(V)Fort > tr+c, dp(t) = ki +e1e M, 9t —c) = ki +e1e ), p(t —c1y) =
ki + gje *t—cm), Y1) =ky—eqe™, Yt —cmy) =k — gqe 7€) e obtain

Dig (1) = $1) + 6t — )
+r1¢O[1 —a1dp(t) — b1t — cty) — 1Y (1) —d1 Y (1 — c12)]

= D]Sl)xze_)‘t — 816_M + Sle_k(l_c) +ry(k; + Sle_}”t)[cle4e_)"l + d184e_)”(t_cr2)
_alsle—)\.f _ b]gle—)u(l—c‘f])]

=B,

it follows that (a; + b1)e; — (c1 + d1)eq > &g, we have I3(0) = ri(k; + &1)[(c1 +

di)es — (a1 + b1)e1] < 0, which implies that there exist ak’g > O such that I3(A) < O
for & € (0, A3).

Taking A* = min{A], A3, A3}, then A € (0, A*), we have

DI (1) — (1) + §(t — ©) + @[ — arp(r)
—b1gp(t —cty) — 1Y (1) — i (t — ct)] < 0.

In a similar way, we can find a A** > O,then A € (0, A**), we have

DYV (1) = () + ¥t =)
+rY (O — a2y (1) — bar (t — c13) — 29 (1) — dagp(t — c1a)] < 0.

The proof is completed. O

Lemma9 Let0 < r; < 1,0 < rp < 1. Suppose that (15),(16) are satisfied. Then
(Q(t), ﬂ(t)) is a weak lower solution of (13).

Proof (i)Fort < 11,¢(t) = "' —ge™", ¢(t—c) = M=) —qe™1 =) ¢(1—c1)) =
MU=CTD) g1 U=cT) (1) = M3 Y (t — c1p) = 3 ¢™) we obtain

D¢’ (1) — ¢(t) + (1 — ¢) +r1¢(D[1 — a19(t) — b1t — cT1)
—c1y () —diy (t — c2)]
- e)‘"(Dl)\% +e M h = 1) — g™ DA + e 4 — 1] — ri (M
_qenklt){al(eknt_qenklt) +bl[ekn(Hrl)_qenkl(twrl)]_i_clekst _,_dleka(tfcrz)}
> —ge™ " Aic(nh1) — e [(ay + b))t + (c1 + dp)e™]

ri(a b ri(c d
= —ge™ " [A1.(nr1) + %e(ml—"kl)f + we(klﬂs—nh)t]

ri(ay + by) n ri(c1 +dp)
q

> —ge™ [A1(nh1) +

1

choose a sufficiently large number ¢ > O such that g > —m(al +bi+c1+dy),
et ri(ai+by)  ri(ci+d)
then —ge"™ ' [Ajc(nhy) + =57 4+ 2521 > 0.
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(ii)Forty <1 < ti4ct1,¢(1) = ki —e2e ™, ¢t —cy) = M) —gemti=cm),
Pt —c) = M=) — ge™ =0 F(t) = M Y (1 — cta) = 3™ note that
M ge™" = k| — gre M1, e)‘m =ky 4+ e3e ™ and 1] + ¢ < 14, we get

Dig (1) — ¢(t) + ¢t — ©)

+r19[1 — a1¢(t) — bip(t — ct1) — c1Y () — di (t — c2)]

= —Digxr’e™ — (ky — e2e ™) + (M7 — g™ U= 4p (k) — g2eM)[1
—ay(ky — g2 My — by (MU—ET) _ gemhili—en)y _ o 231 _ g 3l

> _D182k2671t — (k) — 8267}\(11‘1‘0)) + (e)u](tlfc) _ e)qt.) + (eMt] _ qe")‘"’)
+ritky — e2e D1 —ar(ky — e2¢™) = by (ki — g2 1) — c1e*¥" — dyeh™]

= —Dyegrle M 4 gy HOHO L Ml (pmhE [y _ gy
+ri(ky — e2e ) [areze ™ + brese ™ — (c1 +dy)eze ]

=14(2),

we know that —#1 is large enough if ¢ is large enough by the definition of 7, therefore,
from (ay + b1)ez — (c1 + d1)e3 > &, it is obvious that 14(0) = €M1 (e7*1¢ — 1) 4+
ri(ky — &2)[(ar + b1)ey — (c1 + d1)e3] > O for large enough ¢, thus, there exists a
A} > Osuch that I7(1) > 0 for A € (0, A}).

(i) Fort) +ct1 <t <ti+c,¢(t) =k _gze*kt,g(t —c1y) = ki — ggeM—cT),
Ot —c¢) = M) — g U=0) () = M Y (t — c1y) = 37T note that
M — ge™ =k — gpe M1, MM = ky + e3¢ and 1] + ¢ < 14, we get

Dig (1) — () + §(t —©)
+r1¢(O[1 —a19(t) — b1p(t — cty) — 1Y (1) —di Y (t — c12)]

7D152)\2 —At — (kg — 7M) + (eM(lfc) qeﬁ)vl(t*C)) +r1 (kg — 8267)\;)[1
—ay(ky —626 ) —bl(kl — ege MUTCTy oy M3l gy M3 mecn)]
> —D1£2)»26 — (k- ze—k(t1+c)) + (e 1(t1+ct—c) _ e)»m) + (ekltl _ qen)“m)

+r1(ky — eze‘“)[l —ay(ky — epe MFETET) _ by (k) — gpe~MNFemCT))
_6161314 —d; e}‘3t4]

— _Dlgzxze—kt + 826—)»([1-{—6) + ek]tl (e—)n](C—C‘[]) - 826—)»[1
+r1(ki — e2e M) [(ay + b1)eae M) () 4 dy)eze ]

= 1I5(A),

we know that —#1 is large enough if ¢ is large enough by the definition of 71, therefore,
from (a; + b1)es — (¢1 + dy)e3 > &g, it is obvious that I5(0) = e*171 (eM1cn1—¢) _
1) +ri(ky —e2)[(ar +br1)ea — (c1 +di)es] > 0 for large enough ¢, thus, there exists
a Az > O such that Is(1) > 0 for A € (0, A3).

(iv)Forti +¢ <t <14, 9(t) = ki — e2e™™, ¢t — c11) = ky — gpe™ 10T,
pt —c) = ki — e2e ) Y1) = M, Yt — cmr) = M) in view of
€M = ky + e3¢, we get
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le//(t) — Q1)+ — o) +rgMl —a1p@) —bi1g(t — cty

—c1y (1) —diy(t — c)]

= —Dieyde ™ — (ki — e2¢™M) + (ki — £2¢ 7)) 1 (k) — e2e7 )1
—ay (ki — e2e™M) — by (ky — e2e™ MUY — 1?3 — gy M)

> —Dieorle ™ 4 ere™ — g2 M) 4 p (k) — g6 )
[1 —ai(ky — e2e™™) — by (ky — e2e 7)) — ™" — dye*3]

= —Dlezkze_“ + 826’_}‘1 — Sze_k(t_c) +ri(ky — 826’_)‘[)
[a1e2e ™ + brese ™) — (¢ 4 d))eze ]

= Is(A),

therefore, from (a; + b1)er — (¢1 + di)ez > o, it is obvious that I(0) = ri (k] —
&)[(ay + by)ex — (c1 + dy)e3] > 0, thus, there exists a Ag > 0 such that Ig(1) for
e (0,29).

(v)Forty <t <t4+ c1p, Q(l‘) = k| — epe M, Q(l —ct) =k — 8267)‘1([7”'),
Pt —c) = ki —e2¢ M7 Y (1) = ky + e3¢ M, Y (1 — crp) = €307 in view of
M =y + e3¢, we get

Di§ (1) — () + ¢t — ) + rip[1 — a1(t) — bi(t — c1)
—c1y (1) —diy (1 — c)]
= —Diesdle ™™ — (ki — e2e™™) + (k1 — 267 M7)) + 1y (ky — £2¢7 )1
—ay(ky — e2e™™) — by (ky — e2e™ M)y — ¢y (ky + £3¢7M) — dy 30T
> —Diggrle™ +ere ™ — £3e M) fpi(ky — £e7M)
[1—ai(ky — ere™) — by(ky — e2¢ 2 U7TY — ¢y (ka + e3¢ ) — dj ]
= —D182)\26_M + 826‘_M — 826_)”(,_6) +ri(k; — SZe_M)
[611826‘_)” + bleze_)‘(t_crl) — C]S3e_m — d183e_)‘t4]
= I (%),

therefore, from (a; + b1)ey — (c1 + dy)e3 > &, it is obvious that I7(0) = ri(k; —
&)[(ar + b1)ey — (c1 + dy)ez] > 0, thus, there exists a A;‘ > 0 such that I7()) for
A e (0,1).

(vi) For t > 14 + c1a, ¢(t) = ki — ere™, ¢p(t — c11) = ki — gre 2T,
Pt —c) = ki —e2e™ 7D Y (1) = ka + e3¢ M, Y (1 — c12) = ko + £3¢7 M),
we get

D¢’ (1) — ¢(t) + (1 — ¢) +r1¢(D[1 — a19(t) — b1t — cT1)
—c1Y () —d\ Y (t — c1)]
= —Diexdle ™ + ere™™ — 26 M) 4 p (k) — g2 M)

—A(t—cT)) —)»(t—cfz))]

[a182€_M + biere — C1836_M —dieze

= Ig(A),
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therefore, from (a; + b1)er — (¢1 + di)ez > o, it is obvious that Ig(0) = ri (k] —
&)[(ay + by)ex — (c1 + dy)e3] > 0, thus, there exists a )&g > 0 such that Ig(1) for
e (0,19).

Taking A*** = min{A}, A%, A¢, A7, Ag), then A € (0, A***), we have

D1¢" (1) —p(1)+(t—c)+r1(D)[1—a19()—b1p(t—ct)—c1¥ (1) —d1 ¥ (t—c12)] = 0.

Similarly, the rest inequalities are satisfied.The proof is completed. O
Therefore, by Theorem 2.1, we can get the following result.

Theorem 10 Let 0 < r; < 1,0 < rp < 1, 11, 13 are small enough and suppose that
(15), (16) are satisfied. Then (13) has a traveling wave solution (¢ (x +cn), ¥ (x+cn))
with wave speed ¢ which connects (0, 0) and (k1, k2).
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