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Abstract

In this paper, we provide several new characterizations of the maximal right ring of
quotients of a ring by using the relatively dense property. As a ring is embedded in
its maximal right ring of quotients, we show that the endomorphism ring of a module
is embedded into that of the rational hull of the module. In particular, we obtain new
characterizations of rationally complete modules. The equivalent condition for the
rational hull of the direct sum of modules to be the direct sum of the rational hulls of
those modules under certain assumption is presented. For a right H-module M where
H is a right ring of quotients of a ring R, we provide a sufficient condition under
which Endgr (M) = Endgy (M). Also, we give a condition for the maximal right ring
of quotients of the endomorphism ring of a module to be the endomorphism ring of
the rational hull of the module.
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1 Introduction

The theory of rings of quotients has its origin in the work of @. Ore [11] and K. Asano
[2] on the construction of the total ring of fractions, in the 1930’s and 40’s. But the
subject did not really develop until the end of the 1950’s, when a number of important
papers appeared (by R.E. Johnson [6], Y. Utumi [15], A.W. Goldie [5], J. Lambek [8]
et al). In particular, Johnson(1951), Utumi(1956), and Findlay & Lambek(1958) have
studied the maximal right ring of quotients of a ring which is an extended ring of the
base ring. For example, the maximal right ring of quotients of Z is QQ, which is also the
injective hull of Z. Here, Z stands for the ring of integers and Q is the field of rational
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numbers. For a commutative ring R, its classical right ring of quotients coincides with
its total quotient ring as the maximal right ring of quotients of R coincides with the
complete ring of quotients of R.

As we know, the study of the rational hull of a module is the same as that of the
maximal right ring of quotients in a different way. Also, like every module has the
injective hull, it is known that every module has the rational hull in [4, Theorem 2.6].
Now, we recall the definition of the rational hull of a module and present its well-known
results, briefly. Let M be aright R-module and T = Endg(E(M)).Put E(M) = {x €
EM)|9(M) =0witho e T = 9(x) =0} = ﬂ Kerd =rgun (Ar(M)) .

- MCKerd9eT
Then E(M) is the unique maximal rational extension of M. We call it the rational
hull of M. Also, it is known that gy (J(T)) < rg) Ar(M)) = E(M) because
17 (M) C J(T) where J(T) = {a € T | Kera <®* E(M)} is the Jacobson radical of
the ring 7. Note that the maximal right ring of quotients of R is Q(R) = rgr)(In (R))
where H = Endgr(E(R)) (see [8, Proposition 2]).

After the necessary background history, notations, and results in this section and
the next section, we provide several characterizations of the rational hull of a module
in Sect. 3 (see Theorem 3.3 and Corollary 3.10). In addition, characterizations of
rationally complete modules are presented. As a corollary, we obtain several new
characterizations of the maximal right ring of quotients of a ring. In particular, we
show that the endomorphism ring of a module is embedded into that of the rational
hull of the module as the inherited property of its maximal right ring of quotients (see
Theorem 3.15). Our focus, in Sect. 4, is on the question of when is the rational hull
of the direct sum of modules the direct sum of the rational hulls of those modules.
For M = €Dy My, we prove that E(M) = Dica E(My) if and only if M; is M-
dense in E(M;) for all i, j € A when either R is right noetherian or |A]| is finite (see
Theorem 4.6). In the last section, we obtain a condition under which Endz (M) =
Endy (M) where H is a right ring of quotients of a ring R (Theorem 5.1). This
condition is called the relatively dense property for a module. Also, we provide a
sufficient condition for the maximal right ring of quotients of the endomorphism ring
of a module to be the endomorphism ring of the rational hull of the module (see
Theorem 5.5).

Throughout this paper, R is a ring with unity and M is a unital right R-module. For
a right R-module M, S = Endg(M) denotes the endomorphism ring of M; thus M
can be viewed as a left S- right R-bimodule. For ¢ € S, Kerg and Img stand for the
kernel and the image of ¢, respectively. The notations N < M, N <* M, N <den pg
or N <® M mean that N is a submodule, an essential submodule~, a dense submodule,
or a direct summand of M, respectively. By E(M), M , and E(M) we denote the
injective hull, the quasi-injective hull, and the rational hull of M, respectively, and
T = Endgr(E(M)). Q(R) denotes the maximal right ring of quotients of R. The
direct sum of A copies of M is denoted by M) where A is an arbitrary index set.
CFMy(F) denotes the N x N column finite matrix ring over a field F. By Q, Z, and
N we denote the set of rational, integer, and natural numbers, respectively. Z, denotes
the Z-module Z/nZ. For x € M, x 'K = {r € R|xr € K} < Ry with a right
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R-submodule K of M. We also denote ryy(I) = {m € M|Im = 0} for I < S and
Is(N) ={p € S| 9N =0} for N < M where ¢N is the image of N under ¢.

2 Some Well-Known Results

We give some properties of dense submodules. Recall that a submodule N of M is
said to be dense in M if for any x, 0 # y € M, there exists r € R such that xr € N
and 0 # yr.

Proposition 2.1 ([3, Proposition 1.3.6]) Let N < M be right R-modules. Then the
following conditions are equivalent:

(a) N is densein M;
(b) Homg(M /N, E(M)) = 0;
(c) for any submodule P such that N < P < M, Homg(P/N, M) = 0.

Proposition 2.2 ([7, Proposition 8.7]) Let L, N be submodules of a right R-module
M:

(i) If L <% M and N <% M then L N N <9 M.

(ii) Let L <V < M. Then L <% M ifand only if L <% V and V <% M.

Proposition 2.3 ([3, Proposition 1.3.7]) LetNM be a right R-module and M <V <
E(M). Then M <%V ifand only if V. < E(M).

We remind the reader of some important characterizations of the rational hull of a
module.

Proposition 2.4 The following statements hold true for a right R-module M and T =
Endgr(E(M)):

(i) ([9, Exercises 5]) E(M)Nz (xe EM)| 9l =1y withd e T = ¥(x) =x}.
(ii) ([7, Proposition 8.16]) E(M) = {x € E(M)| Yy € E(M\0}, y-x~'M # 0}.

3 The Rational Hull of a Module

As the injective hull of a module M is the minimal injective module including M,
the next result shows that the rational hull of a module M is the minimal rationally
complete module including M. Recall that a right R-module M is said to be rationally
complete if it has no proper rational (or dense) extensions, or equivalently E M)=M.
Thus, the rational hull (M) of a module M is rationally complete.

Theorem 3.1 The following conditions are equivalent for right R-modules M and F :

(a) F is maximal dense over M ;
(b) F is rationally complete, and is dense over M;
(c) F is minimal rationally complete, and is essential over M.

Note that a right R-module F is exactly the rational hull of a module M if F satisfies
any one of the above equivalent conditions.
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Proof (a)=(b) From Proposition 2.3, it is easy to see that F has no proper dense
extension. So, F is a rationally complete module.

(b)=(c) Let F’ be rationally complete such that M < F’ < F. Since M <den p
from Proposition 2.2(ii) M <% F’ <den F Thuys, from Proposition 2.3 F <den
E(F') = F' because F’ is rationally complete. Therefore F = F.

(c)=(a) Let F be minimal rationally complete over M. Since F is essential over
M, M < F < E(M). Since M <9%" E(M), Homg(E(M)/M, E(M)) = 0. Also,
since E(F) = E(M), HomR(E(M)/M, E(F)) = 0. From [7, Theorem 8.24], an
inclusion map ¢ : M — F extends to p : E (M) — F as F is rationally complete
(see also Proposition 3.13). Note that p is a monomorphism. Since E (M) is rationally
complete and F is minimal, E (M) =F. ]

The next example shows that the condition “essential over M in Theorem 3.1(c)
is not superfluous.

Example3.2 Let M = Z and F = Z,) ® Z, be right Z-modules where Z,) is the
localization of Z at the prime ideal (p) where p is prime. It is easy to see that M is
not essential in F, so F is not a rational hull of M. In fact, F' is minimal rationally
complete over M. From [7, Example 8.21], F is rationally complete because F is the
rational hull of L = Z & Z,,. It is enough to show that F* is minimal over M. Let K
be a rationally complete module such that M < K < F. Hence 1 = u.dim(M) <
u.dim(K) < u.dim(F) = 2. Assume that u.dim(K) = 1. Then M <®% K, and hence
K is nonsingular since M is nonsingular. Thus M <den g which implies that K = Q
since K is rationally complete and E (M) = Q. It follows that Q can be embedded
into F = Z,) ® Zp, a contradiction. Therefore, u.dim(K) = 2. Then K <*° F, and
hence K NZ, # 0. Thus Z, < K, which implies that L = Z & Z, < K. Note that
L <%0 Fsince F = E(L). Hence K <9 F 5o that K = F due to the fact that K
is rationally complete.

We provide another characterization for the rational hull of a module using the
relatively dense property. A right ideal I of a ring R is called relatively dense to a
right R-module M (or M-dense)in R if foranyr € Rand0 #m € M, m o # 0.
It is denoted by 7 5?&“ R.

Theorem 3.3 For a right R-module M, E(M) ={xe EM)|x'M 5‘};“ R}.

Proof Letx € E(M) be arbitrary. Consider a right ideal x 'M < R.LetO £ me M
and r € R. Since M <% E(M), there exists s € R such that ms # 0 and (xr)s =
x(rs) € M, thatis, rs € x~'M. Hence x~'M <den R.

For the reverse inclusion, let x € E(M) such that x~'M <‘/{jn R. For an arbitrary
nonzero element y € E(M), it suffices to show that y - x "M # 0. As M < E(M),
0 # yr € M for some r € R. Since x~'M <den R, there exists s € R such that
yrs #0andrs € x 'M.Hence 0 # yrs € y - x_lM Therefore x € E(M) O

The next definition was shown in [4, pp 79] as N < M (K), so we call a submodule
N relatively dense to a module K in a module M. (For details, see [17].)

Definition 3.4 A submodule N of a right R-module M is said to be relatively dense
to a right R-module K (or K-dense) in M if forany m € M and 0 # x € K,
x -m~'N # 0, denoted by N 5‘}(@“ M.
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Note that N is M-dense in M if and only if N is dense in M.

We provide some characterizations of the relative density property. One can com-
pare the following characterizations to Proposition 2.1. The equivalence (a)<>(c) in
the following proposition is provided by [4, pp79].

Proposition 3.5 The following are equivalent for right R-modules M, K and N < M:
(a) N is K-dense in M;

(b) Homg(M/N, E(K)) = 0;

(c) for any submodule P such that N < P < M, Homg(P/N, K) = 0.

Proof (a)=-(b) Assume that there exists 0 # o € Homg(M, E(K)) with aN = 0.
Since aM N K # 0 because K <®% E(K), there exist x € M and 0 # y € K
such that o(x) = y. Since N is K-dense in M, there exists r € R such that xr € N
and 0 # yr. However, 0 = a(xr) = a(x)r = yr # 0, a contradiction. Hence
Homgp(M /N, E(K)) =0.

(b)=>(c) Assume that for any submodule P suchthat N < P < M, there exists 0 #
n € Homg (P /N, K). Then by the injectivity of E(K), we can extend 1 to a nonzero
homomorphism from M /N to E(K), a contradiction. Hence Homg (P /N, K) = 0.

(c)=(a) Assume that y -x~'N = 0 for some x € M and 0 # y € K. We define
y :N+xR — K givenby y(n+ xr) = yr forn € N and r € R. It is easy to see
that y is a well-defined R-homomorphism vanishingon N.Since N < N+xR < M,
by hypothesis 0 = y(x) = y # 0, a contradiction. Thus N is K-dense in M. O

We obtain another characterization of the relative density property related to
homomorphisms.

Proposition 3.6 Let M, K be right R-modules. Then a submodule N is K -dense in M
if and only if 1y (N) = 0 where H = Homg (M, E(K)).

Proof Suppose N is K-dense in M. Assume that 0 # ¢ € H such that g N = 0. Then
there exists m € M\ N suchthat ¢(m) # 0. Since p(m) € E(K),0 # o(m)r € K for
some r € R. Hence there exists s € R such that mrs € N and ¢(m)rs # O because
N 5‘}?“ M. That yields a contradiction that 0 # @(m)rs = @(mrs) € ¢ N = 0.
Therefore 17 (N) = 0. Conversely, assume that x - m~'N = 0 for some 0 # x € K
and m € M. We define y : N+ mR — E(K) by y(n +mt) = xt forn € N
and ¢t € R. Clearly, y is a nonzero R-homomorphism vanishing on N. Also, there
exists Y : M — E(K) such that Y|y4,ug = Y. Since 0 = YN, 0 # ¥y € lg(N), a
contradiction. Therefore x - m~'N # 0. O

If M = R, the following result is directly provided.
Corollary 3.7 ([14, Proposition 1.1]) Let K be a right R-module and I be a right ideal
of aring R. Then I is K-dense in R if and only if 1gxy(I) = 0.
Proposition 3.8 Let K be a right R-module and I be an ideal of a ring R. Then
Ix (1) = 0if and only if1gx)(I) = 0.

Proof Since one direction is trivial, we need to show the other direction. Suppose
Ix (1) = 0. Assume that lgk)(I) # 0. Then there exists 0 # x € E(K) such
that xI = 0. Also, 0 # xr € K for some r € R because K <®*° E(K). Since
xrl € xI =0,0# xr € lg(I), a contradiction. Therefore 1 k) (1) = 0. m]
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Corollary 3.9 ([3, Proposition 1.3.11(iv)]) Let I be an ideal of a ring R. Then I <9
RpR if and only if 1g(I) = 0.

Proof The proof also follows from Corollary 3.7 and Proposition 3.8. O

Using Theorem 3.3 and Corollary 3.7, we obtain another characterization for the
rational hull of a module. Also, using the characterization of the relatively dense
property, a new characterization for the rational hull of a module is provided.

Corollary 3.10 Let M be a right R-module. Then the following statements hold true:

(i) ([14, Proposition 1.4(b)]) E(M) {x € E(M)|lE(M)(x’1M) = 0}.
(ii) E(M) {x € E(M) |Homg(R/x~'M, E(M)) = 0}.

Proof 1t directly follows from Theorem 3.3, Proposition 3.5, and Corollary 3.7. 0O

Several new characterizations for the maximal right ring of quotients of a ring are
provided as the following.

Theorem 3.11 Let R be a ring. Then the following statements hold true:

(i) A right ideal I is dense in R if and only if 1ggy(1) = O.
(ii) Q(R) ={x € E(R)|x~'R <®" R}.
(iii) OQ(R) = {x € E(R) |1gg)(x"'R) = 0}.
(iv) Q(R) = {x € E(R) |Homg(R/x"'R, E(R)) = 0}.

We give characterizations for a rationally complete module.

Theorem 3.12 The following conditions are equivalent for a right R-module M :

(a) M is a rationally complete module;

(b) x € E(M)/M [1g)(rr(x)) =0} =0;

(c) For any 1 5?&“ R, ¢ € Homg(I, M) can be uniquely extended to ¢ €
Hompz (R, M).

Proof Take A :={x € E(M)/M |1gm)(rr(x)) = 0}.

(a)=(b) Assume that x € E(M) \ M such that x € A. From Corollary 3.7,
rR(x) <den R. Since rg(x¥) = x M, x~'M <den R. Hence from Theorem 3.3
xekE (M ). As M is rationally complete, M = E (M) Thus x € M, a contradiction.
Therefore A = 0.

(b)=(c) Assume to the contrary of the condition (c). For I 5‘}5“ R, since M C
E (M), there exists ¢ € Homg (I, M) such that ¢ € Homg (R, E(M)), ¢|; = ¢, and
@(1) ¢ M.Since 0 # ¢(1) + M € E(M)/M and I C rg(@(1) + M) sg,?n R,
1o (rr(@(1) + M)) = 0 from Corollary 3.7, a contradiction that A = 0. Therefore
@ € Homg (I, M) is extended to ¢ € Homg (R, M). For the uniqueness, the proof is
similar to that of Proposition 3.13.

(c)=(a) Assume that M is not rationally complete. Then there exists x € E (MH)\M
such that x~'M 5%2“ R from Theorem 3.3. Define ¢ : x~'M — M given by
@(r) = xr. By hypothesis, (1) = x1 = x € M, a contradiction. Therefore M is
rationally complete. O
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Next, as a ring is embedding into its maximal right ring of quotients, we provide
the relationship between the endomorphism rings of a module and its rational hull.

Proposition3.13 Let M and K be rlght R-modules. For any N <den M, ¢ €
Homg (N, K) is uniquely extended to ¢ € Hompg(M, E(K)) and <p|N = ¢. In
addition, g N <den oM.

Proof (Existence) Let ¢ € Homg(N, K) be arbitrary. Then there exists ¢ €
Homg(M, E(K)) such that ¢|y = ¢. Since ¢ induces a surjection from M/N
to (M + E(K))/E(K) and Homg(M /N, E(K)) = 0 (see Proposition 3.5),

Homp (% E(K)) = 0. Hence E(K) <den ZM + E(K) by Proposition 2.1.

AsE (K) is rationally complete (pM C E(K ).

(Uniqueness) Suppose 7] and w are in Hompg (M, E (K )) such that ¢|y = w| NIt
is enough to show that ¢ = 1/f Assume that @(x) # w(x) for some x € M. Take
0#y:=(@— ¥)x) € E(K). Thus, there exists r € R such that 0 # yr € K.
Since N <Glen M, there exists s € R such that xrs € N and yrs # 0. This yields a
contradlctlon that 0 # yrs = (¢ — w)(xrs) = (@|§y — Ip|N)(xrs) = 0. Therefore
g=1.

In addition, let x; € M and 0 # x, € ¢M. Then ¢(m) = x1, p(m2) = x2
for some my,my € M. As gM C E(K), 0 # xor € K for some r € R. Since
N 5‘}(‘“‘“ M and mr € M, there exists s € R such thatmrs € N and 0 # xprs. Thus
xirs = @(myrs) € N and 0 # xors. Therefore g N <% M. O

Noting that the dense property implies the essential property, however the relatively
dense property does not imply the essential property in general. See Z ), 5%6“ Ly, ®ZLp
but Z,, ﬁess Zp, ® Zp as a Z-module. However, Proposition 3.13 shows that g N <den
@M when N 5‘,1(6“ M forany ¢ € Homg(N, K). As acorollary, we have a generalized
result of Theorem 3.12((a)=>(c)).

Corollary 3.14 Let M be a right R-module. If K is rationally complete, then for any
N 5‘};’“ M, ¢ € Homg(N, K) is uniquely extended to ¢ € Homg(M, K) and
gy =9

Theorem 3.15 Let M be a right R-module. Then Endg (M) is considered as a subring
of Endg (E(M)).

Proof Since M <den E:SM ), from Proposition 3.13 ¢ € Endg (M) can be uniquely
extended to @ € Endg (E(M)) because Endg (M) C Hompg (M, E(~M)). Thus we have
a one-to-one correspondence between Endg (M) and {¢ € Endg(E(M)) | ¢\l = ¢ €
Endg (M)} given by Q(p) = ¢. We need to check that 2 is a ring homomorphism.

(@) Since Q¢ +V)lv = (@ +V)Iu =9+ V¥ = Q@)u +QLW)In = (2(p) +
Q(Y))|m, from the uniqueness of Proposition 3.13 we have Q (¢ + ) = Q(¢) +
Q). -

(i) Since Q@ oY)y = (o Y)lm = oy = Q(@)lu o QW) Im = (2(p) o
Q)| m because 2(¢)|y < M, from the uniqueness of Proposition 3.13 we have
Qo) =Q(p) o Q2(Y). _

Thus Endg (M) is isomorphic toa subring of Endg (E (M)). Therefore we consider
Endg (M) as a subring of Endr (E(M)). O
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We conclude this section with results for the rational hulls of quasi-continuous mod-
ules and quasi-injective modules. Recall that a module M is called quasi-continuous
if every submodule of M is essential in a direct summand of M, and for any direct
summands M; and M, of M such that M N My = 0, M| & M, is a direct summand
of M. Also, aring R is called right quasi-continuous if Ry is quasi-continuous.

Theorem 3.16 The following statements hold true for a module M :

(i) If M is a quasi-continuous module then E (M) is a quasi-continuous module.
(ii) If M is a quasi-injective module then E(M) is a quasi-injective module.

Proof (i) Let T = EndR(E(E(M))) = Endgr(E(M)). From [10, Theorem 2.8], we
need to show that f E M) < E (M) for all idempotents f 2 =fel. Assume that
fE(M) £ E(M) for some idempotent f2 = f € T. Then there exists x € E(M)
such that f(x) ¢ E(M) Thus, there exists g € T such that gM = 0 and gf (x) # 0.
Since gf(x) € E(M), there exists r € R such that 0 # gf(xr) € E(M) Thus,
as M <den E(M) and xr € E(M) there exists s € R such that 0 # gf(xrs) and
xrs € M. Note that fM < M for all idempotents f> = f € T because M is quasi-
continuous. However, 0 # gf(xrs) € gf M < gM = 0, a contradiction. Therefore
E (M) is a quasi-continuous module.

(i1) The proof is similar to that of part (i) by using [10, Corollary 1.14]. O

Remark 3.17 ([1, Theorem 5.3]) The rational hull of every extending module is an
extending module.

Note that if M is an injective module then M = E(M) (see [7, Examples 8.18(1)]).
The next examples exhibit that the converses of Theorem 3.16 and Remark 3.17 do
not hold true, in general.

Example 3.18 (i) Consider Z as a Z-module. Then E (Z) = Q is (quasi-)injective,
while Z is not quasi-injective.

(ii)( [10, Example 2.9]) Consider a ring R = (} £) where F is a field. Then
E (Rg) = (; g) is injective (hence, quasi-continuous), while Rg is not right quasi-
continuous.

(iii) Consider Z™ as a Z-module. Then E ZMy = QW s injective (hence,
extending), while ZM is not extending.

Corollary 3.19 The maximal right ring of quotients of a right quasi-continuous ring
is also a right quasi-continuous ring.

Remark 3.20 ([7, Exercises 13.8]) The maximal right ring of quotients of a simple
(resp., prime, semiprime) ring is also a simple (resp., prime, semiprime) ring.

Open Question 1 Is the rational hull of a continuous module always a continuous
module?

4 Direct Sum of Rational Hulls of Modules

As we know, the injective hull of the direct sum of two modules is the direct sum of the
injective hulls of each module without any condition. However, the rational hull case
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is different from the injective hull case. In this section, we discuss the condition for
the rational hull of the direct sum of two modules to be the direct sum of the rational
hulls of those modules. The next example shows that the rational hull of the direct sum
of two modules is not the direct sum of the rational hulls of each module, in general.

Example4 1 Consider M = Z®Z, as a Z-module where p is prime. Then E (Z)=Q
and E(Zp) = Zp. However, by [7, Example 8.21] E(M) =Zp) DLy # QD Zy

where Z,) = {; € Q|m,n € Z, (n, p) = 1}. Hence M is not a dense submodule
of Q ® Z. For (%,6) and 0 # (0,1) € Q @ Z,, there is no n € Z such that

n(5,0) € Z&Z, and n(0, 1) # 0.

Proposition 4.2 Let M = @, My where My be a right R-module and A is any
index set. If either R is right noetherian or | A| is finite, then E(M) < @Bicnr E(Mk)

Proof Suppose 0 #m € E(M). Since E(M) C E(M) = @yep E(My) because R is
right noetherian or |A] is finite, there exists £ € N such that m € @f:] E(M;). Thus,
m = (my,...,my) where m; € E(M;). Since (0,...,0, y,-,O,...,O) . m_lM #0
forall0 # y; € E(M;) andm™'M = ml_lMl ﬂmz_ My, yi - m_ M; # 0 for
all0 # y; € E(M;). Thus, m; € E(M ) for all 1 < i < ¢ from Proposition 2.4. So,
m=(mi,....mp) € ®_ E(M;) C @ren E(My). Therefore E(M) < @ren E(My).

O

Remark 4.3 Example 4.1 illustrates Proposition 4.2 because R = Z is a noetherian
ring, that is, E(Z DZpy) =Zpy®ZLy < QB Zy = E(Z) @ E(Zl,). However,
Example 4.7 shows that the condition “either R is right noetherian or |A| is finite” is
not superfluous because E(@keAZZ) = [Tker Z2 > ®rerZr = ®rken E(Zz) with a
non-noetherian ring R = (BrerZo, 1).

To get the reverse inclusion of Proposition 4.2, first we provide the properties of
the relatively dense property.

Lemma4.4 Let N < M and K; be right R-modules for all i € A. Then the following
conditions are equivalent:

(a) N is Ki-dense in M foralli € A;
(b) N isD;p Ki-dense in M;
(c) Nis@,;cp E(Ki)-dense in M.

Proof (a)=>(b) Let P be any submodule such that N < P < M. Since N
is K;-dense in M, Homg(P/N, K;) = O for all i € A from Proposition 3.5.
Consider the canonical embedding ®;cp K; — ]_[l-E A Ki. Then we have 0 —
Homg(P/N, ®icaKi) — Homg(P/N,[[jcp Ki) = [l;cp Homg(P/N, K;) =
0. Thus Homg(P/N, ®;cpK;) = 0. Therefore N is @®;cp K;-dense in M from
Proposition 3.5.

(b)=(a) Since Homg (P /N, ®;ca K;) = 0, Homg(P/N, K;) = Oforeachi € A.
Hence N is K;-dense in M foralli € A.

(a)<(c) Since E(E(K,-)) = E(K;), from Proposition 3.5 it is easy to see that N
is K;-dense in M if and only if N is E(Ki)—dense in M, for all i € A. The proof is
similar to that of the equivalence (a)<>(b). O
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Using Lemma 4.4, we obtain a characterization for @cp Ny to be a dense
submodule of @rcp My where N; is a submodule of M; foreachi € A.

Proposition 4.5 Let N; < M; be right R-modules for all i € A where A is any index
set. Let N = @ycp Nk and M = @y p My. Then N <% M if and only if N; is
M j-dense in M; foralli, j € A.

Proof Suppose N <9 M. Then N is M-dense in M by the definition. From
Lemma 4.4 N is Mj-dense in M forall j € A.Letx; € M; and 0 # y; € M;
be arbitrary for each i, j € A. Consider the canonical embedding ¢ : M; — M. Since
t(xj) =(0,...,0,x;,0,...) € Mand 0 # y; € M;, there exists r € R such that
t(xj)r = t(x;r) € N and y;r # 0. Since x;7 € N; and y;jr # 0, N; is M j-dense in
M; foralli, j € A.

Conversely, suppose N; is M j-dense in M; for all i, j € A. From Lemma 4.4, N;
is Prep Mi-dense in M; foralli € A.Letx € M and 0 # y € M be arbitrary. Then
there exists £ € Nsuch that x = (xq,...,x¢) € @ilek < M. Since N is M-dense
in M1, there exists 1 € R such that x;7; € Ny and O # yr; € M. Also, since N; is
M-dense in M», there exists 7, € R such that x,r17p € Ny and 0 # yrirp € M. By
the similar processing, we have r = ryr2 - - - r¢ € R such that xr € @ﬁlek < N and
yr # 0. Therefore N <9 M. O

From Propositions 4.2 and 4.5, we have a characterization for the rational hull of
the direct sum of modules to be the direct sum of the rational hulls of each module.

Theorem 4.6 Let M = @, ., My where My is a right R-module and A is any index
set. If either R is right noetherlan or |A| is finite, then E(M) @keA E(Mk) if and
only if M; is M j-dense in E(M )foralli, j € A.

Proof Suppose. E(M) = @keAE(Mk) Since M <den @kEAE(Mk) from Proposi-
tion4.5 M; is E(M )- densemE(M)forallz Jj € A.Thus, M;is M densemE(M)
foralli, j € A from Lemma 4.4.
Conversely, suppose M; is M j-dense in E (M;) for all i, j € A. Then M; is
E(M )-dense in E (M;) foralli, j € A from Lemma 4.4. Thus, from Proposition 4.5
<derl EBkeAE(Mk) Hence éBkeAE(Mk) < E(M) from Proposition 2.3. Also, from
Proposmon 4.2 E(M) < @keAE(Mk) Therefore E(M) @keAE(Mk) O

The next examples show that the condition “R is right noetherian or |A]| is finite”
in Theorem 4.6 is not superfluous.

Example 4.7 (i) Let R = (®repZr, 1) and M = ®ren My where My = Z,. Note that
R is not noetherlan Since Z, is an injective R module, E(Z;) = Z. Thus M; is M ;-
dense i in E(M) for all i, j € A. However, E(EBkeAzz) = erA Loy > @renln =
Srer E(Z).

(i) Let R = {(ax) € [[1en Z | ak is eventually constant} and M = @renZ. Note
that R is not noetherian. Then E (7)) = Q and Z is Z-dense in E (Z). However,

E@keaZ) = [Trep Q > ®keaQ = Gren E(2).

The next example illustrates Theorem 4.6.
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Example 4.8 Consider M = 7 @ Z, as a Z-module where p is prime. Then Z, is
Z-~dense in E(Zl,) = Zp, but Z is not Z,-dense in Q because for % eQ1¢€ Lp,
tEere is no element ¢ € Z such thaﬁ t% € % and 71 # 0. Thus, from Theorem 4.6
EM) =2 ®Z, < Q@®Zy, = E(Z) ® E(Zp). (See Example 4.1 for details.)

Corollary 4.9 Let M be a right R-module. If either R is right noetherian or A is a
finite index set, then EM®W)Yy = (EM))W.

Corollary 4.10 Let {My}rcn be a class of rationally complete right R-module for any
index set A. If either R is right noetherian or |A| is finite, then M = @, My is
rationally complete.

Proof Since E(Mi) = M;, M; is M j-dense in E(Mi) for all i, j € A. From Theo-
rem 4.6, E(M) = @kep E(My) = ®rea My = M. Therefore Ggep My, is rationally
complete. O

Proposition 4.11 ([14, Proposition 1.9]) Let {S;}ica be a set of nonisomorphic simple
modules, representing all singular simple modules. Then every module containing the
module P = @, Si is rationally complete.

5 The Endomorphism Ring of a Module Over a Right Ring of
Quotients of a Ring

In this section, we obtain some condition under which Endg (M) = Endy (M) where
H is a right ring of quotients of a ring R. Recall that an extension ring H of a ring
R is called a right ring of quotients of R if for any two elements x # 0 and y of H,
there exists an element € R such that xr # 0 and yr € R.

Theorem 5.1 Let M be a right H-module where H is a right ring of quotients of a
ring R. If R is M g-dense in Hg then Endg (M) = Endy (M).

Proof Since Endy (M) C Endg (M), it suffices to show that Endg (M) C Endy (M).
Let ¢ € Endg(M) be arbitrary. Assume that ¢ ¢ Endy (M). Then there exist m €
M,t € H such that ¢(mt) — ¢(m)t # 0. Since R is Mg-dense in Hg, there exists
r € R such that (p(mt) — @(m)t)r £ 0 and tr € R. Hence 0 #£ (p(mt) — p(m)t)r =
o(mt)r —o@m)(tr) = p(mtr) —@(mtr) = 0, a contradiction. Therefore Endg (M) =
Endy (M). O

Remark 5.2 (i) A ring R is always E(R)-dense in Hg where H is a right ring of
quotients of R. Let x € Hg and 0 # y € E(R). Since H <°% E(R)g, there exists
s € Rsuchthat 0 # ys € H. Also, xs € H. Since R <% Hp, there exists € R
such that xst € R and 0 # yst. Therefore R is E(R)-dense in Hg.

(i) If M is a nonsingular R-module, then R is Mg-dense in Hg. Let 0 # m € M
and ¢t € H be arbitrary. Take t"'R={reR|treR}a right ideal of R. Note that
~1R < Rp. Since 'R %_ rg(m), there exists r € t~'R and r ¢ rg(m). Thus,
tr € R and mr # 0. Therefore R is Mg-dense in Hp.
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(iii) If M is a submodule of a projective right H-module, then R is Mr-dense in Hp.
Let P be a projective right H-module including M, thatis, M < P where P <® H®)
with some index set A. Then there is a right R-module K < E(P) such that E(P) =
E(M) @ K. Since R <% Hp, we get that R is H™)-dense in Hp from Lemma 4.4.
Hence R is P-dense in Hg. Thus Homg(H /R, E(P)) = 0 from Proposition 3.5.
Since Homz(H /R, E(P)) = Homgr(H/R, E(M)) ® Homgr(H/R, K), we obtain
Homp(H /R, E(M)) = 0. It follows that R is M g-dense in Hp.

Corollary 5.3 Let M be aprojective right H-module where H is aright ring of quotients
of R. Then Endg(M) = Endy (M).

The next example illustrates Corollary 5.3.

Example 5.4 Let H = ]_[f,o:1 Zs and R = {(a,) € H | a, is eventually constant}. Then
H is a maximal right ring of quotients of R. Hence from Theorem 5.1, Endg (H®))=
Endy (H®)) = CFM (H).

Theorem 5.5 Let M be a finitely generated free R-module with S = Endg(M). If
either R is right noetherian or A is any finite index set, then Endg (E(MV)) =
CFMa (Q(9)).

Proof Let M = R™ for some n € N. From Corollary 4.9, E(RM) =
E(R™ = QR™W as E(R) = Q(R). Hence Endg(E(MWY)) =
Endg (E(M)®) = Endg ((Q(R)™W) = Endger) (QR)™M)N) =

CFMp (EndQ(R)(Q(R)(”))) = CFM, (Mat, (Q(R))) from Theorem 5.1. Therefore
Endg (E(M(A))) = CFMy (Q(Endg(M))) because Mat, (Q(R)) = Q(Mat, (R)) by
[15, 2.3] and Endg (M) = Mat,(R). O

The next result is generalized from [15, 2.3].

Corollary 5.6 Let M be a finitely generated free R-module. Then Q(Endg(M)) =
Endg(E(M)).

The following example shows that the above result can not be extended to flat
modules. This example also shows that a ring R is not M-dense in Q as a right
R-module where Q is a right ring of quotients of R.

Example 5.7 Let H = I—[ZO:] Zo, R = {(an) € H | a, is eventually constant}, and
I = {(ay) € H | a, = 0 eventually}. Note that H = Q(R). Let M = H /I, which
is a flat H-module but not projective. We claim that Endy (M) C Endg(M). Indeed,
define f : M — M via

f[(a17025"'7al‘l7an+19~-~)+1]:(a130702507"'7an507al‘l+1707"')+17
forany a :E+I = (al,gz, cesQpyQpyt, ..+ € M.Itiseasytoseethatf(a—i—z)
= f(a)+ f(b) foranya, b € M. Meanwhile, foranyr = (r1,72,...,7n, 'nt1,...) €

R, we have

©,...,0,an,an41,...)+ 1, ifr,=rpy1=---=1;

(a+1>r=“’“:{(0,...,0,0,0,...)+1, ifrn=rps1=---=0
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Note thata + I = (0,0, ...,0,a,, ay+1,...) + I for some n € N. One can easily
see that f[(a+ Dr]l=[f(a+ I)]r foralla € H,r € R. This shows f € Endg(M).
However, forg = (0,1,0,1,...) = q2 € H,wehave [f(qg 4+ I)lg = 0+ I while
flg+ gl = f(g+ 1) # 0+ I.This means f ¢ Endy(M). Thus, Endg (M) C
Endgr(M). Note that R is not Mg-densein H.Leth € H\ Randm =1+1 € M.
Since (1 + I)r = 0+ [ forallr € I,ithastober € R\ I to get mr # 0+ 1.
However, hr ¢ R.

Recall that a module M is said to be polyform if every essential submodule of M
is a dense submodule.

Lemma 5.8 A module M is polyform if and only ifE(M) is a polyform quasi-injective
module.

Proof Let X be essential in E(M). Then X N M <®5 M. Hence X N M is a dense
submodule of M because M is polyform. Since X N M <den 7 <den E (M), XN
M <den E(M) Thus X is a dense submodule of E(M) from Proposition 2.2(ii).
Therefore E(M) isa polyform module. In addition, Mis also a polyform module from
[16, 11.1]. Since M <°s¢ M, M <% M. Thus E(M) = E(M) Since the rational
hull of a quasi-injective module is also quasi-injective from Theorem 3.16(ii), E (M)
is a quasi-injective module. Therefore E(M)isa polyform quasi-injective module.

__ Conversely, let N be any essential submodule of M. Then N is also essential in
E(M).Hence N is adense submodule of E(M) as E(M) is polyform. So N is a dense
submodule of M. Therefore M is polyform. O

We show from Theorem 3.15 that there is a monomorphism from the ring
Endg (M) into the ring Endg (E(M)). Next, we obtain a condition when Endg (M)
and Endg (E(M)) are isomorphic. It is a generalization of [7, Exercises 7.32].

Proposition 5.9 If M _is a quasi-injective module then there is an isomorphism 2 :
Endr (M) — Endg (E(M)). Inparticular, if M is a polyform module, then the converse
holds true.

Proof In the proof of Theorem 3.15, we only need to show that €2 : Endg(M) —
Endg (E(M)) g1ven by Q(¢) = @, is surJectlve Let ¢y € EndR(E(M)) be arbitrary.
Then there exists Ip € Endg (E(M)) such that ‘ME(M) Y. Since wM < Mas M is
quasi-injective, W|M = Y|y € Endg(M). Thus, Q(|y) = ¥, which shows that
is surjective.

In addition, suppose that M is a polyform module. Then from Lemma 5.8, E (M) is
quasi-injective. Thus, for any ¢ € Endg(E(M)), ﬁE(M) < E(M). Since e €
Endg (E(M)) and Endg (M) = Endg(E(M)) via €, there exists ¢ € Endg(M) such
that Q(¢p) = lﬂE(M)- Also by Theorem 3.15, &)y = ¢. Thus, vM = oM < M.
Therefore M is a quasi-injective module. O

Corollary 5.10 If M is a quasi-injective module, then Q (Endgr(M)) = Endg (E(M)).

Proof Since M is a quasi-injective module Endg (M) is a right self-injective ring. So,
Q(Endr(M)) = Endg(M). Thus, Q(Endg(M)) = Endr(E(M)) by Proposition 5.9.
O

@ Springer



164 Page140f15 G. Lee

Remark that if M is a quasi-injective module then E(M)isa quasi-injective module
from Theorem 3.16(ii) and Endg (M) = Endg (E (M)) from Proposition 5.9. However,
the next example shows that there exists a quasi-injective module M such that M #
E(M).

Example5.11 Let R = (§ L) and M = ({ &) where F is a field. Then M is a quasi-
injective R-module. However, E(M) = E(M) = (99) because M is nonsingular.
Thus M is a quasi-injective R-module such that M < E (M) and Endg (M) = (89) =
Endg (E(M)).

Because E(M) = E(M) for aright nonsingular module M, we have the following
well-known results as a consequence of Proposition 5.9.

Corollary 5.12 ([7, Exercises 7.32]) For any nonsingular module M, the following
statements hold true:

(i) there is a canonical embedding 2 : Endg (M) — Endg(E (M)).
(ii) M is a quasi-injective R-module if and only if Q is an isomorphism.

Corollary 5.13 Let M be a right H-module where H is a right ring of quotients of a
ring R. Then the following statements hold true:

(i) If M is a nonsingular R-module then Endg (M) = Endy (M).
(ii) If M is a submodule of a projective H-module, then Endg (M) = Endy (M).
(iii) If M is a nonsingular quasi-injective R-module then Endg (M) = Endg(E(M))
and Endy (M) = Endy (E(M)).
(iv) If M is a quasi-injective R-module and is a submodule of a projective H-module
then Endg (M) = Endg (E(M)) and Endg (M) = Endy (E(M)).
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