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Abstract
In this paper, we show the equality of the (local) v-number and Castelnuovo-Mumford
regularity of certain classes of Gorenstein algebras, including the class of Gorenstein
monomial algebras. Also, for the same classes of algebras with the assumption of
level, we show that the (local) v-number serves as an upper bound for the regularity.
As an application,we get the equality between the v-number and regularity for Stanley-
Reisner rings ofmatroid complexes. Furthermore, this paper investigates the v-number
of Frobenius powers of graded ideals in prime characteristic setup. In this direction,
we demonstrate that the v-numbers of Frobenius powers of graded ideals have an
asymptotically linear behaviour. In the case of unmixed monomial ideals, we provide
a method for computing the v-number without prior knowledge of the associated
primes.

Keywords v-number · Castelnuovo-Mumford regularity · Gorenstein algebra · level
algebra · Frobenius power

Mathematics Subject Classification Primary 13H10 · 13A35 · 13F20 · Secondary
05E40

1 Introduction

Let I be an ideal in a Noetherian ring S. Then I can be written as a finite irredundant
intersection of primary ideals, which is known as the primary decomposition of I .
Primary decomposition is an effective tool for investigating the algebra S/I . The
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associated primes of I , denoted by Ass(I ), are the radicals of the primary ideals
appearing in the primary decomposition of I . It is a well-known fact that associated
primes of I are precisely the prime ideals of the form I : f for some f ∈ S. Let
S = K [x1, . . . , xn] = ⊕∞

d=0 Sd denote the polynomial ring in n variables over a
field K with standard grading. Then, for a graded ideal I � S, the associated primes
of I are precisely the prime ideals of the form I : f for some f ∈ Sd and this defines
the notion of v-number.

Definition 1.1 Let I be a proper graded ideal of S. Then the v-number of I , denoted
by v(I ), is defined as follows

v(I ) := min{d ≥ 0 | ∃ f ∈ Sd and p ∈ Ass(I ) with I : f = p}.

For each p ∈ Ass(I ), we can locally define the v-number as

vp(I ) := min{d ≥ 0 | ∃ f ∈ Rd satisfying I : f = p}.

Then v(I ) = min{vp(I ) | p ∈ Ass(I )}. Note that v(I ) = 0 if and only if I is prime.

Themotivation behind studying the v-number has its foundation in coding theory. In
2020, Cooper et al. introduced the invariant v-number [8] to investigate the asymptotic
behaviour of the minimum distance function of Reed-Muller-type codes. Let X be a
finite set of projective points, and I (X) denote its vanishing ideal. Then it has been
proved in [8] that δI (X)(d) = 1 if and only if v(I (X)) ≤ d, where δI (X) denotes the
minimum distance function of the projective Reed-Muller-type codes associated to
X. In [23], the authors mentioned a geometrical point of view of local v-numbers.
Specifically, the local v-number expands upon the concept of the degree of a point
within a finite collection of projective points as presented in [16].

Researchers investigate the v-number from several perspectives, such as:

• v-number of monomial ideals (including edge ideals) in [4, 7, 19, 22, 29, 30].
• v-number of binomial edge ideals in [1] and [23].
• v-number of powers of graded ideals in [5, 12, 15].
• v-number as a lower bound of Castelnuovo-Mumford regularity (in short regular-
ity) in [1, 3, 8, 22, 29, 30].

Nevertheless, the question of whether the v-number serves as a lower bound for reg-
ularity continues to be a subject of current interest. Indeed, there was a conjecture
in [3, Conjecture 4.2] whether v(I ) ≤ reg S/I for any square-free monomial ideal.
However, in [22], an edge ideal of a graph is provided as a counter-example. Therefore,
the following question emerges as pertinent and intriguing to the researchers:

Question 1.2 Let I � S be a graded ideal. What conditions on I will ensure the
equality v(I ) = regS/I or the inequality v(I ) ≥ regS/I ?

An affirmative answer to the question also entails providing a computational tool for
determining the regularity or establishing an upper bound on the regularity. There is
a limited number of studies in the existing literature in this direction. For example, it
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has been shown that if I is a complete intersection monomial ideal [30, Proposition
3.10], or if S/I is a certain level algebra of dimension at most one [8], then the
equality v(I ) = reg S/I holds. For some results in the opposite direction, see also
[13, Corollaries 2.4, 4.4, 5.7] and [14, Question 5.1]. This paper aims to investigate
the question with potentially broader applicability. Our main results in this regard are
as follows:

Theorem A (Theorem 3.2,3.6) Let I � S be a graded ideal and p ∈ Ass(I ) be an
associated prime of I generated by linear forms. Then the following hold:

(1) If S/I is Gorenstein, then vp(I ) = reg S/I ;
(2) If S/I is level, then vp(I ) ≥ reg S/I .

More specifically, if all the associated primes of I are generated by linear forms (for
example, if I is a monomial ideal), then we can replace the local v-number vp(I ) by
v(I ) in above statements.

We give an example (Example 3.4) of Gorenstein ideal I for which v(I ) < reg S/I ,
but has an associated prime p generated by linear forms, which gives vp(I ) = reg S/I .
Also, as an application of Theorem A(2), we get v(I�) = reg S/I� for any Stanly-
Reisner ideal I� of a matroid complex� (see Corollary 3.8). Furthermore, we present
examples to support the theory stated above. Specifically, we give a level monomial
ideal I for which v(I ) > reg S/I (see Example 3.10), as well as a Cohen-Macaulay
monomial ideal I for which v(I ) < reg S/I (see Example 3.12).

In the second part of this article, we study the asymptotic behaviour of the v-
number of Frobenius power of graded ideals. Over the course of time, researchers have
conducted extensive investigations on several algebraic invariants, including depth,
regularity, projective dimension, Betti numbers, etc., associated with the usual power
and the Frobenius power of a graded ideal. Given the novelty of the v-number notion,
there exists just a single work [15] that investigates the asymptotic properties of the v-
number pertaining to powers of graded ideals. This paper aims to address the existing
research gap by conducting an investigation into the v-number of Frobenius powers.
The following are some significant results of this section.

Theorem B (Theorem 4.7, Proposition 4.6) Let S be a polynomial ring over a field of
prime characteristic p, and in this context, q is always a power of p. Let I � S be a
graded ideal and the q-th Frobenius power of I , defined as I [q] := (aq : a ∈ I ). Then
the following results hold:

(1) v(I [q]) ≥ q v(I ) for all q ≥ 1 and hence
{
v(I [q])

q

}
is a non-decreasing sequence

in q, where q = pe, e ∈ N;

(2) lim
q→∞

v(I [q])
q

exists;

(3) If I is an unmixed monomial ideal, then v(I [q]) = q v(I ) + (q − 1) ht(I ) for all
q ≥ 1.

To prove the above theorem, we introduce a new invariant αq(I ) as follows:

αq(I ) = min

{

d |
[
I [q] : I
I [q]

]

d
�= 0

}

.
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αq(I ) helps us to obtain an upper bound for v(I [q]) (see Proposition 4.5). In Theo-

rem 4.8, we show that limq→∞ αq (I )
q exists. Also, we show that if I is radical, then

limq→∞
αq (I )
q = limq→∞ v(I [q])

q . Due to Theorem 4.8(6) and polarization technique,

we prove for an unmixed monomial ideal I that v(I ) = 	αq (IP )

q 
 − ht(I ) when

q > dim SP , where IP is the polarization of I and SP is the corresponding polyno-
mial ring of IP (see Remark 4.9). Therefore, for an unmixed monomial ideal I , by
investigating αq(I ), we can compute v(I ) without knowing the primary decomposi-
tion.

The paper is structured as follows. Section2 provides an overview of the necessary
prerequisites pertaining to our study. In Sect. 3, we establish the relation between the
v-number and the regularity of a wide range of Gorenstein and level ideals. Section4
delves into an examination of the v-number of Frobenius power of graded ideals.
Finally, in Sect. 5, we pose some questions for potential future investigation.

2 Preliminaries

Amonomial in the polynomial ring S is defined as a polynomial of the form xa11 · · · xann ,
where each ai is a non-negative integer. Amonomial ideal I ⊆ S is defined as an ideal
that is generated by a set of monomials in the ring S. The set of minimal monomial
generators of I is unique, and if it consists of square-free monomials, then we say
I is a square-free monomial ideal. Let G = (V (G), E(G)) be a simple graph with
V (G) = {x1, . . . , xn}. Then the edge ideal of G, denoted by I (G), is a square-free
monomial ideal in S defined as I (G) := ({xi x j | {xi , x j } ∈ E(G)}). A path graph
of length n, denoted by Pn , is such that after a suitable labelling of vertices, we have
V (Pn) = {x1, . . . , xn+1} and E(Pn) = {{xi , xi+1} | 1 ≤ i ≤ n}.

The height (respectively, big height) of an ideal I � S, denoted by ht(I ) (respec-
tively, bight(I )), is the minimum (respectively, maximum) height among all the
associated primes of I . The ideal I is said to be unmixed if ht(I ) = bight(I ). An
ideal I � S is called a complete intersection if I is generated by a regular sequence.
If I is a complete intersection, then the height of I is the cardinality of a minimal
generating set of I . The following observation of the ideal generated by linear forms
is widely known. For the reader’s benefit, we provide a short proof here.

Remark 2.1 Let I � S be a graded ideal minimally generated by linear forms. Then
I is a complete-intersection prime ideal. Moreover, the regularity (defined in the sub-
sequent part) of S/I is zero.

Proof Let l1, . . . , lm are the linear forms that minimally generate the ideal I . Without
loss of generality, we may assume li = xi + ci for all 1 ≤ i ≤ m, where c1, . . . , cm
are linear polynomials involving none of the variables x1, . . . , xm [9, Exercise 10].
Now, let us consider the automorphism φ : S → S defined as

φ(xi ) =
{
xi − ci if 1 ≤ i ≤ m

xi else.
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Rest of the proof follows from the fact that φ(I ) = (x1, . . . , xm). �

Let I � S be a graded ideal and denote R := S/I . Let M = ⊕

i∈Z Mi be a
finitely generated graded S-module. Let α(M) denote the minimum degree of a non-
zero element in M , that is α(M) = min{i | Mi �= 0}. For an integer j , the j-th shift
module M( j) is defined by the grading M( j)i = Mi+ j . The Hilbert series of M
defined by H(M, t) = ∑

i dimK Mi ti is a power series in Z[t, t−1]. If M is positively
graded, then the Hilbert series of M can be written as H(M, t) = h(t)

(1−t)dim M for some
polynomial h(t) ∈ Z[t].

Let I ⊂ S be a graded ideal and let R := S/I admit the following graded minimal
free resolution:

F• : 0 → Fc → · · · → F1 → F0 → R → 0.

Then F0 = S, and since R is graded, for each 1 ≤ i ≤ c, Fi is of the form: Fi =⊕
j S(− j)βi, j for some integers j and βi, j . The number βi, j is called the (i, j)-

th graded Betti number of R. The Castelnuovo-Mumford regularity of R (in short,
regularity of R) is denoted by reg R and defined as follows

reg R := max
{
j − i | βi, j �= 0

}
.

The projective dimension of R, denoted by pd R, is defined as follows

pd R := max
{
i | βi, j �= 0 for some j

} = c.

In the following Discussion 2.2, we assume R to be Cohen-Macaulay.

Discussion 2.2 Since R is Cohen-Macaulay, by the Auslander-Buchsbaum theorem,
we get pd R = ht(I ). The canonical module of R, denoted by ωR , can be defined as
ωR = ExtcS(R, S) [6, Theorem 3.3.7]. More precisely, let G• = HomS(F•, S) be the
following dual complex

G• : 0 → Gc → · · · → G1 → G0 → ωR → 0,

where Gi = HomS(Fc−i , S) for 0 ≤ i ≤ c. Then G• is the minimal free resolution
of ωR [6, Corollary 3.3.9]. Define the a-invariant of R as

a(R) := −min {i | [ωR]i �= 0} .

The ring R is said to beGorenstein (sometimes, we say I is Gorenstein) if its canonical
module is cyclic, i.e. generated by a single element. This is the same as saying that
the rank of G0 is one or, equivalently, Fc = S(−(c + reg R)). The ring R is said to
be a level ring (sometimes, we call I is level) if every element in a minimal set of
generators of the canonical module possesses the same degree. This is equivalent to
the fact that G0 has a basis consisting of same degree elements or equivalently, Fc is
of the form Fc = S(−(c + reg R))βc,c+reg R .
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The first syzygy of the canonical module denoted as Syz1S(ωR), is the kernel of the
map G0 → ωR .

Let I � J � S be two ideals such that I is Gorenstein. Then it is well-known that

I : (I : J ) = J . (2.1)

The following observation of v-number is utilized multiple times in the proofs, and
hence, it is explicitly stated here for clarity.

Remark 2.3 Let I � S be a graded non-prime ideal. Let f ∈ S \ I be a homogeneous
element such that f p ⊆ I for some associated prime p of I . If p is not contained in
any other associated prime of I , then I : f = p, and hence v(I ) ≤ vp(I ) ≤ deg f .

Proof Since f /∈ I , I : f is a proper ideal of S. Let p′ ∈ Ass(I : f ). Then p ⊆ I :
f ⊆ p′. But, Ass(I : f ) ⊆ Ass(I ) and hence, p = p′. Therefore, I : f = p. �


3 The v-number of Gorenstein and level ideals

In this section, we establish a relation between the v-number and Castelnuovo-
Mumford regularity of certain classes (including the class of monomial ideals) of
Gorenstein and level ideals.

The following result fromPeskine and Szpiro serves as the foundation for the notion
of algebraic linkage theory [27, Proposition 2.6]. To accomplish our goals, a slight
modification of the result is necessary, as described in [24, Section 1].

Proposition 3.1 Let I � J � S be two graded ideals of the same projective dimension
c such that the quotient rings S/I and S/J are Gorenstein. Let F• and G• be the
minimal graded free resolutions of S/I and S/J , respectively, and let π• : F• →
G• be a homogeneous map of resolutions which extends the natural surjective map
π : S/I → S/J . Since S/I , S/J are Gorenstein, Fc = S(−(c + rI )) and Gc =
S(−(c + rJ )), where rI and rJ are the regularity of S/I and S/J respectively. So,
the map πc : Fc → Gc is multiplication by a homogeneous element f of S and
deg f = rJ − rI . Then I : J = (I , f ) and I : f = J .

We now employ the notion of linkage in order to establish the main result of this
section.

Theorem 3.2 Let I � S be a graded ideal such that S/I is a Gorenstein algebra. If
p ∈ Ass(I ) is generated by linear forms, then vp(I ) = reg S/I . In particular, if all
the associated primes of I are generated by linear forms, then v(I ) = reg S/I .

Proof If I is itself a prime ideal generated by linear forms, then I is a complete
intersection and reg S/I = 0 by Remark 2.1. In this case, v(I ) = 0 as I is a prime
ideal. Now, let us assume I is not a prime ideal. If p ∈ Ass(I ) is generated by
linear forms, then p is a complete intersection and reg S/ p = 0 (Remark 2.1). Note
that S/I and S/ p have the same projective dimension, which is equal to ht(I ). By
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Proposition 3.1, there exists a homogeneous element f of degree reg S/I such that
I : p = (I , f ), and I : f = p. Hence, vp(I ) = deg f = reg S/I .

Since v(I ) = min{vp(I ) : p ∈ Ass(I )}, the second assertion follows immediately.
�


Remark 3.3 If I is a monomial graded ideal such that S/I is Gorenstein, then v(I ) =
reg S/I . Since the primary decomposition of a monomial ideal is independent of the
field, so is the v-number. Thus, the regularity of Gorenstein monomial algebras is also
independent of the field.

It is worth noting that, despite I being Gorenstein ideal with an associated prime
generated by linear forms, the v-number of I can be strictly less than the regularity
of S/I . For instance, we consider the following example of Gorenstein binomial edge
ideals.

Example 3.4 Let G be a simple graph with V (G) = {1, . . . , n}. Then the binomial
edge ideal of G, denoted by JG , is defined as follows:

JG := ({xi y j − x j yi | {i, j} ∈ E(G) with i < j})

in the polynomial ring R = K [x1, . . . , xn, y1, . . . , yn]. It has been proved in [17,
Theorem A] that the only Gorenstein binomial edge ideals are the binomial edge
ideals of path graphs. Now, consider the path graph P2k of even length 2k. Then,
V (P2k) = {1, . . . , 2k + 1}. From the primary decomposition of binomial edge ideal
given in [20], it follows that JP2k has an associated prime ideal generated by linear
forms and that is p = (x2, y2, x4, y4, . . . , x2k, y2k). Also, by [10, Corollary 2.7], we
have reg R/JP2k = 2k. Thus, by Theorem 3.2, we get vp(JP2k ) = 2k. While, we can
observe using Macaulay2 [18], v(JP6) = 4 < reg R/JP6 .

The Nagata idealization (also known as trivial extension) provides a valuable
method for constructing Gorenstein rings from level rings. Consequently, we employ
this technique to investigate the v-number of level rings. Let R = S/I be a standard
graded level algebra and ωR be the canonical module. Denote the a-invariant of R as
a. Consider the following ring obtained from Nagata idealization with its canonical
module:

R̃ := R � ωR(−a − 1).

The addition andmultiplication structure is given by (r1, z1)+(r2, z2) = (r1+r2, z1+
z2) and (r1, z1) · (r2, z2) = (r1r2, r1z2 + r2z1), for all ri ∈ R, zi ∈ ωR(−a − 1), i =
1, 2. We state some observations of R̃ here. Readers are encouraged to review Section
3 of [25] in order to enhance their comprehension.

Proposition 3.5 Assume the above setup. The following statements hold:

(1) R̃ is a standard graded Gorenstein algebra.
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(2) If ωR is minimally generated by m elements, then

R̃ � S[y1, . . . , ym]
I + L + (y1, . . . , ym)2

,

where L = (
∑

fi yi : f1, ..., fm ∈ Syz1S(ωR)).

(3) If the Hilbert series of R is H(R, t) =
∑r

i=0 ai t
i

(1−t)d
, with ar �= 0, then the Hilbert

series of R̃ is H(R̃, t) = a0+∑r
i=1(ai+ar−i )t i+ar tr+1

(1−t)d
, where d = dim R.

(4) reg R̃ = reg R + 1.

Proof (1) : Proved in [28, Theorem 7].
(2): Shown as a part of the [25, Lemma 3.3].
(3): First notice that dim R̃ = dim R = d (say) [6, Exercise 3.3.22]. Since

dimK R̃i = dimK Ri + dimK ωR(−a − 1)i , so the Hilbert series H(R̃, t) =
H(R, t) + ta+1H(ωR, t). Also H(ωR, t) = (−1)d H(R, t−1) [6, Corollary 4.4.6].

Thus H(R̃, t) =
∑r

i=0 ai t
i

(1−t)d
+ ta+1+d−r

∑r
i=0 ar−i t i

(1−t)d
. The result follows immediately

from the fact a = r − d.
(4): For a Cohen-Macaulay ring, the regularity is the degree of the polynomial in

the numerator of the Hilbert series. Hence reg R̃ = reg R + 1. �

Theorem 3.6 Let I � S be a graded ideal such that S/I is a level ring. If p ∈ Ass(I )
is generated by linear forms, then vp(I ) ≥ reg S/I . In particular, if all the associated
primes of I are generated by linear forms, then v(I ) ≥ reg S/I .

Proof Denote S/I as R and the canonical module as ωR . Following Proposition 3.5,
R̃ = S[y1,...,ym ]

I+L+(y1,...,ym )2
is a standard graded Gorenstein ring, where ωR is minimally

generated by m elements and L = (
∑

fi yi : f1, . . . , fm ∈ Syz1S(ωR)). Denote
the ideal I + L + (y1, . . . , ym)2 by Ĩ . Let p̃ = p+(y1, . . . , ym). Note that p̃ is an
associated prime of Ĩ generated by linear forms and is not contained in any other
associated prime of Ĩ , because R̃ is Gorenstein by Proposition 3.5(1), and thus Ĩ is
unmixed. Then vp̃( Ĩ ) = reg R̃ by Theorem 3.2. But reg R̃ = reg R + 1.

Now let f ∈ S such that I : f = p and deg f = vp(I ). Then f yi p̃ ⊆ Ĩ for
all 1 ≤ i ≤ m. If f yi /∈ Ĩ for some i , then vp̃( Ĩ ) ≤ deg f yi = vp(I ) + 1 (by
Remark 2.3). Else, if f yi ∈ Ĩ for all 1 ≤ i ≤ m, then f p̃ ⊆ Ĩ . However, it is
important to note that f is not an element of I , and hence it does not belong to Ĩ
either. Hence vp̃( Ĩ ) ≤ deg f = vp(I ). In both cases vp̃( Ĩ ) ≤ vp(I ) + 1. Therefore,
we get vp(I ) ≥ reg R. �


Following results are due to [8, Corollary 4.4, Theorem 4.10]. As the results are
relevant to Theorem 3.6, we state here for the benefit of the readers.

Theorem 3.7 Let I � S be a graded ideal.

(1) Assume S/I is Artinian. Then v(I ) ≤ reg S/I . Furthermore, the equality holds if
and only if S/I is a level algebra.
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(2) Assume dim S/I = 1, I is unmixed and all the associated primes of I are mini-
mally generated by linear forms. Then v(I ) ≤ reg S/I . Furthermore, the equality
holds if S/I is a level algebra.

We recommend the reader to look at [31] for a comprehensive understanding of
concepts such as simplicial complex, Stanley-Reisner ring, shellable simplicial com-
plex, matroid complex, and others. A simplicial complex consists of the independent
sets of a matroid is known as matroid complex. Matroid complexes have been exten-
sively investigated by numerous mathematicians over an extended period of time. If
I � S is a Gorenstein monomial ideal, then by Theorem 3.2, we have v(I ) = reg S/I .
Nevertheless, due to Theorem 3.6, there exists level monomial ideal I (which may
not be Gorenstein) for which v(I ) = reg S/I . Notably, examples of such ideals can
be found in the Stanley-Reisner ideals of matroid complexes, as demonstrated in the
subsequent corollary.

Corollary 3.8 Let � be a matroid complex and I� ⊆ S be its Stanley-Reisner ideal.
Then v(I�) = reg S/I�.

Proof Since � is a matroid complex, � is a pure shellable simplicial complex by [31,
Proposition 3.1]. Therefore, due to [2, Theorem 4.4] and [8, Proposition 4.6], we get
v(I�) ≤ reg S/I�. Again, by [31, Theorem 3.4], S/I� is level. Hence, it follows from
Theorem 3.6 that v(I�) = reg S/I�. �

Remark 3.9 Let I be the class of ideals of S whose associated primes are generated
by linear forms and v(I ) ≤ reg S/I for all I ∈ I. Then for any I ∈ I with S/I
level, we have v(I ) = reg S/I . For example, edge ideals of chordal graphs, bipartite
graphs, whisker graphs belong to the class I due to [30, Theorem 4.5, 4.10, 4.12]
and thus, if G is a graph belong to these classes such that S/I (G) is level, then
v(I (G)) = reg S/I (G).

The following examples show that the v-number can be strictly greater than the
regularity for a level algebra. Indeed, the difference between the v-number and the
regularity of a level algebra can be arbitrarily large.

Example 3.10 Take the graph G from [22, Example 5.4]. Let I be the edge ideal of G.
Then S = K [x1, . . . , x11] and

I =(x1x3, x1x4, x1x7, x1x10, x1x11, x2x4, x2x5, x2x8, x2x10, x2x11, x3x5, x3x6, x3x8,

x3x11, x4x6, x4x9, x4x11, x5x7, x5x9, x5x11, x6x8, x6x9, x7x9, x7x10, x8x10).

The computation conducted using Macaulay2 [18] demonstrates:

(1) When K = Q, then S/I is Cohen-Macaulay, v(I ) = 3 and reg S/I = 2. The
Betti numbers

βc, j =
{
11 if j = c + reg S/I

0 else,
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where c is the projective dimension (here c = 8). That is, the last free module Fc
in the free resolution of S/I , is generated in a single degree. Consequently, S/I
is level.

(2) When K = F2 (finite field of cardinality two), then v(I ) = 3 and reg S/I = 3,
but S/I is not even Cohen-Macaulay.

Example 3.11 Consider the graph H = G1 
 . . . 
 Gk with each Gi isomorphic to
the graph G mentioned in Example 3.10 for all 1 ≤ i ≤ k. Then by [30, Proposition
3.9], v(I (H)) = 3k. Again, we have reg Q[V (H)]

I (H)
= 2k. Since Q[V (G)]

I (G)
is level, so is

Q[V (H)]
I (H)

. Thus, the difference between the v-number and regularity can be arbitrarily
large for level algebras.

Example 3.12 LetG be a simple graph with V (G) = {x1, . . . , xn}, E(G) = {{x1, xi } |
1 < i ≤ n}, and n ≥ 3. Let WG be the whisker graph on G, i.e., V (WG) = V (G) ∪
{y1, . . . , yn} and E(WG) = E(G) ∪ {{xi , yi } | 1 ≤ i ≤ n}. Then we observe that
I (WG) : x1 = (x2, . . . , xn, y1). Hence v(I (WG)) = 1. The ring K [V (WG )]

I (WG )
is not level

and reg K [V (WG )]
I (WG )

= n − 1 (see [26, Proposition 2.10]). Also, it is well-known that
whisker graphs are Cohen-Macaulay. Thus, the regularity can be arbitrarily larger than
the v-number for Cohen-Macaulay edge ideals.

4 The v-number of Frobenius powers

In this section, let S = K [x1, . . . , xn] be a standard graded polynomial ring over a
field K of prime characteristic p, and in this context, q is always a power of p. That
is q = pe for some non-negative integer e. Also, assume that I � S is a graded ideal.
Define the q-th Frobenius power of I as I [q] := (aq : a ∈ I ).

The primary objective of this section is to comprehend the asymptotic behaviour
of v(I [q]). In order to achieve our goal, we introduce an invariant as follows. For each
q > 1, we define

αq(I ) := min

{

d |
[
I [q] : I
I [q]

]

d
�= 0

}

.

Observe thatαq(I ) is same asα((I [q] : I )/I [q]). The subsequent portion of this section
will delve into the asymptotic behaviour of αq(I ) and its connection with v(I [q]).

Before we start, we state some important results related to Frobenius powers.

Lemma 4.1 Assume the above notation and let I , J be two proper ideals of S. Then
for all q ≥ 1, we have

(1) (I ∩ J )[q] = I [q] ∩ J [q] and (I : J )[q] = I [q] : J [q].
(2) [21, Lemma 2.2] Ass(I [q]) = Ass(I ).

One noteworthy observation, proved below, is that αq(I ) is bounded above by a linear
function.

Lemma 4.2 Let I � S be a graded ideal minimally generated by homogeneous ele-
ments g1, g2, . . . , gm. Then for all q > 1, αq(I ) ≤ (q − 1)

∑m
i=1 deg gi .
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Proof Let g = ∏m
i=1 g

q−1
i . Note that we need to show that αq(I ) is bounded above by

deg g. As ggi ∈ gqi S for all 1 ≤ i ≤ m, so gI ⊆ I [q]. If g /∈ I [q], then we are done.
So assume g ∈ I [q].

For each 1 ≤ l ≤ m(q − 1), consider the set of homogeneous elements

χ(l) := {
m∏

i=1

gaii : 0 ≤ ai ≤ q − 1 and
m∑

i=1

ai = l}.

For a fixed l ≥ 2, we claim that,

if χ(l) ⊆ I [q] then χ(l − 1) ⊆ I [q] : I . (4.1)

Assume the claim. Since g ∈ I [q], this mean χ(m(q−1)) ⊆ I [q]. Therefore χ(m(q−
1)−1) ⊆ I [q] : I . If χ(m(q−1)−1) � I [q], then there exists an h ∈ χ(m(q−1)−1)
such that h ∈ (I [q] : I )\I [q] and hence αq(I ) ≤ deg h ≤ deg g. Else χ(m(q − 1) −
1) ⊆ I [q]. We repeat the argument until we get an l ′ ≥ 2, such that χ(l ′ −1) ⊆ I [q] : I
and χ(l ′ − 1) � I [q]. The inductive process must stop and such an l ′ always exists
because χ(1) � I [q]. Hence there exists an h ∈ χ(l ′−1) such that h ∈ (I [q] : I )\ I [q].
Therefore αq(I ) ≤ deg h ≤ deg g = (q − 1)

∑m
i=1 deg gi .

It remains to prove the claim 4.1. Assume that for some l ≥ 2, χ(l) ⊆ I [q]. Let
h ∈ χ(l − 1). If gq−1

i is a factor of h, then hgi ∈ gqi S ⊆ I [q]. Else hgi ∈ χ(l) ⊆ I [q].
Therefore hgi ∈ I [q] for all 1 ≤ i ≤ m that is h ∈ I [q] : I . Therefore χ(l − 1) ⊆ I [q].
Hence, the claim follows. �

Lemma 4.3 Let p be a graded prime ideal of S. Then v(p[q]) = αq(p) for all q > 1.

Proof Since p is the only associated prime of p[q], v(p[q]) = α
(
p[q]:p
p[q]

)
[8, Proposition

4.2], which is same as αq(p). �

Lemma 4.4 Let I be an ideal of S minimally generated by linear forms. Then for all
q > 1,

v(I [q]) = αq(I ) = (q − 1) ht(I ).

Proof Keep in mind that I is both a complete intersection and a prime ideal. Assume
that I isminimally generated by linear forms l1, . . . , lm . Then I [q] = (lq1 , . . . , lqm). The
sequences l1, . . . , lm and lq1 , . . . , lqm both are regular sequences. Using [6, Corollary
2.3.10], we get I [q] : I = I [q] + (l1 · · · lm)q−1. Thus, by (2.1), we have

I = I [q] : (I [q] : I ) = I [q] : (I [q] + (l1 · · · lm)q−1)

= (I [q] : I [q]) ∩ (I [q] : (l1, . . . , lm)q−1)

= I [q] : (l1, . . . , lm)q−1.

Hence, αq(I ) = deg(l1 · · · lm)q−1 = (q − 1) ht(I ). Now, use Lemma 4.3 to get the
desired result. �
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Now, we are ready to show that the v-number of Frobenius power is bounded above
by a linear function.

Proposition 4.5 Let I � S be a graded ideal and p ∈ Ass(I ). Then for all q > 1,

v(I [q]) ≤ q vp(I ) + (q − 1)
m∑

i=1

deg gi ,

where p is minimally generated by g1, . . . , gm.
In particular, if all the associated primes of I are generated by linear forms, then

v(I [q]) ≤ q v(I ) + (q − 1) bight(I ).

Proof Let f ∈ S be a homogeneous polynomial such that (I : f ) = p and deg f =
vp(I ). Also let h ∈ S be a homogeneous polynomial such that (p[q] : h) = p and
deg h = v(p[q]). Now,

(I [q] : f qh) = (I [q] : f q) : h
= (I : f )[q] : h
= p[q] : h
= p.

Therefore, v(I [q]) ≤ q deg f + deg h ≤ q vp(I ) + (q − 1)
∑m

i=1 deg gi , where the
last inequality follows from Lemma 4.2 and 4.3.

If p ∈ Ass(I ) is generated by linear forms, then by the above argument, we have
v(I [q]) ≤ q vp(I ) + (q − 1) ht(p). Thus, the second assertion follows immediately as
v(I ) = min

{
vp(I ) : p ∈ Ass(I )

}
. �


Proposition 4.6 Let I � S be a monomial ideal. Then for all q > 1,

v(I [q]) ≥ q v(I ) + (q − 1) ht(I ).

The equality holds if we further assume I is unmixed.

Proof Let f ∈ S be a monomial and p ∈ Ass(I [q]) such that I [q] : f = p and deg f =
v(I [q]). Since f p[q] ⊆ f p ⊆ I [q], we have f ∈ (I [q] : p[q]) = (I : p)[q]. Therefore,
there exists a monomial h ∈ (I : p) and a monomial r ∈ S such that f = hqr . Clearly,
h /∈ I as f /∈ I [q]. Note that Ass(I [q] : hq) = Ass((I : h)[q]) = Ass(I : h) ⊆ Ass(I ).
Now, ((I [q] : hq) : r) = p implies p ∈ Ass(I [q] : hq) = Ass(I : h). Since p ⊆ (I : h)

and p ∈ Ass(I : h), we have (I : h) = p. Therefore, v(I ) ≤ deg h.
Again, observe that p = (I [q] : hqr) = (I : h)[q] : r = p[q] : r . Since I is a

monomial ideal, p is a prime ideal generated by linear forms. Hence, by Lemma 4.4,
we get v(p[q]) = (q − 1) ht(p) ≤ deg r . Therefore, v(I [q]) = q deg h + deg r ≥
q v(I ) + (q − 1) ht(I ).

Further, if I is unmixed, so bight(I ) = ht(I ) and hence the final assertion follows
from Proposition 4.5. �
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Theorem 4.7 Let I � S be a graded ideal. Then the following results hold

(1) v(I [q]) ≥ q v(I ) for all q ≥ 1 and hence
{
v(I [q])

q

}
is a non-decreasing sequence

in q, where q = pe, e ∈ N.

(2) lim
q→∞

v(I [q])
q

exists.

(3) If I is unmixed and monomial, then lim
q→∞

v(I [q])
q

= v(I ) + ht(I ).

Proof (1): Let f be a homogeneous polynomial and p ∈ Ass(I [q]) such that (I [q] :
f ) = p and deg f = v(I [q]). Since f p[q] ⊆ f p ⊆ I [q], we have f ∈ (I [q] : p[q]) =
(I : p)[q]. Hence f = ∑s

i=1 h
q
i ri , for some hi ∈ (I : p) and ri ∈ S for all 1 ≤ i ≤ s.

If hi ∈ I for some i , then we can replace f by f − hqi ri . Thus, without loss of
generality, we can choose f such that f = ∑s

i=1 h
q
i ri , and hi ∈ (I : p)\I , ri ∈ S for

all 1 ≤ i ≤ s. Using the observation that f ∈ (hq1r1, . . . , h
q
s rs), we have

s⋂

i=1

(I [q] : hqi ri ) = (I [q] : (hq1r1, . . . , h
q
s rs)) ⊆ (I [q] : f ) = p .

Thus, (I [q] : hqi ri ) ⊆ p for some i ∈ {1, . . . , s}. Now, observe that (I : hi )[q] =
(I [q] : hqi ) ⊆ (I [q] : hqi ri ) ⊆ p, which implies (I : hi ) ⊆ p. Since hi ∈ (I : p)\I , we
have (I : hi ) = p. Therefore, v(I ) ≤ deg hi and hence v(I [q]) = deg f ≥ q deg hi ≥
q v(I ).

Note that I [pq] = (I [q])[p]. Therefore

v(I [pq])
pq

≥ p v(I [q])
pq

= v(I [q])
q

.

Hence, v(I [q])
q is a non-decreasing sequence.

(2): By (1), we get that v(I [q])
q is a non-decreasing sequence of real numbers. Also,

from Proposition 4.5, it follows that the sequence v(I [q])
q is bounded above by vp(I )+

∑m
i=1 deg gi for some associated prime p = (g1, . . . , gm). Hence, lim

q→∞
v(I [q])

q
exists.

(3): If I is unmixed monomial ideal, then by Proposition 4.6, v(I [q]) = q v(I ) +
(q − 1) ht(I ). The outcome is obtained by dividing the above expression by q and
taking the limit. �

Theorem 4.8 Let I � S be a graded ideal. Then, the following hold

(1) αq(I ) ≤ v(I [q]) for each q > 1.

(2)
{

αq (I )
q

}
is a non-decreasing sequence in q, where q = pe, e ∈ N.

(3) lim
q→∞

αq(I )

q
exists.
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(4) If I is a radical ideal, then there exists an associated prime p ∈ Ass(I ), such that
αq(I ) ≥ v(I [q]) − vp(I ) for each q > 1.

(5) If I is a radical ideal, then lim
q→∞

αq(I )

q
= lim

q→∞
v(I [q])

q
.

(6) If I is an unmixed square-free monomial ideal, then for any q > dim S, we get

	αq (I )
q 
 = v(I ) + ht(I ), where 	z
 denotes the least integer greater than or equal

to z, known as the ceiling function.

Proof (1): Let f be a homogeneous polynomial and p ∈ Ass(I [q]) such that I [q] :
f = p and v(I [q]) = deg f . Since Ass(I [q]) = Ass(I ), we have f I ⊆ f p ⊆ I [q],
which gives f ∈ (I [q] : I )\I [q]. Hence, αq(I ) ≤ v(I [q]).

(2): It is sufficient to show αpq(I ) ≥ pαq(I ). Let f ∈ (I [pq] : I )\I [pq] be a

homogeneous element of degreeαpq (I ). Since I [pq] : I ⊆ I [pq] : I [p] = (
I [q] : I )[p]

,
f = ∑s

i=1 h
p
i ri for some hi ∈ I [q] : I and ri ∈ S, 1 ≤ i ≤ s. If hi ∈ I [q] for

all 1 ≤ i ≤ s, then f ∈ I [pq] which is not true. Hence there exists an i , such that
hi ∈ (I [q] : I )\I [q]. So αq(I ) ≤ deg hi . Thus, αpq(I ) = deg f = p deg hi +deg ri ≥
pαq(I ). Hence, the proof follows.

(3): By Lemma 4.2, αq (I )
q is bounded above by

∑m
i=1 deg gi , where I =

(g1, . . . , gm). Since αq (I )
q is a non-decreasing sequence and bounded above, so

lim
q→∞

αq(I )

q
exists.

(4): Let f ∈ (I [q] : I ) \ I [q] be a homogeneous polynomial such that deg( f ) =
αq(I ). Consider a prime ideal p ∈ Ass(I [q] : f ). Note that Ass(I [q] : f ) ⊆
Ass(I [q]) = Ass(I ). Hence, there exists a homogeneous polynomial h ∈ S such
that (I : h) = p and deg(h) = vp(I ). Now, p = I : h ⊆ (I [q] : f ) : h = (I [q] : f h).
Suppose f h ∈ I [q]. Then h ∈ (I [q] : f ) ⊆ p = I : h, consequently h2 ∈ I , which
gives a contradiction as I is radical. Therefore, f h /∈ I [q] and so, I [q] : f h = p
(Remark 2.3). Thus, v(I [q]) ≤ αq(I ) + vp(I ). That is αq(I ) ≥ v(I [q]) − vp(I ).

(5): From (1) and (4), v(I [q])−vp(I ) ≤ αq(I ) ≤ v(I [q]) for some associated prime

p ∈ Ass(I ). Therefore, lim
q→∞

αq(I )

q
= lim

q→∞
v(I [q])

q
.

(6): Since v(I [q])−vp(I ) ≤ αq(I ) ≤ v(I [q]) for someassociated primep ∈ Ass(I ),
by Proposition 4.6, we get

(v(I ) + ht(I )) − vp(I ) + ht(I )

q
≤ αq(I )

q
≤ (v(I ) + ht(I )) − ht(I )

q
.

Since vp(I ) + ht(I ) ≤ dim S [22, Lemma 3.4], so for any q > dim S, 0 <
ht(I )
q ≤

vp(I )+ht(I )
q < 1. Next, apply the ceiling function in order to obtain the desired result.

�

Remark 4.9 Let I be an unmixedmonomial ideal in a polynomial ring S of any charac-
teristic.We denote by IP the polarization of I (see [11] for polarization technique) and
SP denote the corresponding ring of IP . By [11, Proposition 2.3], IP is unmixed and
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ht(IP ) = ht(I ). By [12, Theorem 4.1(d)] or also [30, Corollary 3.5], v(IP ) = v(I ).
Let p be a prime number greater than dim SP . Since the v-numbers of monomial
ideals do not depend on the characteristic, we may assume S is of characteristic p.
Therefore, by Theorem 4.8(6),

v(I ) = v(IP ) = 	αp(I
P )
 − ht(I ). (4.2)

By definition, calculating the v-number of an ideal without knowing its primary
decomposition is challenging. However, when dealing with unmixed monomial ide-
als, Formula (4.2) can determine the v-number without requiring knowledge of the
explicit primary decomposition.

5 Some questions

Let I � S be a graded ideal such that all of its associated primes are generated by
linear forms.

Theorem 3.6 establishes that if S/I is a level algebra, then v(I ) ≥ reg S/I . We
wonder whether the converse of the statement is also true.

Question 5.1 Assume the above setup.Moreover, assume S/I is Cohen-Macaulay and
v(I ) ≥ reg S/I . Then is S/I a level algebra?

The following example suggests that the Cohen-Macaulay assumption in the above
question is necessary. Take S = K [x1, . . . , x4], and I = (x1x2, x2x3, x3x4, x1x4).
Then v(I ) = reg S/I = 1, and S/I is unmixed, but not Cohen-Macaulay.

The example also suggests that we should inquire whether it is possible to reduce
the level hypothesis while still aiming for v(I ) ≥ reg S/I . Let F• be the minimal free
resolution of S/I and c = pd S/I . Due to our computational evidence, we propose
the following question.

Question 5.2 Assume the above setup. Moreover, assume S/I is unmixed, and Fc has
a basis consisting of same-degree elements, i.e. there exists a unique integer j such
that the Betti number βc, j is non-zero. Then is it true that v(I ) ≥ reg S/I ?

The assumptions of Question 5.2 are identical to those of a level algebra, with the
exception that unmixedness is assumed instead of Cohen-Macaulayness. So far, we
have not come up with a counter-example to this question. Now, one can ask whether
we can drop the assumption of unmixedness in Question 5.2. The answer is negative,
which follows from the example given below.

Example 5.3 Let us consider the path graph P4 of length 4 such that V (P4) =
{x1, . . . , x5} and E(P4) = {{xi , xi+1} | 1 ≤ i ≤ 4}. Then, using Macaulay2
[18], one can check that S/I (P4) satisfies the conditions of Question 5.2 except
the condition of being unmixed, where S = Q[x1, . . . , x5]. In this case, we have
v(I (P4)) = 1 < 2 = reg S/I (P4).
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