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Abstract
In this paper, we are interested in the following Kirchhoff type equation

[a +x</%(|W|2 + V(|x|)u2)dx> }(- Au + V(|x|)u> = |ul”"u inR3,
R.

u € H'(RY),
0.1

where a, A > 0, € (0,2) and p € (2x + 2, 6). The potential V (|x|) is radial and
bounded below by a positive number. By introducing the Gersgorin Disc’s theorem,
we prove that for each positive integer k, Eq. (0.1) has a radial nodal solution U ,f‘ with
exactly k nodes. Moreover, the energy of U, kl is strictly increasing in k and for any

Communicated by Shangjiang Guo.

Tao Wang: Supported by National Natural Science Foundation of China (Grant No. 12001188), the
Natural Science Foundation of Hunan Province (Grant No. 2022JJ30235) and Research on Teaching
Reform in Ordinary Undergraduate Universities of Hunan Province (Grant Nos. 202401000915,
202401001472). Hui Guo: Supported by Scientific Research Fund of Hunan Provincial Education
Department (Grant Nos. 22B0484, 22C0601) and Natural Science Foundation of Hunan Province (Grant
No. 2024]115214).

DX Hui Guo
huiguo_math@163.com

Tao Wang
wt_61003@163.com

Jing Lai

15163995093 @163.com

College of Mathematics and Computing Science, Hunan University of Science and Technology,
Xiangtan 411201, Hunan, People’s Republic of China

Department of Mathematics, No.1 Middle School of Linyi Shandong (West Campus), Linyi
276002, Shandong, People’s Republic of China

Department of Mathematics and Finance, Hunan University of Humanities Science and Technology,
Loudi 417000, Hunan, People’s Republic of China

Published online: 03 September 2024 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-024-01762-9&domain=pdf
http://orcid.org/0000-0002-3950-9774

166  Page 2 of 26 T.Wang et al.

sequence {A,} with A, — O™, up to a subsequence, U ,? " converges to U,? in H'(RY),
which is also a radial nodal solution with exactly k nodes to the classical Schrodinger
equation

—alAu+aV(xDu = ul’>u inR>,
u € H'(R?).

Our results can be viewed as an extension of Kirchhoff equation concerning the exis-
tence of nodal solutions with any prescribed numbers of nodes.

Keywords Kirchhoff-type equation - Nodal solutions - Gersgorin Disc’s theorem

Mathematics Subject Classification 35A15 - 35J20 - 35J50

1 Introduction

In this paper, we consider the following Kirchhoff type problem

o
|:a + A</ (\Vul> + V(|x|)u2)dx> }(- Au + V(|x|)u) = [u|”"%u, inR>,
R3
u € H'(RY),
(1.1)
where a,A > 0,a € (0,2),p € (Qa + 2,6) and the potential function V €

C([0, 00), R) is radial and bounded below by a positive number. When « = 1 and
V(x)=b > 0, (1.1) is reduced to the following Kirchhoff problem

[a+x</ (|Vu|2+bu2)dx>:|<—Au+bu>=|u|pzu, nR} (1.2
R3

which has been studied by Li et al. [17] on the existence of positive solutions, see also
[3, 6] for more details about the problem (1.2).

In the last two decades, the existence of positive solutions, multiple solutions and
sign-changing solutions to the following Kirchhoff type problem on an open bounded
domain Q C RY with boundary 32

— [a+b/ |Vu|2i|Au = f(x,u), in%,
Q
u=0, on 9§2,

(1.3)

has been extensively investigated by making use of the variational method. One can
refer to [4, 5, 12-15, 20-22, 25-27, 33, 34] and references therein. For the Kirchhoff
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type problem in the whole space RY, Li and Ye [19] considered

— |:a +be3 |Vu|21|Au + V(xDu = f(x,u), inR3, 04

u e H®Y, u>0,

where f(x,u) = u? 24 with p € (3, 6). Under certain assumptions on the potential
V(x), they proved that (1.4) has a positive ground state solution by using a mono-
tonicity trick and a new version of global compactness lemma. For related problems
like (1.4), we referto [1, 7, 9, 16, 27, 29, 32] and references cited therein.

Recently, the existence of sign-changing solutions to the Kirchhoff type problem
in R¥ has attracted much attention. Deng et al. [8] and Guo et al. [10] obtained the
existence and asymptotic behaviors of nodal solutions with a prescribed number of
nodes for problem (1.4) under some suitable assumptions on the nonlinearity f (x, u).
Corresponding to the classical pure power nonlinearity model f(x,u) = |u|P~u,
their main results in [8, 10] solve the following equation

— |:a + b/ |Vu|2dx}Au +V(xDu = u|”*u inR>
R3 (1.5)

u € H'(R?),
for the case p € (4, 6), see [18, 24, 30, 31] for more related results. However, the

o
presence of nonlocal term A<IR3(|VM|2 + V(|x|)u2)dx> in (1.1) with & € (0, 2)

makes this problem more complicated. Then a natural question arises: can one find
nodal solutions with any prescribed number of nodes for problem (1.1)? In this paper,
we shall answer this question. To the best of our knowledge, this problem still remains
unsolved.

In order to illustrate our results clearly, we need the following notations. Throughout
this paper, we set the radial Sobolev space H,l (R3 = {u e H' R : u(x) = u(jx))}
and let the action space

Hy = {u € H'(R%) : /3(|Vu|2 + V(IxDhud)dx < —l—oo}
R

be endowed with norm |[u| = (ng(Wul2 + V(|x|)u2)dx)1/2 . As usual, the energy
functional I, : Hy — R associated with (1.1) is defined by

a .o A 2042 1/
Lu) = = — - — P, 1.6
(u) 2||u|| +2a+2llull » R3|u| (1.6)
Obviously, I, € C?>(Hy,R) and

(1), ) = allull® + lu 2 — /R .
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Then we define the usual Nehari manifold
N ={u € Hy\{0} : (I, (u), u) =0}, (1.7
and the ground state energy

m = inf I ). (1.8)

By [6, Theorem 1.1], there exists a ground state solution Uy € N of (1.1) such that
m = I, (Up) > 0. (1.9)

Fork e N*and 0 =: rg < r] < -+- < ry < rgq1 := +00, we denote by ry =
(r1,...,ry) and

B}* :={xeR3:0§|x|<r1},

Bt = {xeﬂ@:ri,l <|x|<r,-},i=2,...,k+1.

1

Tk

41 18 the complement of a

Obviously, Blrk is a ball, B;’{ e sz are annulus and B
ball. Then we define the Nehari type set

Ny = {u € Hy : there existsry s.t. u; # 01in Bl.rk, (I)/L(u),u,-) =0,i=1,...,k+ 1},
(1.10)

and the infimum level

= inf L), 111
Ch ulenNk 5 (1) (L.11)

where u; = u in B;* and u; = 0 on 9 B;*.
Our existence result is as follows.

Theorem 1.1 For each k € N*, problem (1.1) admits a radial nodal solution Uy, € Ny
which changes sign exactly k-times and I, (Uy) = ck.

The next result shows that the energy of Uy obtained in Theorem 1.1 increases with
the number of nodes.

Theorem 1.2 Under the hypotheses of Theorem 1.1, the energy of Uy, is strictly increas-
ing in k. Namely,

L,(Uiy1) > Li(Uy) forall k € N*.

Moreover, I) (Ugy1) > (k 4+ 1)1, (Up).
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Since Uy, obtained in Theorem 1.1 depends on A, we denote Uy by U ,i‘ to emphasize
this dependence. The last result shows the asymptotic behavior of U kl as A — 07,

Theorem 1.3 Under the assumptions of Theorem 1.1, for any sequence {A,} with
A — 0T asn — oo, up to a subsequence, U,?" converges to U,? strongly in Hy
as n — 0o, where U,? is a least energy radial nodal solution among all the nodal
solutions having exactly k nodes to the following equation

—alAu+aV(xDu = |ul”2u. (1.12)

This paper is organized as follows. In Sect. 2, we give the variational framework of
problem (1.1) and some preliminary lemmas. Section 3 is devoted to the proof of the
existence of nodal solutions with a prescribed number of nodes. In Sect. 4, we study
the energy comparison and asymptotic behaviors of those nodal solutions of (1.1).

2 Preliminaries

In this section, we give some notations and recall some useful lemmas. For each
k € N*, we define

sz{rkz(rl,...,rk)e(O,oo)k O::r0<r1 < s < Tk < Fg+1 :=OO}.

For a fixed ry € I'y and thereby a family of annulus {Bl.r"}f.‘ill, we define a Hilbert
space

1

H™ = {u € Hy(B™) 1 u(x) = u(lx]), u(x) = 0 for x € ank}

12
endowed with the norm [[u||; = ( Lo (1Vuf? + V(|x|)u2)dx) . Now, let the prod-
uct space be '

T T by
H = H* x - x Hkil’
and we introduce an energy functional £, : 7—(,:" — R defined by

ak+l 5 k+1 a+1 1k+1
N 12 12 - |P
Ep(u1. ... ugs1) = 2§uulni +2a+2<;||u,n,~) p;/B Juil .

2.1)

It is obvious that

k+1
E(ui, ... up1) =1, (Zw) : (2.2)
i=1

@ Springer



166  Page 6 of 26 T.Wang et al.

If (uq, ..., urs+1) s a critical point E;, then each component u; satisfies

k+1 20
[a +A<Z ||u,-||> }(— Auj + V(|x|)ui> = [ui|”*u;  x € B,
~ 23)
u; =0 x ¢ Birk'
Note that

k+1

o
2 2 2
(ES(uy, . upyn), ui) = allug||; +)»||Mi||,-< > ||Mj||j> - /rk |7
]:1 i

For each r; € I'y, we define another Nehari type set

M = {(ul,...,uk+1)€ HE up # 0, (E5 uy, . ugegr) ug) =0, 0 = 1,...,k+1}.
(2.4)

In the following, we shall prove the non-empty of MZ" by introducing two important
lemmas. The first lemma is a corollary of the Gersgorin Disc’s Theorem [28].

Lemma 2.1 [11, Lemma 2.3] For any a;j = aj; > O withi # j and s; > 0 with
i=1,...,m, ifthe matrix B := (b;j)mxm is defined by

NICTE .
-y,

s
b,’j = 1#i !
ajj >0 i#]j,
then (b;j)mxm IS a negative semi-definite symmetric matrix.

Lemma 2.2 [30, Lemma2.3]If f € C*(R™, R) is a strictly concave function and has
a critical point s :== (51, . .., Sn) in R™, thens is the unique critical point of f in R™.

Now we are ready to prove the non-empty of the set MZ".

Lemma 2.3 For each (uy, ..., upr1) € ‘H,:k withu; = 0fori =1,...,k+1,

there exists a unique (k + 1) tuple (t1,...,tx+1) of positive numbers such that
(tiun, ..., grugg1) € M
Proof For fixed (u1,...,urs+1) € 7—(,:" with u; # 0, (fjuy, ..., tx+1ur+1) belongs to

M if and only if

k+1 “

2 2 2 2 2 2 14
at? |uilF + 2w |7 | D7l 13 ] — /B luil? =0 2.5)
j=1

i
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foreachi = 1,...,k + 1. Hence, it suffices to verify that there is a unique (k + 1)
tuple (11, ..., trr1) € (Rog)Ft! satisfying (2.5).
Define a new function g : (R-o)**! — R by

1 1
g(s1, ..., Skv1) = E <slpu1, ...,s]f+1uk+1)

% 2 )\' % ; a+l

r P 2

== leei 17 + ( s, ||ul-||,»> 06

2 & 2@+ 1) (2.6)
k+1

__ZS’/ |ui|P.

i=1

Accordingto (2.6), weseethatg(sy, ..., Sg+1) — —oouniformly as |(sq, ..., Sk+1)| —
00, and g(s1, ..., Sk+1) — O uniformly as |(sq, ..., sk+1)] = O.
Some direct computations show that the partial derivatives of g satisfy

o
2—p 2—p k+1

2
’ a 2 AT ? 2 21
g Cstsvsir) = =5 " Ml =5 7 s g3 |l = — il
p P P JB*

=1

a—1

_ k+1 5
a2 —p) S~
B 1o Sept) = =—==5; * lu; 12+, 7 I7 Zs/’ luas 17

k+1
2x(1 A 2
(B2 -2 S

p
_ k+1 =l fpy
_ _p2 s; P \u; || Zslp ||u1||l Zsjp ||u]||j ,
J#i
26 L k1o ot u
2 2
8l 1 sian) = s, " el (D2 s 7 Ml 2.7)
L p2
=1

Let

a(z_p) 2-2p — k+1 2 a-l
2 2
Aji = i " luill; +S,~ a lluei Il E s/ Nl

Dl+a) 2\ 2
L A S sl
p =1

20 2-2p k+1 5 a—l k+1 2 )
u J
Bii=——s " lu 1?7 Zs,”nmnz > sl lujl

J#i
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k1 . k1, el ,
2 Z T2
= - E S K o 117 E S h 37 Ml

J#t

20 2 5 k15 ) ol 5
2 D . . .
Aij =0 and Bjj = ?si P lui l; E P llug i sj’ lujll; while i # j.

Then the matrix

(ggsj (515 o+ s k1)) bt D x kD) = (A ket D x k1) T (Bij) (k1) s (k1) -
Moreover, it follows from Lemma 2.1 that the matrix (ggf,sj (S1s vy Sk+1)) (k1) x (k1)
is negative definite at each point (sy, ..., Sk+1) € (R-0)t1. Sogisa strictly concave
function in (R-)**!. By Lemma 2.2, we deduce that g has a unique critical point
(51, .+, Skt1) € (Rog)* L. Letting 5; = tl.p, we conclude from (2.5) and (2.7) that

(ES(tur, - tgrugrn), tiwg) = ptl g (i .. 1f ) = 0.
The proof is finished. O

We define ¢ : (R=0)™ — R by ¢(ci.....cxs1) = Ex(ciur, ..., Chyittis1),
where (41, ..., ug+1) € 7-(,?. Then we get the following corollary.

Corollary 2.4 For fixed (ui, ..., ux+1) € HE withu; #0fori =1,....k+1, ¢
has a unique maximum point (tl, v lky1) € (R=0)*tL. Moreover, g—ﬁ(rl, oo,

C,,tl+1,tk+1) >Olfc, < and (t],...,t,',1,ci,t,'+],...,tk+1) <0ifci > 1.

Proof We see that

o(ct, ... chy1) - = Ex(cruy, ..., Cry1tti+1)
gk k+1 +1
_ = e 2
= 2Z||c,m||, e +l)(Zn citi I ) 08
k+1

__Zf lciui|P.

Obviously, ¢ is continuous. From the proof of Lemma 2.3, (#, ..., #%+1) is the
unique critical point of ¢ in (R-0)**!. Due to the fact that p € (2 + 2, 6), we
have ¢(cy, ..., ck+1) = —o0 as |(c1, ..., Ck+1)] = oo and ¢(cy, ..., k1) — O
as |(c1,...,ck+1)] — 0. This implies that ¢ admits a unique maximum point
(t1y ..., tky1) € (R-0)**1. Then we obtain that for each i,
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¢
_(tla"~7ci7"'5tk+l)
dc;
k+1
2 2 2 1
= acilui||} +)»<E 115+ F lluil; ) cillull; — e /rk Juai |7
J# B;

k+1 2—p 2—p o
12— 2 Lo 2, 2P 2 2
=c! [ac,- "||ul~||,-+x<2ci“ Fluglls +c;  Nuillf ) ull;

J#i
-1
—cf /, lui |,
B*

i

L. . 9 . 9
Whlc.h1mpl1esthata—2(t1, ey Ciy e lex1) > 0ife < anda—z(n, cees Ciy ooy Bk 1)
< 0if¢; > 1. m]

We define F = (Fy, ..., Fip1) : H© — REH by
Fi(ui, ... ugs1) i= (0, E3 U1, - ooy k1), Ug) 2.9
fori = 1,...,k+ 1. Then we have the following lemma.
Lemma 2.5 For any (uy,...,Uuix+1) € 7—(,:" with nonzero components such that
Fi(uy,...,up+1) < O foreachi = 1,...,k+ 1, the (k + 1) tuple (t1, ..., tksr1)

of positive numbers obtained in Lemma 2.3 satisfies t; < 1 for each i.

Proof By Lemma 2.3, (tjuy, ..., ty41U4k+1) € Mzk, then foreachi =1,...,k+ 1,

k+1

2 2 2 2
at?|ui |17 + A, ||u,»||,-(Zt | ) —r,"’/r gl (2.10)
B.k
Jj=l1 i
Without loss of generality, we assume that t;, = max{zy, ..., fx4+1}. Then
k+1
2 242 2 2
at? i I3, + a2t “nmolll-o(ZHufH ) =i [l @
io
Since F;(uy, ..., ur+1) < 0, we have
k+1
2 2 2
a||u,~0||,-0+A||ui0||,-0(2||u I ) </B,k Juio 7 (2.12)

i
By combining (2.11) and (2.12), we obtain
i - p—20—-2 P
<t,%°’ a>||ul0||m > (] 1)[3? Jaio P
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If ;, > 1, the left side of this inequality is negative, but the right side is positive, which
leads to a contradiction. Hence, we have t; < 1 for each i. The proof is completed. O

Notice that
ME = {(ul,...,ukﬂ) e H u; #0|F(u1,...,uk+1)20},

where F(u1, ..., ur41)is defined in (2.9). Hereafter, we say that M,rc" is adifferentiable
manifold in H.*, means that the matrix

N = (Nij) b+ 1)x (k1) = <8u,-F]/‘(”la co Uk ui), Lj=1,...k+1

is nonsingular at each point (u1, ..., ug+1) € M.

Lemma 2.6 M;" is a differentiable manifold in 7{,:". Moreover, a minimizer
(U1, ..., uxq1) of Ej on MZ" is a critical point of E), in 7—(,:" with nonzero components.

Proof By some calculations, we have

k+1 o
Nii = 2allu; |1} +2x||ui||%<2 ||u1||12>
=1

k+1

a—1
12 2 2 P
+2)~a||“z||i(lzllul"z> i | p/B il
=1 i

k+1 a—1
Ni,-:zxa||ui||%<2||uz||%) lujl3. for j#i, ij=1... k+1.
=1

Due to the fact that p € (2 + 2w, 6), we obtain

k+1 k+1 o
Nii + ) Nij = 2allu; |} + 2A||ui||?<2 ||u,||§>
J#i I=j
k+1

o
+2m||ul-||,-2( > :nu,-n%) - pfrk i
. B.
J=1

i

:2a||ui||%+(2a+2>(/ |ul-|"—a||u,-||%>—p/ |u; P
Bf" Bl.rk

= —20(a||u,~||i2 + 2+ 2a — p)/rk lu;|? < 0.
Bi

So
k1 k1
Nii < =Y Nij <0= [Nul > Y INijl.
J# J#
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Then the matrix N = (N;;) is diagonally dominant, and thereby it is nonsingular and
det N # 0.
If (u1, ..., uxy1) is a minimizer of Ej | Mk then there is a Lagrangian multiplier
k

(A1, ...y Arg1) € R guch that
MF{ur, o uge) + o M g i) = Ej (g, g1 X2.13)

Applying (u1,0,...,0), (0,u2,...,0),...,(0,...,0,ur41) to the identity (2.13),
we get

Al 0
Nt =
Ak+1 0
Therefore, Ay, ..., Ak41 are all zeros and (uy, ..., ug+1) is a critical point of Ej in
.
Finally, for any (u1, ..., ux+1) € M*, we have

a _1_
allui |} < / wil? < Clulf and 0 <8 := ()72 < luill.  2.14)
B.

i

Then each u; is bounded away from zero. Thus minimizers of E) in MZ" cannot have

any zero components. The proof is completed. O
Lemma 2.7 Forfixedry = (r1, ..., rk+1) € Lk, there exists aminimizer (w1, . .., Wit1)
OfE)L|M"k such that each (—1)"H wj is positive on Bl-rk fori =1,...,k+1. Moreover,

k
(wi, ..., wiy1) satisfies (2.3).
Proof For (ui, ..., uk+1) € M, it holds that

a a k+1 1 1 k+1
E S ey = - - — : 2 — — .| P
A, ) (2 2a+2> l}_lj i 7 + (Z(HZ ) > /B Juil

p i=1 i (2 15)
4 u k+1 ’
> (= — E NP
= (2 2a+2> — il =

where & is defined in (2.14). Then there exists a minimizing sequence
ly .

{@h, . oug D2, C M* such that E; (uf, ..., Uy ) — ﬁlril E; asn — oo.
k
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By combining with (1.9), we know that

m+1>E,uy,... u5)

=( )%nu I7 + (

a a k+1
> (2= E ny2
= (2 2a+2> £ lui I

)lif (2.16)

Hence, {u?}nzl is bounded in Hl.r" foreachi =1,...,k+1.Uptoa subsequence
there exists (u!, ..., u2+1) € H,* such that u;’—\u? in H* and u? — u in L”(B/*)
with p € (2,6). Since (uf, ..., u}, ) C M, we have

0 <& < aliminf [|u? |7 < liminf/r |ult|P.
— — k
n—oo n—oo B,- (217)
_ oyP
= |lu; |I; -

This implies that u? #0foreachi =1,...,k+ 1.

Now we claim that up to a subsequence, u} converges to u strongly in H, .
Notice that u"—\u weakly in H . We may suppose on the contrary that ||u0||,
hnrg 1Oréf lu?ll; for at least one i € {l,...,k + 1}. Since each component of

(u(l), el u2+1) is nonzero, by Lemma 2.3, one can find (t?, R t,9+1) € (R>0)k+]
'such' that (t?u(l), o t,? +1”2 +1) € MZ". However, in this situation, Corollary 2.4
implies that

inf  CE(ui, ... uggr)
(W1settk ) EME
0.0 0 0
< E)L(t] Uy vy tk+luk+l)

_ (@ a — 21002
—(5—2a+2)z<(,»>||uini>

i=1

| 1 ! .
- (2a+2 - ;> Z(t )thmf/ |ul|P
u k+1
< <2 o )Z <(r )2hm1nf | )

=1
k+1

1
- Z 0)”11m1nf/ |ult|P
2a+2 p) i Bk

< l}fﬂlcngk(”l’ ...,uk_H)
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= inf . E}L(uls"'vuk-‘rl)'
(ut,..., Uk+1)€Mkk

This is a contradiction. Thus the claim holds, and going if necessary to a subsequence,
n n 0 0 : Tk
W}, .. up ) — (ul,...,ukH)m‘Hk .
Therefore, (u?, R ug +1) is contained in M,rck and is a minimizer of E | A Obvi-
k
ously,

. 0 0 k+2,,,0
(w1»~--awk+]) = (|I/l1|, —|M2|, R (_1) * |uk+1|)

is also a minimizer of Ey |, x . Hence it is a critical point of E, by Lemma 2.6 and
k

satisfies (2.3). Then by the standard elliptic regularity theory, all w; € C 2(Bl.r ).
Furthermore, since (—1)'Tlw; > 0, by applying the strong maximum principle to
(2.3), it follows immediately (— Ditlw; > 0. The proof is completed. O

3 Existence of Nodal Solutions

In this section, we are devoted to the proof of Theorem 1.1. In view of Lemma 2.7,
we can define a function ¥ : 'y — R by

‘-I-’(I'k) = \Ij(rl, ey I’k+1) = E)\(wll-k’ e wZﬁ_l)
3.1

Il

-
=5

=

Iy Iy
E)(u,...,u ).
r r. +
k k k
(uy",..., ”k+1)€Mk

Then we shall give the following lemma which shows some properties of W (r).

Lemma 3.1 For any positive integer k, letr = (r1, ..., rr) € U'k. Then the following
Statements are true.

() Ifri —ri-1 — O forsomei € {1, ...,k}, then V(ry) — +4o0.
(ii) Ifry — oo, then W (ry) — +o0.
(iii) W is continuous in T'y. Moreover, there exists a minimum point v, € Ty such that
W (r,) = min W(ry).
rrely

Proof (i) Assume that r;, — ri,—1 — 0 for some ip € {1,...,k + 1}. Since
Wit ... we,) € M*, by using the Holder inequality and Sobolev inequality, we
obtain that

)4

6
i 2 Tk | p Tt (6 e -2 T P plk -2
w2 S/Bfk'w'b' < (/B |w,.0|> B 16 < Cluf 2 1B 1E, 3.2)

i )
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where C > 0 is a positive constant. Note that 2o +2 < p < 6. Then ||wl.r(f iy — oo.
We see that

E;\(wf",...,w,:’f‘_l)
k+1 B N k+1 o
_ v 2 _ rk 2 i 2
—;[(5 )nw I (ZH ) I an I3 }
A (3.3)
> (5— )nw“n2
i=1 p
=

N
NSRS

a ry 2
- ;) w2

This combined with (3.2), implies that
V(ry) »> +oo, ifr, —ri_1 — 0.

Thus (i) follows.
(ii) Recall the Strauss inequality [23], for any u € Hr1 (R3), there exists a constant
C > O such that |u(x)| < C%, a.e in R3. Then we obtain

ry 2
o2 P ||wk+1||k+1|wk+1|
Il 12, S/Brk ™| <C/rk el g,

k+1 Bk+1
llw k+1 ”k+l 3.4)
< C— 5w i
Tk
= C’k p”wk+1”k+1'
This yields that r,f -2 <C|lw 1 2 i +1 Therefore, the conclusion follows from (3.3).
(iii) Take a sequence {rk} °, = {0t .. k)}ff:] C Tk converging to ry =
(F1,...,7k) € T It suffices to prove that W(ry) — W(rx). By Lemma 2.7, we
assume that (wi", o wZ’fH) and (wf", e w;:’;]) are minimizers of EA'MZZ and
E;| e respectively. In the sequel, we shall prove that
k
W(ry) > limsup W(ry) and W(ry) < hm 1nf w(ry). 3.5)

n— o0

First, we prove that W (r;) > limsup,_, o, ¥ (r}). Define v 2 [y, '] — R such
that
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) F, Ti — Ti—l _ .
vl.k(r):a?wi"(n_—n(r—ri"_l)+ri_1), for i =1,...,k,
i T Tio

Ly _.n I Ik
Uy (1) = o‘k+lwk+l(¥r)’

where ry = 0,7/, = oo and fiaCh (a{’,ﬂ. .. ,a,’c’H)n is a unique (k+1)-tuple of
positive real number such that (v;", . v,:fH) e M ,:k. Then by the definition of

1

Ly ry
(w, ..., wk+1), we have

r! r! r! r!
Ex(vf, .. vl = Exw, o wl ) = wa).
If n is large enough, we can calculate that foreachi, j = 1,...,k+ 1,

r
k2
flv; "l

1
1 .l‘k

i

rl." rn ri" l‘"
:fn |Vvl."|2,B(N)r2dr+/n V()2 B(N)rdr
Ti-1 Ti1

ri - _,:.71 _
= @"? / IVwik (S = 1)) + 7)) P B(N)rPdr
n r —r

i—1 i i—1
i F—F
i r i —ri—1 _
+@h? f Viw (r;_r’n(r—r{'_l)w,-]) [2B(N)r2dr
T i i—1

._,:.1 rl _ r~n—r-"1 2 r-"—r.nl
= ﬂ(N)(“?)zﬁ/ IV ()] (.l_ll(t —FoD+ ’?1) (”) dr
i Tl i —Ti

d i— ri —Tri—
2
rf = o — P pn
FBWEP? [ vinfoP (_'_'—lo R +r,~"_1> Gl
n Fio— T 7
Ticy i i— i i1

ooz 2y., Tk 2
= (o ) llw; ||ng +o(1),

where B(N) indicates the surface area of the unit sphere in RY . Similarly,

., k+1 ., o k+1 o
T2 T2 o2y Tk 2 N2, Tk 2
lv; ||B,z<2nvj ”Bri) = (@)} ||Bl_rk(2<a,) lw’ ||B;k) +o(1)
j=1 J j=I1

i

and

| i T
[l =@pr [ i+ o,
Bt B

This combined with the fact that (v}, ..., v, ) € M,*, yields
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k+1 o
20, Tk 2 2., Tk 2 20, Tk 2 T
a(@)? w125, + 2@ wi12e, ( D@D IwiIg —(a{')”/fk [wi P = o(1)
B B\ B; B!

i

foreachi = 1,...,k + 1. In addition,
. k+1

o
T2 T (12 Tk (12 _ e\ p _
allw;* I%g + M ”B;k(Z”wj ||B§k) /B wi*|? =0
j=1 : '

i

for each 7, and this gives that lim «' = 1 for all i. Therefore, we get
n—o0

_ . l‘” r . r ' .
W(ry) = limsup E; (v)*, ..., vl ) = limsup Ex (w*, ..., w’ ) = lim sup W(r}).
n—0oo n—oo n—oo

On the other hand, we prove W (ry) < liminf W(r}). Similarly as the former case,
n—oo

define ul.r" : [7i—1,7i] — R such that

r’? r’ r{” —r.n_ _ .
w (1) = t]'w;* (_’—'l(t —Fiz1) +rl."_1>, for i=1,...,k,

ri —Ti-1
n
r; r; r
k __4n k k
I/lk+1(t) = tk+1wk+1 <§t> .

where rj = 0, r,’jﬂ = oo and each (¢, ..., t£+1) is a unique (k+1)-tuple of positive

real number such that (u?‘, . u,:’; DeEM ,fk. Then it also follows that

o
2y T2 2y T2 k+ln2 2 n\p er
a(t!)? w12 g+ 20D w12 [ Do EDNw 120 | =P | g w17 = o(D)
B B\ ;o B B;
and
o
2 T2 — 2 T
allw; " I” w + AMw; " I lw/ 17w | = | o lw 17 =0
1 rk 1 rk J rk rk 1
B; B\ o B; B;

. Qs .. r} . . ..
for each i. Since liminf ||wl." ”2r£ is strictly positive, we conclude that ¢! — 1 as
n— oo

i

n — oo for all i. Thus
r} r} ) )
NPT f Ly i f Ly = im n
W (ry) _hnrgloréfEk(vl ,...,ka) hnrglo%fEk(wl ""’wk+1) hnrgloréf\IJ(rk).

This completes the proof of (iii). Finally, by (i)—(iii), we can conclude that there exists
a minimum point ¥y = (7, ..., 7x) € ['y of W. m|
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According to Lemmas 2.7 and 3.1, there exists (w';k R w,':’;l) satisfying (2.3) and
)y Iy .
Ex(w, ..., wl ) =rzr€1§k\v(rk). (3.6)
k+1

Now we are in position to show that Y i} w;* is a desired nodal solution of (1.1)
which changes sign exactly k times.

Proof of Theorem 1.1 We shall argue it by contradiction. Suppose on the contrary

that Zfﬂl w; ™ is not the solution of (1.1). In other words, suppose that there is
le{l,. k} such that

dw™ (¢ dw™ (1
w_ = lim L&) # lim l+]() = w4
t—7— t t—>74 dt
We define a (k + 1)-tuple of function (Z1, . .., Zx+1) as follows. Given a small positive
number §, set
wit (1), fort € (71,7 — 6),

wik | (4 8) — w* (7 — 8)
26
,+1(t) fort € (7 + 8, Fry1).

YO =1 wikF - 8) +

(t—r;+98), forte(rp—38,r+98),

Then y has a unique zero point 57 in (¥_1, 774+1). Let

Zi(t) = y(@) in (F—1, 81),  Zi+1(t) = y(¢) in (57, F41) and
Zi(6) = wik(e) for (Fiy, 7i), i #1141,

By Lemma 2.3, there exists (aj, ..., ax+1) € (IR{>O)]"H such that (z1, ..., zk+1) ==
(a1Z1, -+, Ak+12k+1) € M]:k withry = (¥, ..., 71-1, 8, Fi+1, - - - , Tk+1)- In addition,
we have
(ar,...,ary1) > (1,...,1) as § >0 3.7
and
LW) = Ex@, ... wit ) < B (&L 28 ) = L(2), (3.8)

where W (1) = Y X wi (1) and Z(r) = Y54 ).
On the other hand, since Z, W > 0, we can check that

1 1 72— w?
;|Z|" > ;|W|" + T'W'H' (3.9)
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Then there holds that

L(Z) — LL,(W)

) o0 1 Z2 — W2
< (/ +/ )(”—’z’2+fV(r)zz——|W|P——|W|1’2>t2dt
0 7148 2 2 p 2
1=
oo o
0 Fi+6

1+48 1
+[ <fz/2 +eyvinz? - —|Z|p)t2dt
=38 2 2 14

r+6 1
—f <9W/2+3V(t)wz——|W|P>t2dt
=38 2 2

a+1
2 2,2
+ 20{—}—2(/ (Z-+V(@)Z)t dt)

a+1
(/ (W? + V(t)Wz)tzdt> .
0

_2a+2

Furthermore, by the definition of W, we have

[ee) o0 a+1
/ (aw’2 + aV(t)W2)t2dt + )\(/ (W2 + V(t)Wz)tzdt>
0 0

o0
= f |W|P%dt. (3.10)
0

o
Set A := ( Joo W2+ V(t)Wz)tzdt) . Then we conclude from (3.9)—(3.10) that

L(Z) — (W)

=4 ®©\ /q a 72 LA A
< 722 v zr - wprr L w2 L 2y iow? ) e2dr
_(/(.) +/Fl+5>(2 "2 © 2| | 2 2 ®

A
T1+8 LA LA
+/ (z’2+ V(t)Z2—f|Z|p+f|W\p+ W’2+—V(t)wz>r2dt
Fos \2 2 2
B
A *® _n 22\ A o n 20, \
+2a+2<f0 (Z"” + V(i ZHt dz) —2a+2</0 (W”? + V() W?)t dt) }
C

(3.11)
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We consider the first part (A). Notice that W satisfies
o o
|:a + x(/ (W? + V(t)Wz)tzdt> }( — W) + V(t)Wt2>
0

=|WIP2We, R <t <A (3.12)
Since W (7;) = 0, by Taylor formula, we have W (7)) = W (7, —8) + W'(¥; —8)8 +0(8)
and W(r; —8) = —8 - w— + 0(8). Moreover, by (3.12) and Taylor formula again, we
have (12W')'(#;) = 0 and

(F — 8)°W'(F — 8) — FEW/(71) = —=8GF W/ (7)) + 0(8).
So

(71— 8)*W' (7 — 8) = FFw_ + 0(5). (3.13)

By multiplying both sides of (3.12) by W, we obtain
=3 =3
/ |\W|Pt2dt = / (a+AA) (=W W + V()W) dt
0 0
) , =6 55
= (a + AA) /0 (—(t=WH'wW +/0 V(t)W-t (3.14)

71— =38 )
+/ <t2W/ +V(z)W2t2) )
0 0

= (a + 1A) (—IZW’W

Thus,

(71 — 8)*W' (7 — )W (7 — &)

=8 WP LA
/ WIP o, _ _(a+3A)
0

18 (a + 1A) (a+)A) G19
a a
+ / ( W'+ V(t)Wz)tzdt.
0 2 2
This combined with (3.13), implies that
/;l_a Y7224 Yvinz? z w24 My Ay owe)ear
0 2 2 2 2 2
=8 WP 1A LA
=(1+0(1))/ e Cygwr - WD A0 AL w2 2
0 2 2 2 2
a—+AA) . - -
=1+ 0(1))(T(r1 —8)2W/ (71 — §)W (7 — 8)
AA
= 4 M 0 )25 4 00). (3.16)

2
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By the same method, we obtain

00 z2 LA LA
/ <‘—’z’2 + gV(t)z2 — WP w4 —V(t)Wz)tzdt
A5 \2 2 2 2 (3.17)
(a + LA)

5 L (w)?8 + 0(8).

Next, we consider the second part (B). Indeed,

r1+68
/ l (;’vu)zz — —|Z|P + —|W|” + = V(z)W2> 2dt = 0(8), (3.18)
=68

and

7145 LA 71+5 AA

/ (Zz/2 + —W’z)tzdt = (1 +o(1) (“ + W’Z) dt

s \2 2 A= 2 (3.19)
a—+ MA -

= (wy + w_)2r128 + 0(8).

Finally, we consider the third part (C). Notice that

a+1 a+1
< / (z? + V(t)Z2)t2dt) ( / (W? + V(t)Wz)tzdt>

200 42 20 +2
wtl (3.20)
= 0(1)</ (W? + V(t)Wz)t2dt) = 0(9).
0
Consequently, we conclude from (3.16)—(3.20) that
LA
.(Z) = L(W) < —%(u@ —w_)%8 + 0(d). (3.21)

By taking § > 0 small enough, we have I, (Z) — I,,(W) < 0, which is a contradiction
with (3.8). This completes the proof. O

4 Energy Comparison and Asymptotic Behaviors

In this section, we are going to prove Theorems 1.2 and 1.3 by establishing subtle
energy estimates.

Proof of Theorem 1.2 By applying Theorem 1.1, we can assume that for any fixed

positive integer k, equation (1.1) has a radial nodal solution Uy with exactly k + 1

nodes 0 < 7| < -+ < igp; < 400, and I (Ugy) = E;\(wr"+1 Zf:zl) =

inf  W(rg4q). Set

Tp1€0k+1
Tiy1 == (F1, 72, ooy Tht1)
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and
Tgtl
w; = XB_FkH Uk+1,
1
where X gt is the characteristic function on Bl.r 1 Obviously, (wf“', el w,:k_:zl
i
satisfies
e+l o i ) i i i
[a + A(Z ”w;kﬂ ”3) ](7 Aw;‘kﬂ + V(lxl)wirkﬂ) — |wirk+1 |p—2w;‘k+l’ x € Birk+1’
= 4.1)
w;‘k+1 =0, x¢ Bil_'k+l‘
Next, let ¥y := (2, ..., Fre1). Clearly, ¥y € I'y. By using Lemma 2.7, there is a
+ Yy y g
o e 1 . . .
minimizer (w;", ..., wk+1) of its corresponding energy Elefk, i.e.
k
Iy I .
Ex(wi*, ..., wk ) = inf . E(uyi, ..., ugs1). 4.2)
(u|,~..,uk+1)EM,{k
Then, by Lemma 2.3, there exists a unique (k + 1)—tuple (¢1, 13, . . ., txo2) of positive
y q p + p
numbers such that
T r T I
(nw", wy™', tk+2wk’j21) e M\
This combined with (4.2), implies that
I r Iy |y T
E)L(wlk, ey wkil) < E)L(l‘lwlk+1 , t3w3k+l ey tk+2wkk++21). 4.3)
By letting s > 0 be small enough, we obtain
F F F
Ex(nw ", nw L paw )
< Ex(w™ swi™ nwit L npwdh). (4.4)
On the other hand, Corollary 2.4 gives that
Trt1 Frt1 Trt1 Frt1
Ej(tyw ", swy, ™ nwy ™t L tk+2wk++2)
< Exw, wi L with) = LUke). 4.5)
Since E;, (w', ..., wi* ;) = inf W(rg), we deduce from Lemma 3.1 that
1 k+1 T
rrel g
F F £ £
L(Up) = Ex(wi*, ..., wl ) < Ex(wi, ..., wk ) (4.6)
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Then, it follows from (4.3)—(4.5) that

L.(Ui) < L.(Ugg1).

Thus I (Uy) is strictly increasing with respect to k. i
Finally, we claim that I, (Ux) > (k + 1)1, (Up). In fact, since (I} (Uy), wf’f) =0,
we have

oo F 1y B2 T 20042 Y
(I)L(wik% wik> = allwiA||i +)\”wik”ia+ - I . |wik|pdx <0.
Bk

i

By Lemma 2.3, there is a unique 8; € (0, 1) such that §; wif" € N, where N is defined
in (1.7). Hence, I, (§;w;*) > I, (Up) and

k+1

_. 1
2Tk —
(k+ D1(Uo) < ;21 (Ix(&w,- ) a2

k+1 a 1 N\ - B
(5 st (e e o)
i 2 20[+2 p Birk
k+1 a 1 1 B
e r" 2 S Tk\p
<§((2 > ”’+(za+z p)/gfk'wl')

k+1 k+1 k+1
— Tk Tk
-4 ()l (7))

(I (Giw™), 5 wfk))

= L(Uk).
The claim hods and we complete the proof. O
Hereafter, we denote Uy by U ,i‘ in order to emphasize the dependence on A. Ana-
logically, set rx; = (ria,...,7,) and U,? = Zf‘:ll wirM € Hy obtained in

Theorem 1.1. In the following, we shall show the asymptotic behaviors of U,? as
A — 0F.

Proof of Theorem 1.3 We divide the whole proof into three steps.

Step 1. We claim that for any sequence {},} with A, — 07 as n — oo, {U"
is bounded in Hy. In fact, for fixed ry € I'y, we take nonzero radial functions ¢; €
C?o(Bfk), i = 1,...,k+ 1. Then for any A € [0, 1], there exists a k + 1 tuple
(b1, ..., bry1) of positive numbers such that

Fi(b1o1, ..., bp+19k+1) <0, for i=1,....k+1.

By Lemmas 2.3 and 2.5, there is a k + 1 tuple (a;(V), ..., ar+1(2)) € (0, i
depending on X such that

@10 Prt1) o= (@1 (Wb1@i, .., agp1 (Wbrg19i) € M.
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Then there is Cp > 0 such that for n large enough,

1
B, (U — Wui,,w,?"), Ul
a a A2 a 1
=(=- Uy - unp
<2 2042 10 +(2 2a+2>/Rs| ¢l

k+1 k+1 k+1
: )—IA,, (Zwl( )) S, (Z@(x)) L3 ()

i=1 4.7

(2— )u @2 + ( 1 _l)/ 71 )|,,)

2" 2aw2) Y 20+2  p) e gilx
S50 i ()] S / " ,,>
(2 2a+2>||bz(ﬂz(x)|| +<20l+2 p) Birk |b,<p,(x)|

IA
=
/—\
(]
S
=

This implies that { U,? "}, is bounded in Hy. So the claim follows.
Step 2. According to Step 1, there exists a subsequence {1, } of {A,} and U ,9 € Hy

such that U,:\nj—\Ulg and (U,?nj)l-—\(Ulg)l- weakly in Hy asn; — +oc. Then U,? isa
weak solution of (1.12). It suffices prove that U,? is a radial nodal solution of (1.12)
with exactly k + 1 nodal domains.

In fact, by the compact embedding Hy — L* (R3) with2 < s < 6, it follows that

Do
v, — v
! )‘".i / 0 )‘”j 0
= (1,\,,j U, ) — LyWU), U, " =Uy)
Mg p2 g 01p=2770 7, 0

A ||Uk”f' |2 VUA'IjV(UA'Ij - U)) + V(|x|)Uknj (UM" —UY
nj k R k k k k k k

— 0, as j — oo.

A
Then U, ' — U strongly in Hy.
Ao A
Next, we prove (U,?),- # 0. Since (I)/Ln.(Uk 1), (U, 7)) = 0, there is a number
6 > 0 such that !

A
liminf ||(U, )il =8 > 0.
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This together with the compact embedding Hy < L*(R3), gives that
2 Aujoo2 Ml p 0\ |p
87 = W Dilli = | WU Dil" = | 1WUil",
R3 R3

which shows that (U ,?)i # 0. Thus, U ,? is aradial nodal solution of (1.12) with exactly
k + 1 nodal domains.

Step 3. We prove that U, ,? is a least energy radial solution of (1.12) among all the
radial solutions changing sign exactly k times.

In fact, according to [2, Theorem 2.1], we assume that there is ry € [y and Vj :=
Zfill v; is a least energy radial solution of (1.12) among all the nodal solutions

changing sign exactly k times, where v; is supported on annuli B[.f k. We assume that

n o .__ )\n )\.n
U = wi" + -+ w .

ByLemma?2.3,foreach A, > 0,thereisaunique (k+1)—tuple (r;(X,), . .., tk+1(Apn))
of positive numbers such that

1)Vt s ek 1 (M) Vkg1) € Mzk.
Then, fori =1, ...,k + 1, we have

k+1

o
a(ti Q) 11vill7 + A (An>)2||v,-||%<Z(t,~<xn)>2||v,-||?> = / GG uil]
. B;
j=1 i
4.8)
Recall that v; satisfies a||v; ||l.2 = fok |vi|f. One can easily check that
),y i1 (A) = (1,..., 1), as n— oo. 4.9)

From (4.8)-(4.9), we have

Io(Ve) < Io(Uf) = lim L, (U") = lim E;, ()", ... wl,
< lim E;, (t1(A)v1 + -+ - + ter1 (An) Vgt1)
n—0oo
= Eo(v1 + -+ + vgg1)
= lo(Vi).

Therefore, U, ,? is a least energy radial solution of (1.12) which changes sign exactly k
times. O
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