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Abstract
In this paper, we are interested in the following Kirchhoff type equation

⎧
⎪⎨

⎪⎩

[

a + λ

(∫

R3
(|∇u|2 + V (|x |)u2)dx

)α](

− �u + V (|x |)u
)

= |u|p−2u in R3,

u ∈ H1(R3),

(0.1)

where a, λ > 0, α ∈ (0, 2) and p ∈ (2α + 2, 6). The potential V (|x |) is radial and
bounded below by a positive number. By introducing the Gersgorin Disc’s theorem,
we prove that for each positive integer k, Eq. (0.1) has a radial nodal solutionUλ

k with
exactly k nodes. Moreover, the energy of Uλ

k is strictly increasing in k and for any
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sequence {λn} with λn → 0+, up to a subsequence, Uλn
k converges to U 0

k in H1(R3),
which is also a radial nodal solution with exactly k nodes to the classical Schrödinger
equation

{ − a�u + aV (|x |)u = |u|p−2u in R3,

u ∈ H1(R3).

Our results can be viewed as an extension of Kirchhoff equation concerning the exis-
tence of nodal solutions with any prescribed numbers of nodes.

Keywords Kirchhoff-type equation · Nodal solutions · Gersgorin Disc’s theorem

Mathematics Subject Classification 35A15 · 35J20 · 35J50

1 Introduction

In this paper, we consider the following Kirchhoff type problem

⎧
⎪⎨

⎪⎩

[

a + λ

(∫

R3
(|∇u|2 + V (|x |)u2)dx

)α](

− �u + V (|x |)u
)

= |u|p−2u, in R3,

u ∈ H1(R3),

(1.1)

where a, λ > 0, α ∈ (0, 2), p ∈ (2α + 2, 6) and the potential function V ∈
C([0,∞),R) is radial and bounded below by a positive number. When α = 1 and
V (x) ≡ b > 0, (1.1) is reduced to the following Kirchhoff problem

[

a + λ

(∫

R3
(|∇u|2 + bu2)dx

)](

− �u + bu

)

= |u|p−2u, in R3, (1.2)

which has been studied by Li et al. [17] on the existence of positive solutions, see also
[3, 6] for more details about the problem (1.2).

In the last two decades, the existence of positive solutions, multiple solutions and
sign-changing solutions to the following Kirchhoff type problem on an open bounded
domain � ⊂ R

N with boundary ∂�

⎧
⎪⎨

⎪⎩

−
[

a + b
∫

�

|∇u|2
]

�u = f (x, u), in �,

u = 0, on ∂�,

(1.3)

has been extensively investigated by making use of the variational method. One can
refer to [4, 5, 12–15, 20–22, 25–27, 33, 34] and references therein. For the Kirchhoff
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type problem in the whole space RN , Li and Ye [19] considered

⎧
⎪⎨

⎪⎩

−
[

a + b
∫

R3
|∇u|2

]

�u + V (|x |)u = f (x, u), in R3,

u ∈ H1(R3), u > 0,

(1.4)

where f (x, u) = u p−2u with p ∈ (3, 6). Under certain assumptions on the potential
V (x), they proved that (1.4) has a positive ground state solution by using a mono-
tonicity trick and a new version of global compactness lemma. For related problems
like (1.4), we refer to [1, 7, 9, 16, 27, 29, 32] and references cited therein.

Recently, the existence of sign-changing solutions to the Kirchhoff type problem
in R

N has attracted much attention. Deng et al. [8] and Guo et al. [10] obtained the
existence and asymptotic behaviors of nodal solutions with a prescribed number of
nodes for problem (1.4) under some suitable assumptions on the nonlinearity f (x, u).
Corresponding to the classical pure power nonlinearity model f (x, u) = |u|p−2u,
their main results in [8, 10] solve the following equation

⎧
⎪⎨

⎪⎩

−
[

a + b
∫

R3
|∇u|2dx

]

�u + V (|x |)u = |u|p−2u in R3

u ∈ H1(R3),

(1.5)

for the case p ∈ (4, 6), see [18, 24, 30, 31] for more related results. However, the

presence of nonlocal term λ

(
∫

R3(|∇u|2 + V (|x |)u2)dx
)α

in (1.1) with α ∈ (0, 2)

makes this problem more complicated. Then a natural question arises: can one find
nodal solutions with any prescribed number of nodes for problem (1.1)? In this paper,
we shall answer this question. To the best of our knowledge, this problem still remains
unsolved.

In order to illustrate our results clearly,we need the following notations. Throughout
this paper, we set the radial Sobolev space H1

r (R3) = {u ∈ H1(R3) : u(x) = u(|x |)}
and let the action space

HV :=
{

u ∈ H1
r (R3) :

∫

R3
(|∇u|2 + V (|x |)u2)dx < +∞

}

be endowed with norm ‖u‖ = (∫

R3(|∇u|2 + V (|x |)u2)dx)1/2 . As usual, the energy
functional Iλ : HV → R associated with (1.1) is defined by

Iλ(u) := a

2
‖u‖2 + λ

2α + 2
‖u‖2α+2 − 1

p

∫

R3
|u|p. (1.6)

Obviously, Iλ ∈ C2(HV ,R) and

〈I ′
λ(u), u〉 = a‖u‖2 + λ‖u‖2α+2 −

∫

R3
|u|p.
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Then we define the usual Nehari manifold

N = {u ∈ HV \{0} : 〈I ′
λ(u), u〉 = 0

}
, (1.7)

and the ground state energy

m := inf
N

Iλ(u). (1.8)

By [6, Theorem 1.1], there exists a ground state solution U0 ∈ N of (1.1) such that

m = Iλ(U0) > 0. (1.9)

For k ∈ N
∗ and 0 =: r0 < r1 < · · · < rk < rk+1 := +∞, we denote by rk =

(r1, . . . , rk) and

Brk
1 :=

{
x ∈ R

3 : 0 ≤ |x | < r1
}

,

Brk
i :=

{
x ∈ R

3 : ri−1 < |x | < ri
}

, i = 2, . . . , k + 1.

Obviously, Brk
1 is a ball, Brk

2 , . . . , Brk
k are annulus and Brk

k+1 is the complement of a
ball. Then we define the Nehari type set

Nk = {u ∈ HV : there exists rk s.t. ui �= 0 in Brk
i , 〈I ′λ(u), ui 〉 = 0, i = 1, . . . , k + 1

}
,

(1.10)

and the infimum level

ck = inf
u∈Nk

Iλ(u), (1.11)

where ui = u in Brk
i and ui = 0 on ∂Brk

i .

Our existence result is as follows.

Theorem 1.1 For each k ∈ N
∗, problem (1.1) admits a radial nodal solution Uk ∈ Nk

which changes sign exactly k-times and Iλ(Uk) = ck .

The next result shows that the energy ofUk obtained in Theorem 1.1 increases with
the number of nodes.

Theorem 1.2 Under the hypotheses of Theorem 1.1, the energy ofUk is strictly increas-
ing in k. Namely,

Iλ(Uk+1) > Iλ(Uk) for all k ∈ N
∗.

Moreover, Iλ(Uk+1) > (k + 1)Iλ(U0).
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SinceUk obtained in Theorem 1.1 depends on λ, we denoteUk byUλ
k to emphasize

this dependence. The last result shows the asymptotic behavior of Uλ
k as λ → 0+.

Theorem 1.3 Under the assumptions of Theorem 1.1, for any sequence {λn} with
λn → 0+ as n → ∞, up to a subsequence, Uλn

k converges to U 0
k strongly in HV

as n → ∞, where U 0
k is a least energy radial nodal solution among all the nodal

solutions having exactly k nodes to the following equation

− a�u + aV (|x |)u = |u|p−2u. (1.12)

This paper is organized as follows. In Sect. 2, we give the variational framework of
problem (1.1) and some preliminary lemmas. Section 3 is devoted to the proof of the
existence of nodal solutions with a prescribed number of nodes. In Sect. 4, we study
the energy comparison and asymptotic behaviors of those nodal solutions of (1.1).

2 Preliminaries

In this section, we give some notations and recall some useful lemmas. For each
k ∈ N

∗, we define

�k =
{
rk = (r1, . . . , rk) ∈ (0,∞)k 0 =: r0 < r1 < · · · < rk < rk+1 := ∞

}
.

For a fixed rk ∈ �k and thereby a family of annulus {Brk
i }k+1

i=1 , we define a Hilbert
space

H rk
i :=

{

u ∈ H1
0 (Brk

i ) : u(x) = u(|x |), u(x) = 0 for x ∈ ∂Brk
i

}

endowed with the norm ‖u‖i =
(∫

B
rk
i

(|∇u|2 + V (|x |)u2)dx
)1/2

. Now, let the prod-

uct space be

Hrk
k = H rk

1 × · · · × H rk
k+1,

and we introduce an energy functional Eλ : Hrk
k → R defined by

Eλ(u1, . . . , uk+1) := a

2

k+1∑

i=1

‖ui‖2i + λ

2α + 2

( k+1∑

i=1

‖ui‖2i
)α+1

− 1

p

k+1∑

i=1

∫

B
rk
i

|ui |p.

(2.1)

It is obvious that

Eλ(u1, . . . , uk+1) = Iλ

(
k+1∑

i=1

ui

)

. (2.2)
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If (u1, . . . , uk+1) is a critical point Eλ, then each component ui satisfies

⎧
⎪⎪⎨

⎪⎪⎩

[

a + λ

( k+1∑

j=1

‖u j‖
)2α](

− �ui + V (|x |)ui
)

= |ui |p−2ui x ∈ Brk
i ,

ui = 0 x /∈ Brk
i .

(2.3)

Note that

〈E ′
λ(u1, . . . , uk+1), ui 〉 = a‖ui‖2i + λ‖ui‖2i

( k+1∑

j=1

‖u j‖2j
)α

−
∫

B
rk
i

|ui |p.

For each rk ∈ �k, we define another Nehari type set

Mrk
k :=

{

(u1, . . . , uk+1) ∈ Hrk
k ui �= 0, 〈E ′

λ(u1, . . . , uk+1), ui 〉 = 0, i = 1, . . . , k + 1

}

.

(2.4)

In the following,we shall prove the non-empty ofMrk
k by introducing two important

lemmas. The first lemma is a corollary of the Gersgorin Disc’s Theorem [28].

Lemma 2.1 [11, Lemma 2.3] For any ai j = a ji > 0 with i �= j and si > 0 with
i = 1, . . . ,m, if the matrix B := (bi j )m×m is defined by

bi j =

⎧
⎪⎨

⎪⎩

−
∑

l �=i

slail
si

i = j,

ai j > 0 i �= j,

then (bi j )m×m is a negative semi-definite symmetric matrix.

Lemma 2.2 [30, Lemma 2.3] If f ∈ C2(Rm,R) is a strictly concave function and has
a critical point s̄ := (s̄1, . . . , s̄m) in Rm, then s̄ is the unique critical point of f in Rm .

Now we are ready to prove the non-empty of the setMrk
k .

Lemma 2.3 For each (u1, . . . , uk+1) ∈ H rk
k with ui �= 0 for i = 1, . . . , k + 1,

there exists a unique (k + 1) tuple (t1, . . . , tk+1) of positive numbers such that
(t1u1, . . . , tk+1uk+1) ∈ Mrk

k .

Proof For fixed (u1, . . . , uk+1) ∈ Hrk
k with ui �= 0, (t1u1, . . . , tk+1uk+1) belongs to

Mrk
k if and only if

at2i ‖ui‖2i + λt2i ‖ui‖2i
⎛

⎝
k+1∑

j=1

t2j ‖u j‖2j
⎞

⎠

α

− t pi

∫

B
rk
i

|ui |p = 0 (2.5)
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for each i = 1, . . . , k + 1. Hence, it suffices to verify that there is a unique (k + 1)
tuple (t1, . . . , tk+1) ∈ (R>0)

k+1 satisfying (2.5).
Define a new function g : (R>0)

k+1 → R by

g(s1, . . . , sk+1) : = E

(

s
1
p
1 u1, . . . , s

1
p
k+1uk+1

)

= a

2

k+1∑

i=1

s
2
p
i ‖ui‖2i + λ

2(α + 1)

( k+1∑

i=1

s
2
p
i ‖ui‖2i

)α+1

− 1

p

k+1∑

i=1

si

∫

B
rk
i

|ui |p.

(2.6)

According to (2.6),we see that g(s1, . . . , sk+1) → −∞uniformly as |(s1, . . . , sk+1)| →
∞, and g(s1, . . . , sk+1) → 0 uniformly as |(s1, . . . , sk+1)| → 0.

Some direct computations show that the partial derivatives of g satisfy

g′
si (s1, . . . , sk+1) = a

p
s
2−p
p

i ‖ui‖2i + λ

p
s
2−p
p

i

⎛

⎝
k+1∑

j=1

s
2
p
j ‖u j‖2j

⎞

⎠

α

‖ui‖2i − 1

p

∫

B
rk
i

|ui |p,

g′′
si si (s1, . . . , sk+1) = a(2 − p)

p
s
2−2p

p
i ‖ui‖2i + s

2−2p
p

i ‖ui‖2i
(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1

[(
2λ(1 + α)

p2
− λ

p

) k+1∑

l=1

s
2
p
l ‖ul‖2l

]

− 2λα

p2
s
2−2p

p
i ‖ui‖2i

(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1⎛

⎝
k+1∑

j �=i

s
2
p
j ‖u j‖2j

⎞

⎠ ,

g′′
si s j (s1, . . . , sk+1) = 2λα

p2
s
2−p
p

i ‖ui‖2i
(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1

s
2−p
p

j ‖u j‖2j . (2.7)

Let

Aii = a(2 − p)

p
s
2−2p

p
i ‖ui‖2i + s

2−2p
p

i ‖ui‖2i
(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1

[(
2λ(1 + α)

p2
− λ

p

) k+1∑

l=1

s
2
p
l ‖ul‖2l

]

,

Bii = −2λα

p2
s
2−2p

p
i ‖ui‖2i

(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1⎛

⎝
k+1∑

j �=i

s
2
p
j ‖u j‖2j

⎞

⎠

123
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= −
k+1∑

j �=i

s j
si

⎛

⎝
2λα

p2
s
2−p
p

i ‖ui‖2i
(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1

s
2−p
p

j ‖u j‖2j
⎞

⎠ ,

Ai j = 0 and Bi j = 2λα

p2
s
2−p
p

i ‖ui‖2i
(
k+1∑

l=1

s
2
p
l ‖ul‖2l

)α−1

s
2−p
p

j ‖u j‖2j while i �= j .

Then the matrix

(g′′
si s j (s1, . . . , sk+1))(k+1)×(k+1) = (Ai j )(k+1)×(k+1) + (Bi j )(k+1)×(k+1).

Moreover, it follows from Lemma 2.1 that the matrix (g′′
si s j (s1, . . . , sk+1))(k+1)×(k+1)

is negative definite at each point (s1, . . . , sk+1) ∈ (R>0)
k+1. So g is a strictly concave

function in (R>0)
k+1. By Lemma 2.2, we deduce that g has a unique critical point

(s̄1, . . . , s̄k+1) ∈ (R>0)
k+1. Letting s̄i = t pi , we conclude from (2.5) and (2.7) that

〈E ′
λ(t1u1, . . . , tk+1uk+1), ti ui 〉 = pt pi gsi (t

p
1 , . . . , t pk+1) = 0.

The proof is finished. ��

We define φ : (R≥0)
k+1 → R by φ(c1, . . . , ck+1) = Eλ(c1u1, . . . , ck+1uk+1),

where (u1, . . . , uk+1) ∈ Hrk
k . Then we get the following corollary.

Corollary 2.4 For fixed (u1, . . . , uk+1) ∈ H rk
k with ui �= 0 for i = 1, . . . , k + 1, φ

has a unique maximum point (t1, . . . , tk+1) ∈ (R>0)
k+1. Moreover, ∂φ

∂ci
(t1, . . . , ti−1,

ci , ti+1, tk+1) > 0 if ci < ti and
∂φ
∂ci

(t1, . . . , ti−1, ci , ti+1, . . . , tk+1) < 0 if ci > ti .

Proof We see that

φ(c1, . . . , ck+1) : = Eλ(c1u1, . . . , ck+1uk+1)

= a

2

k+1∑

i=1

‖ciui‖2i + λ

2(α + 1)

( k+1∑

i=1

‖ci ui‖2i
)α+1

− 1

p

k+1∑

i=1

∫

B
rk
i

|ciui |p.

(2.8)

Obviously, φ is continuous. From the proof of Lemma 2.3, (t1, . . . , tk+1) is the
unique critical point of φ in (R>0)

k+1. Due to the fact that p ∈ (2 + 2α, 6), we
have φ(c1, . . . , ck+1) → −∞ as |(c1, . . . , ck+1)| → ∞ and φ(c1, . . . , ck+1) → 0
as |(c1, . . . , ck+1)| → 0. This implies that φ admits a unique maximum point
(t1, . . . , tk+1) ∈ (R>0)

k+1. Then we obtain that for each i,

123
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∂φ

∂ci
(t1, . . . , ci , . . . , tk+1)

= aci‖ui‖2i + λ

( k+1∑

j �=i

t2j ‖u j‖2j + c2i ‖ui‖2i
)α

ci‖ui‖2i − cp−1
i

∫

B
rk
i

|ui |p

= cp−1
i

[

ac2−p
i ‖ui‖2i + λ

( k+1∑

j �=i

c
2−p
α

i t2j ‖u j‖2j + c
2+ 2−p

α

i ‖ui‖2i
)α

‖ui‖2i
]

− cp−1
i

∫

B
rk
i

|ui |p,

which implies that ∂φ
∂ci

(t1, . . . , ci , . . . , tk+1) > 0 if ci < ti and
∂φ
∂ci

(t1, . . . , ci , . . . , tk+1)

< 0 if ci > ti . ��
We define F = (F1, . . . , Fk+1) : Hrk

k → R
k+1 by

Fi (u1, . . . , uk+1) := 〈∂ui E ′
λ(u1, . . . , uk+1), ui 〉 (2.9)

for i = 1, . . . , k + 1. Then we have the following lemma.

Lemma 2.5 For any (u1, . . . , uk+1) ∈ H rk
k with nonzero components such that

Fi (u1, . . . , uk+1) < 0 for each i = 1, . . . , k + 1, the (k + 1) tuple (t1, . . . , tk+1)

of positive numbers obtained in Lemma 2.3 satisfies ti ≤ 1 for each i .

Proof By Lemma 2.3, (t1u1, . . . , tk+1uk+1) ∈ Mrk
k , then for each i = 1, . . . , k + 1,

at2i ‖ui‖2i + λt2i ‖ui‖2i
( k+1∑

j=1

t2j ‖u j‖2j
)α

= t pi

∫

B
rk
i

|ui |p. (2.10)

Without loss of generality, we assume that ti0 = max{t1, . . . , tk+1}. Then

at2i0‖ui0‖2i0 + λt2+2α
i0

‖ui0‖2i0
( k+1∑

j=1

‖u j‖2j
)α

> t pi0

∫

B
rk
i0

|ui0 |p. (2.11)

Since Fi (u1, . . . , uk+1) < 0, we have

a‖ui0‖2i0 + λ‖ui0‖2i0
( k+1∑

j=1

‖u j‖2j
)α

<

∫

B
rk
i0

|ui0 |p. (2.12)

By combining (2.11) and (2.12), we obtain

(
a

t2αi0
− a

)

‖ui0‖2i0 ≥ (t p−2α−2
i0

− 1)
∫

B
rk
i

|ui0 |p.
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If ti0 > 1, the left side of this inequality is negative, but the right side is positive, which
leads to a contradiction. Hence, we have ti ≤ 1 for each i . The proof is completed. ��

Notice that

Mrk
k :=

{

(u1, . . . , uk+1) ∈ Hrk
k ui �= 0 | F(u1, . . . , uk+1) = 0

}

,

whereF(u1, . . . , uk+1) is defined in (2.9).Hereafter,we say thatMrk
k is a differentiable

manifold inHrk
k , means that the matrix

N := (Ni j )(k+1)×(k+1) = 〈∂ui F ′
j (u1, . . . , uk+1), ui 〉, i, j = 1, . . . , k + 1

is nonsingular at each point (u1, . . . , uk+1) ∈ Mrk
k .

Lemma 2.6 Mrk
k is a differentiable manifold in H rk

k . Moreover, a minimizer
(u1, . . . , uk+1) of Eλ onMrk

k is a critical point of Eλ inH rk
k with nonzero components.

Proof By some calculations, we have

Nii = 2a‖ui‖2i + 2λ‖ui‖2i
( k+1∑

l=1

‖ul‖2l
)α

+ 2λα‖ui‖2i
( k+1∑

l=1

‖ul‖2l
)α−1

‖ui‖2i − p
∫

B
rk
i

|ui |p,

Ni j = 2λα‖ui‖2i
( k+1∑

l=1

‖ul‖2l
)α−1

‖u j‖2j , for j �= i, i, j = 1, . . . , k + 1.

.

Due to the fact that p ∈ (2 + 2α, 6), we obtain

Nii +
k+1∑

j �=i

Ni j = 2a‖ui‖2i + 2λ‖ui‖2i
( k+1∑

l= j

‖u j‖2j
)α

+ 2λα‖ui‖2i
( k+1∑

j=1

‖u j‖2j
)α

− p
∫

B
rk
i

|ui |p

= 2a‖ui‖2i + (2α + 2)

(∫

B
rk
i

|ui |p − a‖ui‖2i
)

− p
∫

B
rk
i

|ui |p

= −2αa‖ui‖2i + (2 + 2α − p)
∫

B
rk
i

|ui |p < 0.

So

Nii < −
k+1∑

j �=i

Ni j < 0 ⇒ |Nii | >

k+1∑

j �=i

|Ni j |.
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Then the matrix N = (Ni j ) is diagonally dominant, and thereby it is nonsingular and
det N �= 0.

If (u1, . . . , uk+1) is a minimizer of Eλ|Mrk
k

, then there is a Lagrangian multiplier

(λ1, . . . , λk+1) ∈ R
k+1 such that

λ1F
′
1(u1, . . . , uk+1) + · · · + λk+1F

′
k+1(u1, . . . , uk+1) = E ′

λ(u1, . . . , uk+1).(2.13)

Applying (u1, 0, . . . , 0), (0, u2, . . . , 0), . . . , (0, . . . , 0, uk+1) to the identity (2.13),
we get

Ni j

⎛

⎜
⎝

λ1
...

λk+1

⎞

⎟
⎠ =

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ .

Therefore, λ1, . . . , λk+1 are all zeros and (u1, . . . , uk+1) is a critical point of Eλ in
Hrk

k .

Finally, for any (u1, . . . , uk+1) ∈ Mrk
k , we have

a‖ui‖2i ≤
∫

B
rk
i

|ui |p ≤ C‖ui‖p
i and 0 < δ := (

a

C
)

1
p−2 ≤ ‖ui‖i . (2.14)

Then each ui is bounded away from zero. Thus minimizers of Eλ inMrk
k cannot have

any zero components. The proof is completed. ��

Lemma 2.7 Forfixed rk = (r1, . . . , rk+1) ∈ �k , there exists aminimizer (w1, . . . , wk+1)

of Eλ|Mrk
k
such that each (−1)i+1wi is positive on Brk

i for i = 1, . . . , k+1. Moreover,

(w1, . . . , wk+1) satisfies (2.3).

Proof For (u1, . . . , uk+1) ∈ Mrk
k , it holds that

Eλ(u1, . . . , uk+1) =
(
a

2
− a

2α + 2

) k+1∑

i=1

‖ui‖2i +
(

1

2α + 2
− 1

p

) k+1∑

i=1

∫

B
rk
i

|ui |p

≥
(
a

2
− a

2α + 2

) k+1∑

i=1

‖ui‖2i > δ,

(2.15)

where δ is defined in (2.14). Then there exists a minimizing sequence
{(un1, . . . , unk+1)}∞n=1 ⊂ Mrk

k such that Eλ(un1, . . . , u
n
k+1) → min

Mrk
k

Eλ as n → ∞.
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By combining with (1.9), we know that

m + 1 >Eλ(u
n
1, . . . , u

n
k+1)

=
(
a

2
− a

2α + 2

) k+1∑

i=1

‖uni ‖2i +
(

1

2α + 2
− 1

p

) k+1∑

i=1

∫

B
rk
i

|uni |p

≥
(
a

2
− a

2α + 2

) k+1∑

i=1

‖uni ‖2i .

(2.16)

Hence, {uni }n≥1 is bounded in H rk
i for each i = 1, . . . , k + 1. Up to a subsequence,

there exists (u01, . . . , u
0
k+1) ∈ Hrk

k such that uni ⇀u0i in H rk
i and uni → u0i in L p(Brk

i )

with p ∈ (2, 6). Since (un1, . . . , u
n
k+1) ⊂ Mrk

k , we have

0 < δ ≤ a lim inf
n→∞ ‖uni ‖2i < lim inf

n→∞

∫

B
rk
i

|uni |p.

= ‖u0i ‖p
i .

(2.17)

This implies that u0i �= 0 for each i = 1, . . . , k + 1.
Now we claim that up to a subsequence, uni converges to u0i strongly in H rk

i .

Notice that uni ⇀u0i weakly in H rk
i . We may suppose on the contrary that ‖u0i ‖i <

lim inf
n→∞ ‖uni ‖i for at least one i ∈ {1, . . . , k + 1}. Since each component of

(u01, . . . , u
0
k+1) is nonzero, by Lemma 2.3, one can find (t01 , . . . , t0k+1) ∈ (R>0)

k+1

such that (t01u
0
1, . . . , t

0
k+1u

0
k+1) ∈ Mrk

k . However, in this situation, Corollary 2.4
implies that

inf
(u1,...,uk+1)∈Mrk

k

Eλ(u1, . . . , uk+1)

≤ Eλ(t
0
1u

0
1, . . . , t

0
k+1u

0
k+1)

=
(
a

2
− a

2α + 2

) k+1∑

i=1

(

(t0i )2‖u0i ‖2i
)

−
(

1

2α + 2
− 1

p

) k+1∑

i=1

(t0i )p lim inf
n→∞

∫

B
rk
i

|uni |p

<

(
a

2
− a

2α + 2

) k+1∑

i=1

(

(t0i )2 lim inf
n→∞ ‖uni ‖2i

)

−
(

1

2α + 2
− 1

p

) k+1∑

i=1

(t0i )p lim inf
n→∞

∫

B
rk
i

|uni |p

≤ lim inf
n→∞ Eλ(u

n
1, . . . , u

n
k+1)
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= inf
(u1,...,uk+1)∈Mrk

k

Eλ(u1, . . . , uk+1).

This is a contradiction. Thus the claim holds, and going if necessary to a subsequence,
(un1, . . . , u

n
k+1) → (u01, . . . , u

0
k+1) inHrk

k .

Therefore, (u01, . . . , u
0
k+1) is contained inMrk

k and is a minimizer of Eλ|Mrk
k

.Obvi-

ously,

(w1, . . . , wk+1) := (|u01|,−|u02|, . . . , (−1)k+2|u0k+1|)

is also a minimizer of Eλ|Mrk
k
. Hence it is a critical point of Eλ by Lemma 2.6 and

satisfies (2.3). Then by the standard elliptic regularity theory, all wi ∈ C2(Brk
i ).

Furthermore, since (−1)i+1wi ≥ 0, by applying the strong maximum principle to
(2.3), it follows immediately (−1)i+1wi > 0. The proof is completed. ��

3 Existence of Nodal Solutions

In this section, we are devoted to the proof of Theorem 1.1. In view of Lemma 2.7,
we can define a function � : �k → R by

�(rk) = �(r1, . . . , rk+1) = Eλ(w
rk
1 , . . . , w

rk
k+1)

= inf
(u

rk
1 ,...,u

rk
k+1)∈M

rk
k

Eλ(u
rk
1 , . . . , urkk+1).

(3.1)

Then we shall give the following lemma which shows some properties of �(rk).

Lemma 3.1 For any positive integer k, let rk = (r1, . . . , rk) ∈ �k . Then the following
statements are true.

(i) If ri − ri−1 → 0 for some i ∈ {1, . . . , k}, then �(rk) → +∞.
(ii) If rk → ∞, then �(rk) → +∞.
(iii) � is continuous in �k . Moreover, there exists a minimum point r̃k ∈ �k such that

�(r̃k) = min
rk∈�k

�(rk).

Proof (i) Assume that ri0 − ri0−1 → 0 for some i0 ∈ {1, . . . , k + 1}. Since
(w

rk
1 , . . . , w

rk
k+1) ∈ Mrk

k , by using the Hölder inequality and Sobolev inequality, we
obtain that

‖wrk
i0

‖2i0 ≤
∫

B
rk
i

|wrk
i0

|p ≤
(∫

B
rk
i0

|wrk
i0

|6
) p

6

|Brk
i0

|1− p
6 ≤ C‖wrk

i0
‖p
i0
|Brk

i0
|1− p

6 , (3.2)
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where C > 0 is a positive constant. Note that 2α + 2 < p < 6. Then ‖wrk
i0

‖i0 → ∞.

We see that

Eλ(w
rk
1 , . . . , w

rk
k+1)

=
k+1∑

i=1

[(
a

2
− a

p

)

‖wrk
i ‖2i +

(
λ

2α + 2
− λ

p

)

‖wrk
i ‖2i

⎛

⎝
k+1∑

j=1

‖wrk
j ‖2j

⎞

⎠

α ]

≥
k+1∑

i=1

(
a

2
− a

p

)

‖wrk
i ‖2i

≥
(
a

2
− a

p

)

‖wrk
i0

‖2i0 .

(3.3)

This combined with (3.2), implies that

�(rk) → +∞, if ri − ri−1 → 0.

Thus (i) follows.
(ii) Recall the Strauss inequality [23], for any u ∈ H1

r (R3), there exists a constant
C > 0 such that |u(x)| ≤ C ‖u‖

|x | , a.e in R3. Then we obtain

‖wrk
k+1‖2k+1 ≤

∫

B
rk
k+1

|wrk
k+1|p ≤ C

∫

B
rk
k+1

‖wrk
k+1‖p−2

k+1 |wrk
k+1|2

|x |p−2 dx

≤ C
‖wrk

k+1‖p−2
k+1

r p−2
k

‖wrk
k+1‖2k+1

= Cr2−p
k ‖wrk

k+1‖p
k+1.

(3.4)

This yields that r p−2
k ≤ C‖wrk

k+1‖p−2
k+1 . Therefore, the conclusion follows from (3.3).

(iii) Take a sequence {rnk }∞n=1 = {(rn1 , . . . , rnk )}∞n=1 ⊂ �k converging to r̄k =
(r̄1, . . . , r̄k) ∈ �k . It suffices to prove that �(rnk ) → �(r̄k). By Lemma 2.7, we

assume that (w
rnk
1 , . . . , w

rnk
k+1) and (w

r̄k
1 , . . . , w

r̄k
k+1) are minimizers of Eλ|Mrnk

k

and

Eλ|Mr̄k
k
, respectively. In the sequel, we shall prove that

�(r̄k) ≥ lim sup
n→∞

�(rnk ) and �(r̄k) ≤ lim inf
n→∞ �(rnk ). (3.5)

First, we prove that �(r̄k) ≥ lim supn→∞ �(rnk ). Define v
rnk
i : [rni−1, r

n
i ] → R such

that
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v
rnk
i (r) = αn

i w
r̄k
i (

r̄i − r̄i−1

rni − rni−1
(r − rni−1) + r̄i−1), for i = 1, . . . , k,

v
rnk
k+1(r) = αn

k+1w
r̄k
k+1(

r̄k
rnk

r),

where rn0 = 0, rnk+1 = ∞ and each (αn
1 , . . . , α

n
k+1) is a unique (k+1)-tuple of

positive real number such that (v
rnk
1 , . . . , v

rnk
k+1) ∈ M

rnk
k . Then by the definition of

(w
rnk
1 , . . . , w

rnk
k+1), we have

Eλ(v
rnk
1 , . . . , v

rnk
k+1) ≥ Eλ(w

rnk
1 , . . . , w

rnk
k+1) = �(rnk ).

If n is large enough, we can calculate that for each i, j = 1, . . . , k + 1,

‖vr
n
k
i ‖2

B
rnk
i

=
∫ rni

rni−1

|∇v
rnk
i |2β(N )r2dr +

∫ rni

rni−1

V (v
rnk
i )2β(N )r2dr

= (αn
i )2
∫ rni

rni−1

|∇w
r̄k
i (

r̄i − r̄i−1

rni − rni−1
(r − rni−1) + r̄i−1)|2β(N )r2dr

+ (αn
i )2
∫ rni

rni−1

V |wr̄k
i

(
r̄i − r̄i−1

rni − rni−1
(r − rni−1) + r̄i−1

)

|2β(N )r2dr

= β(N )(αn
i )2

r̄i − r̄i−1

rni − rni−1

∫ rni

rni−1

|∇w
r̄k
i (t)|2

(
rni − rni−1

r̄i − r̄i−1
(t − r̄i−1) + rni−1

)2 (
rni − rni−1

r̄i − r̄i−1

)

dt

+ β(N )(αn
i )2
∫ rni

rni−1

V |wr̄k
i (t)|2

(
rni − rni−1

r̄i − r̄i−1
(t − r̄i−1) + rni−1

)2

(
rni − rni−1

r̄i − r̄i−1
)dt

= (αn
i )2‖wr̄k

i ‖2
B
r̄k
i

+ o(1),

where β(N ) indicates the surface area of the unit sphere in RN . Similarly,

‖vr
n
k

i ‖2
B
rnk
i

( k+1∑

j=1

‖vr
n
k
j ‖2

B
rnk
j

)α

= (αn
i )

2‖wr̄k
i ‖2

B
r̄k
i

( k+1∑

j=1

(αn
j )
2‖wr̄k

j ‖2
B
r̄k
j

)α

+ o(1)

and
∫

B
rnk
i

|vr
n
k

i |p = (αn
i )

p
∫

B
r̄k
i

|wr̄k
i |p + o(1).

This combined with the fact that (v
rnk
1 , . . . , v

rnk
k+1) ∈ M

rnk
k , yields
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a(αn
i )2‖wr̄k

i ‖2
B
r̄k
i

+ λ(αn
i )2‖wr̄k

i ‖2
B
r̄k
i

( k+1∑

j=1

(αn
j )
2‖wr̄k

j ‖2
B
r̄k
j

)α

− (αn
i )p

∫

B
r̄k
i

|wr̄k
i |p = o(1)

for each i = 1, . . . , k + 1. In addition,

a‖wr̄k
i ‖2

B
r̄k
i

+ λ‖wr̄k
i ‖2

B
r̄k
i

( k+1∑

j=1

‖wr̄k
j ‖2

B
r̄k
j

)α

−
∫

B
r̄k
i

|wr̄k
i |p = 0

for each i , and this gives that lim
n→∞ αn

i = 1 for all i . Therefore, we get

�(r̄k) = lim sup
n→∞

Eλ(v
rnk
1 , . . . , v

rnk
k+1) ≥ lim sup

n→∞
Eλ(w

rnk
1 , . . . , w

rnk
k+1) = lim sup

n→∞
�(rnk ).

On the other hand, we prove �(r̄k) ≤ lim inf
n→∞ �(rnk ). Similarly as the former case,

define u
rnk
i : [r̄i−1, r̄i ] → R such that

u
rnk
i (t) = tni w

rnk
i

(
rni − rni−1

r̄i − r̄i−1
(t − r̄i−1) + rni−1

)

, for i = 1, . . . , k,

u
rnk
k+1(t) = tnk+1w

rnk
k+1

(
rnk
r̄k

t

)

.

where rn0 = 0, rnk+1 = ∞ and each (tn1 , . . . , tnk+1) is a unique (k+1)-tuple of positive

real number such that (u
rnk
1 , . . . , u

rnk
k+1) ∈ M r̄k

k . Then it also follows that

a(tni )2‖wrnk
i ‖2

B
rnk
i

+ λ(tni )2‖wrnk
i ‖2

B
rnk
i

⎛

⎝
k+1∑

j=1

(tnj )
2‖wrnk

j ‖2
B
rnk
j

⎞

⎠

α

− (tni )p
∫

B
rnk
i

|wrnk
i |p = o(1)

and

a‖wrnk
i ‖2

B
rnk
i

+ λ‖wrnk
i ‖2

B
rnk
i

⎛

⎝
k+1∑

j=1

‖wrnk
j ‖2

B
rnk
j

⎞

⎠

α

−
∫

B
rnk
i

|wrnk
i |p = 0

for each i . Since lim inf
n→∞ ‖wrnk

i ‖2
B
rnk
i

is strictly positive, we conclude that tni → 1 as

n → ∞ for all i . Thus

�(r̄k) ≤ lim inf
n→∞ Eλ(v

rnk
1 , . . . , v

rnk
k+1) = lim inf

n→∞ Eλ(w
rnk
1 , . . . , w

rnk
k+1) = lim inf

n→∞ �(rnk ).

This completes the proof of (iii). Finally, by (i)–(iii), we can conclude that there exists
a minimum point r̃k = (r̃1, . . . , r̃k) ∈ �k of �. ��
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According to Lemmas 2.7 and 3.1, there exists (w
r̃k
1 , . . . , w

r̃k
k+1) satisfying (2.3) and

Eλ(w
r̃k
1 , . . . , w

r̃k
k+1) = inf

rk∈�k
�(rk). (3.6)

Now we are in position to show that
∑k+1

i=1 w
r̃k
i is a desired nodal solution of (1.1)

which changes sign exactly k times.

Proof of Theorem 1.1 We shall argue it by contradiction. Suppose on the contrary
that

∑k+1
i=1 w

r̃k
i is not the solution of (1.1). In other words, suppose that there is

l ∈ {1, . . . , k} such that

w− := lim
t→r̃l−

dw
r̃k
l (t)

dt
�= lim

t→r̃l+

dw
r̃k
l+1(t)

dt
=: w+

We define a (k+1)-tuple of function (z̃1, . . . , z̃k+1) as follows. Given a small positive
number δ, set

ỹ(t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w
r̃k
l (t), for t ∈ (r̃l−1, r̃l − δ),

w
r̃k
l (r̃l − δ) + w

r̃k
l+1(r̃l + δ) − w

r̃k
l (r̃l − δ)

2δ
(t − r̃l + δ), for t ∈ (r̃l − δ, r̃l + δ),

w
r̃k
l+1(t), for t ∈ (r̃l + δ, r̃l+1).

Then ỹ has a unique zero point s̃l in (r̃l−1, r̃l+1). Let

z̃l(t) = ỹ(t) in (r̃l−1, s̃l), z̃l+1(t) = ỹ(t) in (s̃l , r̃l+1) and

z̃i (t) = w
r̃k
i (t) for (r̃i−1, r̃i ), i �= l, l + 1.

By Lemma 2.3, there exists (a1, . . . , ak+1) ∈ (R>0)
k+1 such that (z1, . . . , zk+1) :=

(a1 z̃1, . . . , ak+1 z̃k+1) ∈ M r̄k
k with r̄k = (r̃1, . . . , r̃l−1, s̃l , r̃l+1, . . . , r̃k+1). In addition,

we have

(a1, . . . , ak+1) → (1, . . . , 1) as δ → 0 (3.7)

and

Iλ(W ) = Eλ(w
r̃k
1 , . . . , w

r̃k
k+1) ≤ Eλ(z

r̃k
1 , . . . , zr̃kk+1) = Iλ(Z), (3.8)

where W (t) =∑k+1
i=1 w

r̃k
i (t) and Z(t) =∑k+1

i=1 z
r̃k
i (t).

On the other hand, since Z ,W > 0, we can check that

1

p
|Z |p ≥ 1

p
|W |p + Z2 − W 2

2
|W |p−2. (3.9)

123



  166 Page 18 of 26 T. Wang et al.

Then there holds that

Iλ(Z) − Iλ(W )

≤
(∫ r̃l−δ

0
+
∫ ∞

r̃l+δ

)(
a

2
Z ′2 + a

2
V (t)Z2 − 1

p
|W |p − Z2 − W 2

2
|W |p−2

)

t2dt

−
(∫ r̃l−δ

0
+
∫ ∞

r̃l+δ

)(
a

2
W ′2 + a

2
V (t)W 2 − 1

p
|W |p

)

t2dt

+
∫ r̃l+δ

r̃l−δ

(
a

2
Z ′2 + a

2
V (t)Z2 − 1

p
|Z |p

)

t2dt

−
∫ r̃l+δ

r̃l−δ

(
a

2
W ′2 + a

2
V (t)W 2 − 1

p
|W |p

)

t2dt

+ λ

2α + 2

(∫ ∞

0
(Z ′2 + V (t)Z2)t2dt

)α+1

− λ

2α + 2

(∫ ∞

0
(W ′2 + V (t)W 2)t2dt

)α+1

.

Furthermore, by the definition of W , we have

∫ ∞

0

(

aW ′2 + aV (t)W 2
)

t2dt + λ

(∫ ∞

0
(W ′2 + V (t)W 2)t2dt

)α+1

=
∫ ∞

0
|W |pt2dt . (3.10)

Set A :=
(
∫∞
0 (W ′2 + V (t)W 2)t2dt

)α

. Then we conclude from (3.9)–(3.10) that

Iλ(Z) − Iλ(W )

≤
(∫ r̃l−δ

0
+
∫ ∞
r̃l+δ

)(
a

2
Z ′2 + a

2
V (t)Z2 − Z2

2
|W |p−2 + λA

2
W ′2 + λA

2
V (t)W 2

)

t2dt

︸ ︷︷ ︸
A

+
∫ r̃l+δ

r̃l−δ

(
a

2
Z ′2 + a

2
V (t)Z2 − 1

p
|Z |p + 1

p
|W |p + λA

2
W ′2 + λA

2
V (t)W 2

)

t2dt

︸ ︷︷ ︸
B

+ λ

2α + 2

(∫ ∞
0

(Z ′2 + V (t)Z2)t2dt

)α+1
− λ

2α + 2

(∫ ∞
0

(W ′2 + V (t)W 2)t2dt

)α+1
.

︸ ︷︷ ︸
C

(3.11)
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We consider the first part (A). Notice that W satisfies

[

a + λ

(∫ ∞

0
(W ′2 + V (t)W 2)t2dt

)α](

− (t2W ′)′ + V (t)Wt2
)

= |W |p−2Wt2, r̃l−1 ≤ t ≤ r̃l . (3.12)

SinceW (r̃l) = 0, by Taylor formula, we haveW (r̃l) = W (r̃l −δ)+W ′(r̃l −δ)δ+o(δ)
and W (r̃l − δ) = −δ · w− + o(δ). Moreover, by (3.12) and Taylor formula again, we
have (t2W ′)′(r̃l) = 0 and

(r̃l − δ)2W ′(r̃l − δ) − r̃2l W
′(r̃l) = −δ(r̃2l W

′(r̃l))′ + o(δ).

So

(r̃l − δ)2W ′(r̃l − δ) = r̃2l w− + o(δ). (3.13)

By multiplying both sides of (3.12) by W , we obtain

∫ r̃l−δ

0
|W |pt2dt =

∫ r̃l−δ

0
(a + λA)(−(t2W ′)′W + V (t)W 2t2)dt

= (a + λA)

(∫ r̃l−δ

0
(−(t2W ′)′W +

∫ r̃l−δ

0
V (t)W 2t2

)

= (a + λA)

(

−t2W ′W
∣
∣
∣
∣

r̃l−δ

0
+
∫ r̃l−δ

0

(

t2W ′2 + V (t)W 2t2
))

.

(3.14)

Thus,

∫ r̃l−δ

0

|W |p
2

t2dt = − (a + λA)

2
(r̃l − δ)2W ′(r̃l − δ)W (r̃l − δ)

+
∫ r̃l−δ

0

(
(a + λA)

2
W ′2 + (a + λA)

2
V (t)W 2

)

t2dt .

(3.15)

This combined with (3.13), implies that

∫ r̃l−δ

0

(
a

2
Z ′2 + a

2
V (t)Z2 − Z2

2
|W |p−2 + λA

2
W ′2 + λA

2
V (t)W 2

)

t2dt

= (1 + o(1))
∫ r̃l−δ

0

(
a

2
W ′2 + a

2
V (t)W 2 − |W |p

2
+ λA

2
W ′2 + λA

2
V (t)W 2

)

t2dt

= (1 + o(1))
(a + λA)

2
(r̃l − δ)2W ′(r̃l − δ)W (r̃l − δ)

= − (a + λA)

2
r̃2l (w−)2δ + o(δ). (3.16)
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By the same method, we obtain

∫ ∞

r̃l+δ

(
a

2
Z ′2 + a

2
V (t)Z2 − Z2

2
|W |p−2 + λA

2
W ′2 + λA

2
V (t)W 2

)

t2dt

= − (a + λA)

2
r̃2l (w+)2δ + o(δ).

(3.17)

Next, we consider the second part (B). Indeed,

∫ r̃l+δ

r̃l−δ

(
a

2
V (t)Z2 − 1

p
|Z |p + 1

p
|W |p + λA

2
V (t)W 2

)

t2dt = o(δ), (3.18)

and

∫ r̃l+δ

r̃l−δ

(
a

2
Z ′2 + λA

2
W ′2

)

t2dt = (1 + o(1))
∫ r̃l+δ

r̃l−δ

(
a + λA

2
W ′2

)

t2dt

= a + λA

4
(w+ + w−)2r̃2l δ + o(δ).

(3.19)

Finally, we consider the third part (C). Notice that

λ

2α + 2

(∫ ∞

0
(Z ′2 + V (t)Z2)t2dt

)α+1

− λ

2α + 2

(∫ ∞

0
(W ′2 + V (t)W 2)t2dt

)α+1

= o(1)

(∫ ∞

0
(W ′2 + V (t)W 2)t2dt

)α+1

= o(δ).

(3.20)

Consequently, we conclude from (3.16)–(3.20) that

Iλ(Z) − Iλ(W ) ≤ − (a + λA)

4
(w+ − w−)2r̃2l δ + o(δ). (3.21)

By taking δ > 0 small enough, we have Iλ(Z) − Iλ(W ) < 0, which is a contradiction
with (3.8). This completes the proof. ��

4 Energy Comparison and Asymptotic Behaviors

In this section, we are going to prove Theorems 1.2 and 1.3 by establishing subtle
energy estimates.

Proof of Theorem 1.2 By applying Theorem 1.1, we can assume that for any fixed
positive integer k, equation (1.1) has a radial nodal solution Uk+1 with exactly k + 1

nodes 0 < r̄1 < · · · < r̄k+1 < +∞, and Iλ(Uk+1) = Eλ(w
r̃k+1
1 , . . . , w

r̃k+1
k+2 ) =

inf
rk+1∈�k+1

�(rk+1). Set

r̃k+1 := (r̄1, r̄2, . . . , r̄k+1)
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and

w
r̃k+1
i := χ

B
r̃k+1
i

Uk+1,

where χ
B
r̃k+1
i

is the characteristic function on B r̃k+1
i . Obviously, (w

r̃k+1
1 , . . . , w

r̃k+1
k+2 )

satisfies

⎧
⎪⎪⎨

⎪⎪⎩

[

a + λ

( k+1∑

j=1

‖wr̃k+1
j ‖2j

)α](

− �w
r̃k+1
i + V (|x |)wr̃k+1

i

)

= |wr̃k+1
i |p−2w

r̃k+1
i , x ∈ B r̃k+1

i ,

w
r̃k+1
i = 0, x /∈ B r̃k+1

i .

(4.1)

Next, let r̂k := (r̄2, . . . , r̄k+1). Clearly, r̂k ∈ �k . By using Lemma 2.7, there is a
minimizer (w

r̂k
1 , . . . , w

r̂k
k+1) of its corresponding energy Eλ|Mr̂k

k
, i.e.

Eλ(w
r̂k
1 , . . . , w

r̂k
k+1) = inf

(u1,...,uk+1)∈Mr̂k
k

Eλ(u1, . . . , uk+1). (4.2)

Then, by Lemma 2.3, there exists a unique (k+1)−tuple (t1, t3, . . . , tk+2) of positive
numbers such that

(t1w
r̃k+1
1 , t3w

r̃k+1
3 , . . . , tk+2w

r̃k+1
k+2 ) ∈ Mr̂k

k .

This combined with (4.2), implies that

Eλ(w
r̂k
1 , . . . , w

r̂k
k+1) ≤ Eλ(t1w

r̃k+1
1 , t3w

r̃k+1
3 , . . . , tk+2w

r̃k+1
k+2 ). (4.3)

By letting s > 0 be small enough, we obtain

Eλ(t1w
r̃k+1
1 , t3w

r̃k+1
3 , . . . , tk+2w

r̃k+1
k+2 )

< Eλ(t1w
r̃k+1
1 , swr̃k+1

2 , t3w
r̃k+1
3 , . . . , tk+2w

r̃k+1
k+2 ). (4.4)

On the other hand, Corollary 2.4 gives that

Eλ(t1w
r̃k+1
1 , swr̃k+1

2 , t3w
r̃k+1
3 , . . . , tk+2w

r̃k+1
k+2 )

< Eλ(w
r̃k+1
1 , w

r̃k+1
2 , . . . , w

r̃k+1
k+2 ) = Iλ(Uk+1). (4.5)

Since Eλ(w
r̃k
1 , . . . , w

r̃k
k+1) = inf

rk∈�k
�(rk), we deduce from Lemma 3.1 that

Iλ(Uk) = Eλ(w
r̃k
1 , . . . , w

r̃k
k+1) < Eλ(w

r̂k
1 , . . . , w

r̂k
k+1) (4.6)
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Then, it follows from (4.3)–(4.5) that

Iλ(Uk) < Iλ(Uk+1).

Thus Iλ(Uk) is strictly increasing with respect to k.
Finally, we claim that Iλ(Uk) > (k + 1)Iλ(U0). In fact, since 〈I ′

λ(Uk), w
r̃k
i 〉 = 0,

we have

〈I ′
λ(w

r̃k
i ), w

r̃k
i 〉 = a‖wr̃k

i ‖2i + λ‖wr̃k
i ‖2α+2

i −
∫

B
r̃k
i

|wr̃k
i |pdx < 0.

By Lemma 2.3, there is a unique δ̄i ∈ (0, 1) such that δ̄iw
r̃k
i ∈ N, whereN is defined

in (1.7). Hence, Iλ(δ̄iw
r̃k
i ) ≥ Iλ(U0) and

(k + 1)Iλ(U0) ≤
k+1∑

i=1

(

Iλ(δ̄iw
r̃k
i ) − 1

2α + 2
〈I ′

λ(δ̄iw
r̃k
i ), δ̄iw

r̃k
i 〉
)

=
k+1∑

i=1

((
a

2
− a

2α + 2

)

δ̄2i ‖wr̃k
i ‖2i +

(
1

2α + 2
− 1

p

)

δ̄
p
i

∫

B
r̃k
i

|wr̃k
i |p

)

<

k+1∑

i=1

((
a

2
− a

2α + 2

)

‖wr̃k
i ‖2i +

(
1

2α + 2
− 1

p

)∫

B
r̃k
i

|wr̃k
i |p

)

= Iλ

(
k+1∑

i=1

w
r̃k
i

)

− 1

2α + 2

〈

I ′
λ

(
k+1∑

i=1

w
r̃k
i

)

,

k+1∑

i=1

w
r̃k
i

〉

= Iλ(Uk).

The claim hods and we complete the proof. ��
Hereafter, we denote Uk by Uλ

k in order to emphasize the dependence on λ. Ana-

logically, set rk,λ = (r̄1,λ, . . . , r̄k,λ) and Uλ
k = ∑k+1

i=1 w
rk,λ
i ∈ HV obtained in

Theorem 1.1. In the following, we shall show the asymptotic behaviors of Uλ
k as

λ → 0+.
Proof of Theorem 1.3 We divide the whole proof into three steps.

Step 1. We claim that for any sequence {λn} with λn → 0+ as n → ∞, {Uλn
k }n

is bounded in HV . In fact, for fixed rk ∈ �k , we take nonzero radial functions ϕi ∈
C∞
c (Brk

i ), i = 1, . . . , k + 1. Then for any λ ∈ [0, 1], there exists a k + 1 tuple
(b1, . . . , bk+1) of positive numbers such that

Fi (b1ϕ1, . . . , bk+1ϕk+1) < 0, for i = 1, . . . , k + 1.

By Lemmas 2.3 and 2.5, there is a k + 1 tuple (a1(λ), . . . , ak+1(λ)) ∈ (0, 1]k+1

depending on λ such that

(ϕ̄1, . . . , ϕ̄k+1) := (a1(λ)b1ϕi , . . . , ak+1(λ)bk+1ϕi ) ∈ Mrk
k .
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Then there is C0 > 0 such that for n large enough,

Iλn (U
λn
k ) − 1

2α + 2
〈I ′

λn
(Uλn

k ),Uλn
k 〉

=
(
a

2
− a

2α + 2

)

‖Uλn
k ‖2 +

(
a

2
− 1

2α + 2

)∫

R3
|Uλn

k |p

≤ Iλn

(
k+1∑

i=1

ϕ̄i (x)

)

= Iλn

(
k+1∑

i=1

ϕ̄i (x)

)

− 1

2α + 2
〈I ′

λn

(
k+1∑

i=1

ϕ̄i (x)

)

, ϕ̄i (x)〉

=
k+1∑

i=1

((
a

2
− a

2α + 2

)

‖ϕ̄i (x)‖2 +
(

1

2α + 2
− 1

p

)∫

B
rk
i

|ϕ̄i (x)|p
)

≤
k+1∑

i=1

((
a

2
− a

2α + 2

)

‖biϕi (x)‖2 +
(

1

2α + 2
− 1

p

)∫

B
rk
i

|biϕi (x)|p
)

=: C0.

(4.7)

This implies that {Uλn
k }n is bounded in HV . So the claim follows.

Step 2. According to Step 1, there exists a subsequence {λn j } of {λn} andU 0
k ∈ HV

such that U
λn j
k ⇀U 0

k and (U
λn j
k )i⇀(U 0

k )i weakly in HV as n j → +∞. Then U 0
k is a

weak solution of (1.12). It suffices prove that U 0
k is a radial nodal solution of (1.12)

with exactly k + 1 nodal domains.
In fact, by the compact embedding HV ↪→ Ls(R3) with 2 < s < 6, it follows that

‖Uλn j
k −U 0

k ‖2

= 〈I ′
λn j

(U
λn j
k ) − I ′

0(U
0
k ),U

λn j
k −U 0

k 〉

+
∫

R3

(

|Uλn j
k |p−2U

λn j
k − |U 0

k |p−2U 0
k

)

(U
λn j
k −U 0

k )dx

− λn j ‖U
λn j
k ‖2α

∫

R3

(

∇U
λn j
k ∇(U

λn j
k −U 0

k ) + V (|x |)Uλn j
k (U

λn j
k −U 0

k )

)

→ 0, as j → ∞.

Then U
λn j
k → U 0

k strongly in HV .

Next, we prove (U 0
k )i �= 0. Since 〈I ′

λn j
(U

λn j
k ), (U

λn j
k )i 〉 = 0, there is a number

δ > 0 such that

lim inf
j→∞ ‖(Uλn j

k )i‖i ≥ δ > 0.
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This together with the compact embedding HV ↪→ Ls(R3), gives that

δ2 ≤ ‖(Uλn j
k )i‖2i ≤

∫

R3
|(Uλn j

k )i |p →
∫

R3
|(U 0

k )i |p,

which shows that (U 0
k )i �= 0. Thus,U 0

k is a radial nodal solution of (1.12) with exactly
k + 1 nodal domains.

Step 3. We prove that U 0
k is a least energy radial solution of (1.12) among all the

radial solutions changing sign exactly k times.
In fact, according to [2, Theorem 2.1], we assume that there is r̄k ∈ �k and Vk :=∑k+1
i=1 vi is a least energy radial solution of (1.12) among all the nodal solutions

changing sign exactly k times, where vi is supported on annuli B r̄k
i . We assume that

Uλn
k := w

λn
1 + · · · + w

λn
k+1.

ByLemma2.3, for eachλn > 0, there is a unique (k+1)−tuple (t1(λn), . . . , tk+1(λn))

of positive numbers such that

(t1(λn)v1, . . . , tk+1(λn)vk+1) ∈ Mrk
k .

Then, for i = 1, . . . , k + 1, we have

a(ti (λn))
2‖vi‖2i + λn(ti (λn))

2‖vi‖2i
( k+1∑

j=1

(t j (λn))
2‖v j‖2i

)α

=
∫

B
rk
i

(ti (λn))
p|vi |pi .

(4.8)

Recall that vi satisfies a‖vi‖2i = ∫Brk
i

|vi |pi . One can easily check that

(t1(λn), . . . , tk+1(λn)) → (1, . . . , 1), as n → ∞. (4.9)

From (4.8)–(4.9), we have

I0(Vk) ≤ I0(U
0
k ) = lim

n→∞ Iλn (U
λn
k ) = lim

n→∞ Eλn (w
λn
1 , . . . , w

λn
k+1)

≤ lim
n→∞ Eλn (t1(λn)v1 + · · · + tk+1(λn)vk+1)

= E0(v1 + · · · + vk+1)

= I0(Vk).

Therefore, U 0
k is a least energy radial solution of (1.12) which changes sign exactly k

times. ��
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