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Abstract
A (generalized) topological space is called an iso-dense space if the set of all its
isolated points is dense in the space. The main aim of the article is to show in ZF a
new characterization of iso-dense spaces in terms of special quasiorders. For a non-
empty family A of subsets of a set X , a quasiorder �A on X determined by A is
defined. Necessary and sufficient conditions for A are given to have the property
that the topology consisting of all �A-increasing sets coincides with the generalized
topology on X consisting of the empty set and all supersets of non-empty members of
A. The results obtained, applied to the quasiorder �D determined by the family D of
all dense sets of a given (generalized) topological space, lead to a new characterization
of non-trivial iso-dense spaces. Independence results concerning resolvable spaces are
also obtained.

Keywords Quasiorder · Generalized topology · Alexandroff space · Iso-dense space ·
Resolvable space · Amorphous set

Mathematics Subject Classification 54A05 · 54A10 · 54F05 · 54F30 · 54G12 ·
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1 Introduction

The set-theoretic framework for this paper is the Zermelo-Fraenkel system of axioms
ZF. The Axiom of Choice (AC) is not an axiom of ZF. The system ZF + AC is
denoted by ZFC.
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We recall that a quasiorder (or, equivalently, a preorder) on a set X is a reflexive
and transitive binary relation on X . For a given a quasiorder � on X , the family

τ [�] = {U ⊆ X : (∀x ∈ U )(∀y ∈ X)(x � y → y ∈ U )}

is a topology on X called the specialization topology from � (see [19, p. 195]).
Every family of subsets of a given set X determines a quasiorder on X in the sense

of the following definition:

Definition 1.1 Let A be a family of subsets of a set X . The binary relation �A on X
defined by the following rule:

(∀x, y ∈ X)(x �A y ↔ (∀A ∈ A)(x ∈ A → y ∈ A))

is called the quasiorder determined by A.

If τ is a topology on X , the quasiorder �τ has been considered by various authors.
It is usually called the specialization(or canonical) preorder of the topological space
〈X , τ 〉. Basic properties of specialization preorders can be found in [19].

Every family of subsets of a set X is a base of a generalized topology on X in the
sense of the following definitions:

Definition 1.2 (1) A generalized topology on a set X is a family μ of subsets of X
such that ∅ ∈ μ and, for every subfamily U of μ,

⋃U ∈ μ (cf. [4]).
(2) A strong generalized topology on a set X is a generalized topology μ on X such

that X ∈ μ (cf. [5, 8]).
(3) A base for a generalized topology μ on a set X is a subfamily B of μ satisfying

the following condition:

(∀U ∈ μ)(∀x ∈ U )(∃B ∈ B) x ∈ B ⊆ U

(cf. [7, 8]).
(4) A generalized topological space is an ordered pair 〈X , μ〉 where X is a set and μ

is a generalized topology on X (cf.[4]). If μ is a strong generalized topology on
X , the generalized topological space 〈X , μ〉 is said to be strong.

Strong generalized topologies are called supra topologies in [15]. A strong gen-
eralized topology μ on X is a topology on X if and only if μ is closed under
finite intersections. Generalized topologies have been widely studied by many
mathematicians (see, for instance, [4–8, 11, 15, 16, 21]).

Definition 1.3 Let A be a family of subsets of a set X .

(1) The generalized topology determined byA is the familyμ[A] defined as follows:

μ[A] := {U ⊆ X : (∀x ∈ U )(∃A ∈ A) x ∈ A ⊆ U }.

123



Quasiorders for a Characterization of Iso-dense Spaces Page 3 of 19 161

(2) The extended generalized topology determined by A is the family μ̃[A] defined
as follows:

μ̃[A] := μ[A] ∪ {V ⊆ X : (∃A ∈ A \ {∅}) A ⊆ V }.

Let us notice that if A is a family of subsets of a set X , then A is a base for
the generalized topology μ[A] on X . Furthermore, if ∅ �= A �= {∅}, the extended
generalized topology μ̃[A] is strong.

In Sect. 3, given a non-empty family A of subsets of a set X such that A �=
{∅}, we show necessary and sufficient conditions for A to have the property that
τ [�A] = μ[A] (see Theorem 3.6). We also give a number of conditions under
which τ [�μ̃[A]] = μ̃[A] (see Theorem 3.10). Some of our results are relevant to
the well-known characterization of Alexandroff spaces via quasiorders. Let us recall
the definition of an Alexandroff space, which has its roots in [1].

Definition 1.4 (Cf. [2, p. 17] and [19, Definition 8.1.1].) A topological space X is
called an Alexandroff space if, for every non-empty family U of open sets in X, the
set

⋂U is open in X. The topology of an Alexandroff space is called an Alexandroff
topology.

In the light of [19, Theorem 8.3.3], we have the following characterization of
Alexandroff topologies:

Theorem 1.5 (Cf. [19, Theorem 8.3.3].) For every topology τ on a set X, the following
conditions are equivalent:

(1) τ is an Alexandroff topology;
(2) there exists a quasiorder � on X such that τ = τ [�];
(3) τ = τ [�τ ].

The one-to-one correspondence between quasiorders on a set X and Alexandroff
topologies on X has been known since 1937 (see [1, 3]).

Before we pass to the body of this paper, in Sect. 2, we establish our notation and
terminology. At the end of Sect. 2, we give an illuminating Example 2 which, together
with Theorem1.5, hasmotivated us to this work. In Sect. 3, among other helpful things,
we slightly modify Theorem 1.5 by observing that, for every generalized topology μ

on a non-empty set X , it holds that μ = τ [�μ] if and only if μ is an Alexandroff
topology (see Theorem 3.6).

In Sect. 4, we apply the results obtained in Sect. 3 to a new characterization of
iso-dense spaces. The term “iso-dense” was introduced in [14] in the sense of the
following definition:

Definition 1.6 Let X be a topological space and let Iso(X) be the set of all isolated
points of X.

(1) (Cf. [14].) The space X is called an iso-dense space if the set Iso(X) is dense in
X.

(2) (Cf. [10, Chapter 1.3].) If Iso(X) = ∅, then X is called a dense-in-itself (or
crowded) space.
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Let us remark that, by [14, Proposition5], every scattered space is iso-dense.Clearly,
every discrete space is iso-dense. Every compactification of an infinite discrete space is
iso-dense. Indiscrete spaces consisting of at least two points are trivial dense-in-itself
spaces.

For the aims of Sect. 4, we extend, in Sect. 2, the concept of an iso-dense space to
generalized topological spaces having dense sets of isolated points (see items (4) and
(7) of Definition 2.1). In Sect. 4, given a generalized topological spaceX = 〈X , μ〉, we
consider the familyD(X) of all dense subsets ofX (see item (5) ofDefinition 2.1). Then
the generalized topology determined by D(X) is the family μ[D(X)] = D(X) ∪ {∅}.
The generalized topology μ[D(X)] is not necessarily a topology on X . The following
two questions arise:

Question 1.7 Under which conditions on a (generalized) topological space X is
μ[D(X)] a topology?
Question 1.8 Under which conditions on a (generalized) topological space X is
μ[D(X)] an Alexandroff topology?

Obviously, an answer to Question 1.8 is a partial answer to Question 1.7. Our main
goal is to answer Question 1.8 and apply it to a new characterization of non-trivial iso-
dense spaces in Sect. 4. To this aim, we pay attention to the quasiorder �D(X) and the
topology τ [�D(X)]. Theorems 4.6 and 4.7 are the main results of Sect. 4. Theorem 4.6
characterizes, in terms of�D(X), non-trivial iso-dense generalized topological spaces.
Namely,we show inTheorem4.6 that, for every non-indiscrete generalized topological
spaceX, the following are all equivalent: (i)X is iso-dense, (ii) τ [�D(X)] = μ[D(X)],
(iii) μ[D(X)] is an Alexandroff topology. This answers Question 1.8. We also notice
that, for every non-indiscrete but dense-in-itself generalized topological space X, the
topology τ [�D(X)] is discrete (see Theorem 4.5). We modify these results to get a
characterization of all non-indiscrete generalized topological spaces X having the
property that the set of all not nowhere dense singletons of X is both dense and open
in X (see Theorem 4.7). This leads to other necessary and sufficient conditions for a
generalized topological T1-space 〈X , μ〉 with μ �= {∅} to be iso-dense (see Corollary
4.10).

Although the main results of Sect. 4 answer Question 1.8, they are not satisfactory
answers to Question 1.7. To give a little more light into Question 1.7 in Sect. 5, we
apply the following concept of a resolvable space introduced by Hewitt in [12]:

Definition 1.9 (Cf. [12].) A topological space X is called a resolvable space if there
exists a pair of disjoint dense sets in X. Topological spaces which are not resolvable
are called irresolvable spaces.

Both classes of resolvable and irresolvable topological spaces have been widely
studied in ZFC for years (see, e.g., [12, 18, 20] and [9]), but, to the best of our knowl-
edge, they have not been investigated in ZF so far. We generalize Definition 1.9 to the
concepts of a resolvable and an irresolvable generalized topological space (see items
(13) and (14) of Definition 2.1). Proposition 5.4 shows that if a non-indiscrete gener-
alized topological space X = 〈X , μ〉 is resolvable, then μ[D(X)] is not a topology.
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Therefore, to give a satisfactory answer to Question 1.7, it is necessary to investigate
the class of irresolvable generalized topological spaces inZF. To point out that the sit-
uation of this class in ZF significantly differs from that in ZFC, we observe that even
the following statement “for every infinite set X and the cofinite topology τcof (X)

on X (see Definition 2.12), the space 〈X , τcof (X)〉 is resolvable”, known to be true
in ZFC (see [20, p. 3]), is unprovable in ZF (see Theorem 5.11 and Corollary 5.12).
We leave deeper research on irresolvability in ZF and a more satisfactory answer to
Question 1.7 for another article. For the convenience of readers, we include a short
list of open problems in Sect. 6.

2 Preliminaries

We use standard set-theoretic notation. For a set X , [X ]<ω is the set of all finite
subsets of X . The power set of X is denoted by P(X). The symbols R, Z, N denote,
respectively, the set of all real numbers, the set of all integers and the set of all positive
integers. The symbol ≤ stands for the standard linear order on R.

All topological notions used in this article, if not introduced here, are standard and
can be found in [10] or [19].

Throughout this paper, if not stated otherwise, we denote (generalized) topological
spaces with boldface letters and their underlying sets with lightface letters.

Definition 2.1 Let X = 〈X , μ〉 be a given (generalized) topological space.

(1) Members of μ are said to be μ-open sets (or, simply, open sets in X). A subset C
of X such that X \ C is μ-open is said to be μ-closed (or closed in X).

(2) For a set E ⊆ X , clX(E) denotes the closure of E in X (that is, the intersection of
all μ-closed sets containing E), and intX(E) denotes the interior of E in X (that
is, the union of all μ-open sets contained in E).

(3) A subset E of X is called nowhere dense inX (or, equivalently,μ-nowhere dense)
if intX(clX(E)) = ∅ (cf. [21]). The collection of all μ-nowhere dense sets is
denoted by ND(X).

(4) We say that a point x ∈ X is an isolated point of X (or a μ-isolated point) if
{x} ∈ μ. The set of all μ-isolated points is denoted by Iso(μ) or Iso(X).

(5) A set D ⊆ X will be called μ-dense (or dense in X) if for every U ∈ μ \ {∅},
U ∩ D �= ∅. The collection of all μ-dense sets is denoted by D(X) or by D(μ).

(6) DO(X) := μ ∩ D(X).
(7) The space X is called an iso-dense (generalized) topological space if Iso(X) ∈

D(X).
(8) If Iso(X) = ∅, X is called a dense-in-itself (generalized) topological space.
(9) X is called a T0-space if, for every pair x, y of distinct points of X , there exists

U ∈ μ such that U ∩ {x, y} is a singleton (cf. [6, 15]).
(10) X is called a T1-space if every singleton of X is μ-closed (cf. [6, 15]).
(11) X is called an indiscrete space or trivial space if μ ⊆ {∅, X}.
(12) X is called a discrete space if μ = P(X).
(13) X is called a resolvable space if there exists a set D ∈ D(X) such that X \ D ∈

D(X). IfX is a resolvable space, the generalized topologyμ is said to be resolvable.
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(14) X is called an irresolvable space if it is not a resolvable space. IfX is an irresolvable
space, the generalized topology μ is said to be irresolvable.

Remark 2.2 Let μ be a given generalized topology on a set X and let τ be the coarsest
topology on X containing μ. Then every μ-isolated point is τ -isolated. A point x ∈ X
is τ -isolated if and only if there exists U ∈ [μ ∪ {X}]<ω \ {∅} such that {x} = ⋂U .
Every τ -dense subset of X is μ-dense. A subset D of X is τ -dense if and only if, for
every U ∈ [μ ∪ {X}]<ω \ {∅}, ⋂U �= ∅ implies D ∩ ⋂U �= ∅.
Remark 2.3 For a generalized topological space X, the family D(X) ∪ {∅} is a gen-
eralized topology but not necessarily a topology. Clearly, D(X) ∪ {∅} is a topology
if and only if, for every pair A, B of dense sets in X, the intersection A ∩ B is either
empty or dense in X.

In view of Remark 2.3, the following question is equivalent to Question 1.7.

Question 2.4 Under which conditions on a (generalized) topological space X is the
intersection of any two dense sets in X either empty or dense in X?

If a generalized topological space X is not strong, DO(X) ∪ {∅} is not a topology
on X . The following example shows that even for a strong generalized topological
space X, the generalized topology DO(X) ∪ {∅} need not be a topology.

Example 1 For X = {1, 2, 3}, let μ = {∅, X , {1, 2}, {2, 3}} and X = 〈X , μ〉. Then
DO(X) ∪ {∅} = μ is not a topology. Since the sets {2} and {1, 3} are dense in X, the
generalized topological space X is resolvable.

The following proposition is immediate.

Proposition 2.5 Let X = 〈X , μ〉 be a strong generalized topological space such that,
for every U ∈ μ and every D ∈ DO(X), U ∩D ∈ μ. ThenDO(X)∪{∅} is a topology
on X. In particular, for every topological space X, DO(X) ∪ {∅} is a topology on X.

In the notation of [19, Definition 8.5.1], for a given set X and its subset S,

Super(S) := {U ∈ P(X) : S ⊆ U } ∪ {∅}.

The family Super(S) is anAlexandroff topology on X called the topology of surpersets
of S. If S is a non-empty subset of X and X = 〈X ,Super(S)〉, then X is irresolvable,
D(X) ∪ {∅} = Super(S) and D(X) is closed under finite intersections. The following
proposition holds.

Proposition 2.6 For every (generalized) topological spaceX,D(X) ⊆ Super(Iso(X)).
Furthermore, a non-indiscrete (generalized) topological space X is iso-dense if and
only if

Super(Iso(X)) = D(X) ∪ {∅}.

123



Quasiorders for a Characterization of Iso-dense Spaces Page 7 of 19 161

Proposition 2.6 also leads to Question 1.8 motivating this research. As we have
already mentioned in Sect. 1, an answer to Question 1.8 is given in Sect. 4.

SinceAlexandroff topologies are determined by quasiorders, we need to have a look
at quasiorders. All one needs to know about quasiorders to understand the forthcoming
sections can be found in [19, Chapter 8] and [17]. We establish our notation and
terminology below.

Definition 2.7 Let � be a quasiorder on a set X .

(1) For every x ∈ X ,

↑[�, x] := {y ∈ X : x � y} and ↓[�, x] := {y ∈ X : y � x}.

(2) For all x, y ∈ X , x ≈ y means that x � y and y � x .
(3) A subset P of X is said to be �-increasing (respectively, �-decreasing) if, for all

x, y ∈ X such that x ∈ P and x � y (respectively, y � x), we have y ∈ P .
(4) An element a ∈ X is called �-maximal (respectively, �-minimal) if ↑[�, a] =

{a} (respectively, ↓[�, a] = {a}).
(5) An element a ∈ X is called weakly �-maximal (respectively, weakly �-minimal)

if, for every x ∈ X such that a � x (respectively, x � a), we have x ≈ a.
(6) The dual quasiorder from � is the quasiorder �d defined as follows:

(∀x, y ∈ X)(x �d y ↔ y � x).

(7) The dual specialization topology from � is the topology τ [�d ].
Remark 2.8 Let � be a given quasiorder on a set X . The specialization topology τ [�]
consists of all �-increasing sets. The dual specialization topology τ [�d ] consists of
all �-decreasing sets. Obviously, Iso(τ [�]) is the set of all �-maximal elements, and
Iso(τ [�d ]) is the set of all �-minimal elements.

Remark 2.9 If � is a partial order, the notions of a weakly �-maximal element and a
�-maximal element are equivalent (so are the notions of a weakly �-minimal and a
�-minimal element).

Remark 2.10 Given a quasiorder� on a set X , the relation≈ is an equivalence relation.
One can define a partial order � on the set X/≈ of all equivalence classes of ≈ as
follows: for all a, b ∈ X/≈, a � b if and only if, for each x ∈ a and each y ∈ b, x � y
(see [19, Theorem8.2.2]). Then an elementm ∈ X is weakly�-maximal (respectively,
weakly �-minimal) if and only if the equivalence class [m]≈ of ≈ containing m is
�-maximal (respectively, �-minimal).

The following example suggests some of the problems we consider.

Example 2 Consider the partial order on R defined as follows. For all x, y ∈ R, x � y
if and only if there exists n ∈ Z such that either x, y ∈ [2n − 1, 2n] and y − x ≥ 0 or
x, y ∈ [2n, 2n + 1] and x − y ≥ 0, as suggested in Fig. 1.
Every �-increasing set contains a �-maximal element 2n, so every non-empty τ [�]-
open set intersects the set M = {2n : n ∈ Z} of all �-maximal elements. Thus,
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Fig. 1 An iso-dense space X for which D(X) ∪ {∅} is a topology

M is dense in 〈R, τ [�]〉. Since M = Iso(τ [�]), the space 〈R, τ [�]〉 is iso-dense.
ThereforeD(τ [�])∪{∅} = Super(Iso(τ [�])). In this case, the collection of all τ [�]-
dense sets is closed under finite intersections, and, for every element x ∈ R, there
exists a �-maximal element m such that x �m.

Let us briefly summarize what happens in a general situation similar to that in
Example 2.

Proposition 2.11 Let 〈X ,�〉 be a quasiordered set, and let M be the set of all �-
maximal elements. If, for every x ∈ X, there exists m ∈ M such that x �m, then
M = Iso(τ [�]), the space 〈X , τ [�]〉 is iso-dense, andD(τ [�])∪{∅} is theAlexandroff
topology Super(M).

In Sect. 5, to discuss some difficulties with getting a satisfactory answer to Question
1.7 in ZF, we apply cofinite topologies and amorphous sets.

Definition 2.12 For a set X , let

τcof (X) = {∅} ∪ {U ⊆ X : X \U ∈ [X ]<ω}.

The topology τcof (X) is called the cofinite topology on X .

Definition 2.13 An infinite set X is called an amorphous set if, for every infinite subset
Z of X , the set X \ Z is finite. (See [13, Note 57].)

Remark 2.14 Form 64 of [13] is the statement: There are no amorphous sets. Since
there are models of ZF in which Form 64 of [13] is false, it may happen in ZF that
there are amorphous sets. For instance, Form 64 of [13] is false in Monro’s Model III
(model M37 in [13]). Every statement proved to be equivalent to Form 64 of [13] in
ZF is independent of ZF.

In Theorem 5.11, we show three new statements equivalent to [13, Form 64] in
ZF. We conclude with the independence results in Corollary 5.12. Apart from the
independence results, all other results of this work are obtained in ZF.

3 The Quasiorders and Generalized Topologies Determined by
Families of Sets

Throughout this section, we assume thatA is a non-empty family of subsets of a set X
such thatA �= {∅}. The main aim of this section is to compare the generalized topolo-
gies μ[A], μ̃[A], τ [�A] and τ [�μ̃[A]] (see Definitions 1.1 and 1.3). The following
illuminating example shows that these topologies can be pairwise distinct.
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Example 3 Let X = {1, 2, 3, 4} and A = {{1, 2}, {2, 3, 4}}. In this case, we have the
following:

(1) μ[A] = {∅, X} ∪ A and μ̃[A] = μ[A] ∪ {{1, 2, 3}, {1, 2, 4}};
(2) ↑[�A, 1] = {1, 2}, ↑[�A, 2] = {2}, ↑[�A, 3] = ↑[�A, 4] = {2, 3, 4};
(3) τ [�A] = μ[A] ∪ {{2}};
(4) ↑[�μ̃[A], 1] = {1, 2}, ↑[�μ̃[A], 2] = {2}, ↑[�μ̃[A], 3] = {2, 3} and

↑[�μ̃[A], 4] = {2, 4};
(5) τ [�μ̃[A]] = μ̃[A] ∪ {{2}, {2, 3}, {2, 4}};
(6) μ[A], μ̃[A], τ [�A] and τ [�μ̃[A]] are all irresolvable.
Definition 3.1 (1) I (A) := ⋂

(A \ {∅}).
(2) For every x ∈ X , BA(x) := {A ∈ A : x ∈ A}.
(3) If x ∈ X is such that BA(x) �= ∅, then IA(x) := ⋂BA(x).

We state several simple facts in the following proposition.

Proposition 3.2 (1) μ̃[A] = {∅} ∪ {U ⊆ X : (∃A ∈ A \ {∅})A ⊆ U }.
(2) I (A) = I (μ[A]) = I (μ̃[A]).
(3) I (A) ∈ μ[A] if and only if I (A) ∈ μ̃[A].
(4) For every x ∈ X, we have BA(x) �= ∅ if and only if Bμ[A](x) �= ∅.
(5) For every x ∈ X, if BA(x) �= ∅, then Bμ̃[A](x) �= ∅ and

Iμ̃[A](x) ⊆ IA(x) = Iμ[A](x).

Proposition 3.3 (1) For all x, y ∈ X, we have:

x �A y ↔ BA(x) ⊆ BA(y).

(2) �μ̃[A] ⊆ �A = �μ[A] .
(3) For every x ∈ X such that BA(x) �= ∅, we have IA(x) = ↑[�A, x].
(4) For every z ∈ I (A), I (A) = ↑[�A, z]. In consequence, I (A) ∈ τ [�A].
(5) μ[A] ⊆ τ [�A].
Proof We omit the elementary, simple proofs of (1)–(4). Since τ [�A] is a topology,
for the proof of (5), it suffices to show that A ⊆ τ [�A]. Consider any non-empty set
A ∈ A and any z ∈ A. It is easily seen that ↑[�A, z] ⊆ A, so A ∈ τ [�A]. ��

The following lemma is widely known and can be deduced immediately from [19,
Theorem 8.3.6] by considering the identity function on X .

Lemma 3.4 Let � and �∗ be quasiorders on a set X. Then �∗ ⊆ � if and only if
τ [�] ⊆ τ [�∗].
Theorem 3.5 (1) τ [�A] = τ [�μ[A]] ⊆ τ [�μ̃[A]].
(2) The equality τ [�A] = τ [�μ̃[A]] holds if and only if �A ⊆ �μ̃[A].

Proof This follows directly from Proposition 3.3(2) and Lemma 3.4. ��
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Now, we are in a position to state the main results of this section.

Theorem 3.6 The following conditions are all equivalent:

(1)
⋃A = X and, for every x ∈ X, IA(x) ∈ μ[A];

(2) τ [�A] = μ[A];
(3) μ[A] is an Alexandroff topology on X.

Proof Of course, if μ[A] is a topology on X , then
⋃A = X . Thus, it follows from

items (3) and (5) of Proposition 3.3 that conditions (1) and (2) are equivalent. Since
τ [�A] is an Alexandroff topology, (2) implies (3). It is obvious that (3) implies (1). ��
Corollary 3.7 If the family A is finite, then τ [�A] = μ[A] if and only if μ[A] is a
topology on X.

The following corollary has been shown to us by an anonymous reviewer.

Corollary 3.8 The following are equivalent:

(1) For every x ∈ X, Iμ̃[A](x) ∈ μ̃[A];
(2) τ [�μ̃[A]] = μ̃[A];
(3) μ̃[A] is an Alexandroff topology.

Proof Apply Theorem 3.6 for A′ = μ̃[A] and note that μ[μ̃[A]] = μ̃[A]. ��
Theorem 3.9 If I (A) = ∅, then the topology τ [�μ̃[A]] is discrete.
Proof Let x ∈ X and V = ↑[�μ̃[A], x]. Clearly, V ∈ τ [�μ̃[A]] and x ∈ V . Suppose
that t ∈ V \ {x}. Assuming that I (A) = ∅, we can fix U ∈ A \ {∅} such that t /∈ U .
Then W = U ∪ {x} ∈ μ̃[A], x ∈ W but t /∈ W , which contradicts the fact that
x �μ̃[A] t . This contradiction shows that V = {x}. Hence {x} ∈ τ [�μ̃[A]] and, in
consequence, the topology τ [�μ̃[A]] is discrete. ��

For x, y ∈ X such that x �A y and y �A x , we write x ≈A y.

Theorem 3.10 Suppose that I (A) �= ∅. Then I (A) is the set of all weakly�A-maximal
elements and the following conditions are all equivalent:

(1) τ [�μ̃[A]] = μ̃[A];
(2) I (A) ∈ μ[A];
(3) μ̃[A] = Super(I (A));
(4) μ̃[A] is an Alexandroff topology.

Furthermore, any of these conditions imply that the set I (A) is dense in τ [�μ̃[A]].
Proof If I (A) �= ∅, then I (A) is the set of all weakly �A-maximal elements by
Proposition 3.3(1) because, for every x ∈ X , BA(x) ⊆ A \ {∅} and x ∈ I (A) if and
only if BA(x) = A \ {∅}.

Now, let us assume that (1) holds. By Proposition 3.3(4), I (μ̃[A]) ∈ τ [�μ̃[A]].
Since I (A) = I (μ̃[A]) by Proposition 3.2(2), we have I (A) ∈ τ [�μ̃[A]]. It follows
from (1) that I (A) ∈ μ̃[A]. By Proposition 3.2(3), I (A) ∈ μ[A]. Hence (1) implies
(2).
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Since I (A) �= ∅, it is obvious that (2) implies (3).
Suppose that (3) holds. Let ∅ �= U ∈ τ [�μ̃[A]] and let x ∈ U . Put Vx = I (A)∪{x}.

It follows from (3) that Vx ∈ μ̃[A]. One can easily check that ↑[�μ̃[A], x] = Vx .
Hence Vx ⊆ U because x ∈ U ∈ τ [�μ̃[A]]. Since Vx ∈ μ̃[A], we deduce that
U ∈ μ̃[A]. Therefore, τ [�μ̃[A]] ⊆ μ̃[A]. Proposition 3.3(5) completes the proof that
(3) implies (1). In this way, we have shown that conditions (1)–(3) are all equivalent.
That (1) and (4) are equivalent follows from Corollary 3.8. Obviously, (3) implies that
the set I (A) is dense in τ [�μ̃[A]]. ��

Corollary 3.8 shows that the equivalence of (1) and (4) in Theorem 3.10 does not
require that I (A) �= ∅.
Corollary 3.11 If I (A) �= ∅ and τ [�A] = μ[A], then τ [�μ̃[A]] = μ̃[A].
Proof Assuming that I (A) �= ∅ and τ [�A] = μ[A], we deduce from Theorem 3.6
that μ[A] is an Alexandroff topology. This implies that I (A) ∈ μ[A]. Theorem 3.10
completes the proof. ��

The following example shows that the equality τ [�μ̃[A]] = μ̃[A] need not imply
τ [�A] = μ[A].
Example 4 Suppose that X is a set with at least two elements. Let x0 be a fixed
element of X and let A = {{x0}}. Then μ[A] = {∅, {x0}} is not a topology on X ,
so τ [�A] �= μ[A]. One can also notice that �A = {〈x0, x0〉} ∪ ((X \ {x0}) × X),
so τ [�A] = {∅, X , {x0}}. We have I (A) = {x0} and μ̃[A] = Super(I (A)). By
Theorem 3.10, τ [�μ̃[A]] = μ̃[A]. That τ [�μ̃[A]] = μ̃[A] can be also deduced from
the following equality: �μ̃[A] = {〈x, y〉 ∈ X × X : y ∈ {x0, x}}.
Theorem 3.12 Suppose that I (A) �= ∅ and τ [�A] = μ̃[A]. Then �A = �μ̃[A].

Proof It follows from Proposition 3.3(4) that I (A) ∈ μ̃[A]. By Proposition 3.2(3),
I (A) ∈ μ[A]. Hence, by Theorem 3.10, τ [�μ̃[A]] = μ̃[A]. This, together with the
equality τ [�A] = μ̃[A], implies that τ [�μ̃[A]] = τ [�A]. By Lemma 3.4, �A =
�μ̃[A]. ��

To have I (∅) and I ({∅}) also defined, let us reformulateDefinition 3.1(1) as follows:

Definition 3.13 For every family A of subsets of a set X ,

I (A) := {x ∈ X : (∀A ∈ A \ {∅}) x ∈ A}.

Remark 3.14 Considering Theorem 3.9, it is natural to ask what happens when X is a
non-empty set and A ⊆ {∅}. In this case, μ[A] = {∅} = μ̃[A], �μ̃[A] = X × X , so
τ [�μ̃[A]] is the indiscrete topology on X . In view of Definition 3.13, I (∅) = I ({∅}) =
X .

By replacing the quasiorders involved in our results with their duals, one can easily
obtain dual versions of the results.
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4 A Characterization of Iso-Dense Spaces

Themain goal of this section is to apply the results of Sect. 3 to our investigation of iso-
dense spaces via suitable quasiorders. We use the notation introduced in Definitions
1.1, 1.3, 2.1 and 3.1.

Let us recall that, given a generalized topological space X = 〈X , μ〉, Iso(X) is the
set of all isolated points of X, and D(X) is the collection of all dense sets in X. Then

μ[D(X)] = μ̃[D(X)] = D(X) ∪ {∅}.

For the collection DO(X) of all dense open sets of X, the generalized topology
μ[DO(X)] = DO(X) ∪ {∅} need not be a topology on X (see Example 1). We notice
that

μ̃[DO(X)] = {∅} ∪ {U ∈ P(X) : intX(U ) ∈ D(X)}.

As in Definition 2.1(3), we denote by ND(X) the collection of all nowhere dense
sets in X.

In Remarks 4.1 and 4.2 below, we show what happens with indiscrete generalized
topologies.

Remark 4.1 For a non-empty set X , let μ = {∅} and X = 〈X , μ〉. Then ∅ and X
are disjoint dense sets in the generalized topological space X, so X is resolvable.
Furthermore, D(X) = P(X) = ND(X), {∅} = DO(X) = μ[DO(X)] = μ̃(DO(X))

and Iso(X) = ∅. We notice that

�D(X) = {〈x, y〉 ∈ X × X : x = y} and �μ̃[DO(X)] = X × X .

Therefore, τ [�D(X)] = P(X) and τ [�μ̃[DO(X)]] = {∅, X}. Moreover, in view of
Definition 3.13, I (DO(X)) = X . If X is a singleton, then I (D(X)) = X . If X
consists of at least two points, then I (D(X)) = ∅.
Remark 4.2 For a non-empty set X , let μ = {∅, X} and X = 〈X , μ〉. Then D(X) =
P(X) \ {∅}, ND(X) = {∅}, DO(X) = {X}, and μ̃[DO(X)] = μ[DO(X)] = μ. If
X is a singleton, then X is irresolvable and Iso(X) = X = I (D(X)). If X consists
of at least two points, then X is resolvable and Iso(X) = ∅ = I (D(X)). Moreover,
I (DO(X)) = X . We notice that

�D(X) = {〈x, y〉 ∈ X × X : x = y} and �μ̃[DO(X)] = X × X .

Therefore, τ [�D(X)] = P(X) and τ [�μ̃[DO(X)]] = μ.

Remark 4.3 Let X = 〈X , μ〉 be a non-indiscrete generalized topological space. Since
μ � {∅, X}, we have ∅ �= X ∈ D(X) and ∅ �= ⋃

μ ∈ DO(X), so I (D(X)) and
I (DO(X)) can be both defined by Definition 3.1(1).
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In the sequel, we consider non-indiscrete generalized topologies.

Proposition 4.4 For every non-indiscrete generalized topological spaceX, the follow-
ing conditions are satisfied:

(1) I (D(X)) = Iso(X); in consequence, the set I (D(X)) is open in X;
(2) I (DO(X)) = {x ∈ X : {x} /∈ ND(X)};
(3) Iso(X) ⊆ I (DO(X));
(4) if X is either a T1-space or an Alexandroff T0-space, then I (DO(X)) = Iso(X);
(5) X is iso-dense if and only if μ[D(X)] = Super(I (D(X)).

Proof LetX = 〈X , μ〉 be a non-indiscrete generalized topological space. Since Iso(X)

is a subset of every dense set in X, (3) holds and Iso(X) ⊆ I (D(X)). Furthermore, if
x ∈ X \ Iso(X), then the set X \ {x} is dense in X and, therefore, I (D(X)) ⊆ X \ {x}.
This implies that I (D(X)) ⊆ Iso(X). Hence I (D(X)) = Iso(X). Thus, since Iso(X)

is open in X, (1) holds.
(2) Let x ∈ X be such that {x} ∈ ND(X). Then the set X \ clX({x}) is non-empty,

dense and open in X, so I (DO(X)) ⊆ X \ clX({x}). This implies that I (DO(X)) ⊆
{x ∈ X : {x} /∈ ND(X)}. To show that the reverse inclusion also holds, consider any
set D ∈ DO(X) and any x ∈ X with {x} /∈ ND(X). Then the set V = intX(clX({x}))
is a non-empty open set inX. If x /∈ D, then clX({x}) ⊆ X \ D and V ⊆ X \ D. Since
V ∩ D �= ∅, we deduce that x ∈ D. Hence {x ∈ X : {x} /∈ ND(X)} ⊆ I (DO(X)).
This shows that (2) holds.

(3) Since I (D(X)) ⊆ I (DO(X)), (3) follows from (1).
(4) Suppose that X is a T1-space. Since every singleton of X is closed in X, it is

easily seen that {x ∈ X : {x} /∈ ND(X)} = Iso(X).
Now, suppose that X is an Alexandroff T0-space. Consider any x0 ∈ X such that

{x0} /∈ ND(X). Let W0 = ⋂{W ∈ μ : x0 ∈ W }. Since X is an Alexandroff
space, W0 ∈ μ. Since {x0} /∈ ND(X), we have x0 ∈ intX(clX({x0})). Therefore
W0 ⊆ clX({x0}). Suppose that there exists y ∈ W0 \ {x0}. Since X is a T0-space and
y ∈ clX({x0}), we have x0 /∈ clX({y}). This implies that W0 ⊆ X \ clX({y}). But this
is impossible for y ∈ W0. The contradiction obtained shows that W0 = {x0}. Hence
{x ∈ X : {x} /∈ ND(X)} ⊆ Iso(X). This, together with (2) and (3), shows that (4)
holds.

That (5) holds follows from (1) and Proposition 2.6. ��
Among other things, we indicate which of the spaces from the examples given

below are resolvable. The following example shows that even if an Alexandroff space
is not indiscrete, it may happen that I (D(X)) �= I (DO(X)).

Example 5 Let X = {1, 2, 3}, μ = {∅, X , {1, 2}} and X = 〈X , μ〉. Then X is a
non-indiscrete resolvable space, I (D(X)) = ∅ and I (DO(X)) = {1, 2}.

We show in the following example that, for a non-indiscrete topological T0-space
X, it may happen that I (DO(X)) �= Iso(X) and the set I (DO(X)) need not be open
in X.

Example 6 Let Y = {0, 1}, τ = {∅,Y , {0}} and Y = 〈Y , τ 〉. Let X = YN. The
topological space X is a dense-in-itself T0-space which is not indiscrete. We have
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Iso(X) = ∅. Let x0 ∈ {0, 1}N be defined by: for every n ∈ N, x0(n) = 0. It is
easily seen that {x0} = {x ∈ X : {x} /∈ ND(X)}. Hence, by Proposition 4.4(2),
I (DO(X)) = {x0}. The set {x0} is both dense and not open in X.

Of course, the space Y is irresolvable. To see that X is resolvable, for every k ∈ N,
we define elements yk of {0, 1}N as follows. For every n ∈ N, we put:

yk(n) =

⎧
⎪⎨

⎪⎩

0 if n ≤ k,

1 if k < n and n is even,

0 if k < n and n is odd.

Let D = {yk : k ∈ N}. The sets D and {0, 1}N \ D are both dense in X. This shows
that X is resolvable.

Theorem 4.5 For every non-indiscrete generalized topological spaceX, the following
conditions are satisfied:

(1) if X is dense-in-itself, then τ [�D(X)] is the discrete topology on X;
(2) if every singleton of X is nowhere dense in X, then τ [�μ̃[DO(X)]] is the discrete

topology on X.

Proof Let us fix a non-indiscrete generalized topological space X.
(1) Suppose that X is dense-in-itself. Then Iso(X) = ∅, so τ [�D(X)] is discrete by

Theorem 3.9 and Proposition 4.4(1).
(2) Now, assume that all singletons of X are nowhere dense in X. Then it follows

from Proposition 4.4(2) that I (DO(X)) = ∅. Hence, by Theorem 3.9, (2) holds. ��
The following theorem characterizes non-indiscrete iso-dense generalized topolog-

ical spaces and is the first main result of this section.

Theorem 4.6 LetX = 〈X , μ〉 be a non-indiscrete generalized topological space. Then
the following conditions are equivalent:

(1) τ [�D(X)] = μ[D(X)];
(2) μ[D(X)] is an Alexandroff topology on X;
(3) X is iso-dense.

Proof That conditions (1) and (2) are equivalent follows from Theorem 3.6.
To show that (3) implies (1), let us assume that the space X is iso-dense. Then the

set Iso(X) is non-empty and dense in X. By Proposition 4.4(1), Iso(X) = I (D(X)).
Hence, ∅ �= I (D(X)) ∈ D(X). Furthermore, we know that μ̃[D(X)] = μ[D(X)].
Thus, we can easily infer from Theorem 3.10 that (1) holds.

Now, let us prove that (1) implies (3). First, suppose thatX is dense-in-itself. Then,
by Theorem 4.5, τ [�D(X)] is the discrete topology on X . Since X is not indiscrete,
there exists U ∈ μ such that ∅ �= U �= X . Let C = X \ U . Then C /∈ μ[D(X)] but
C ∈ τ [�D(X)]. Hence, if (1) holds, the space X is not dense-in-itself.

Let us assume that (1) is true. Then we have already shown that Iso(X) �= ∅. It
follows from Proposition 4.4(1) that I (D(X)) �= ∅. Since μ̃[D(X)] = μ[D(X)], we
deduce from Theorem 3.10 that I (D(X)) ∈ D(X). Proposition 4.4(1) completes the
proof. ��
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The following theorem is the second main result of this section. It characterizes
non-trivial generalized topological spacesX such that the set of all not nowhere dense
singletons of X is both dense and open in X.

Theorem 4.7 LetX = 〈X , μ〉 be a non-indiscrete generalized topological space. Then
the following conditions are equivalent:

(1) τ [�μ̃[DO(X)]] = μ̃[DO(X)];
(2) {x ∈ X : {x} /∈ ND(X)} ∈ DO(X);
(3) μ̃[DO(X)] = Super({x ∈ X : {x} /∈ ND(X)});
(4) μ̃[DO(X)] is an Alexandroff topology on X.

Proof We know from Proposition 4.4(2) that I (DO(X)) = {x ∈ X : {x} /∈ ND(X)}.
That conditions (1) and (4) are equivalent follows from Corollary 3.8. As in the proof
of Theorem 4.6, we fix a set U ∈ μ such that ∅ �= U �= X , and put C = X \ U . We
notice that C /∈ D(X), so C /∈ μ̃[DO(X)].

Suppose that I (DO(X)) = ∅. Then Super(I (DO(X))) is discrete, so (3) is false.
By Theorem 4.5, the topology τ [�μ̃[DO(X)]] is also discrete. Hence (1) is also false.
In consequence, each of the conditions (1) and (3) implies that I (DO(X)) �= ∅. Of
course, (2) also implies that I (DO(X)) �= ∅. Therefore, that conditions (1), (2) and
(3) are equivalent follows from Theorem 3.10. ��
Remark 4.8 Let X be a non-empty set, μ = {∅} and X = 〈X , μ〉 (see Remark 4.1).
Then Iso(X) = ∅, but X is iso-dense and ∅ = {x ∈ X : {x} /∈ ND(X)} ∈ DO(X).
However, since X /∈ μ, none of the conditions (1), (3) and (4) of Theorem 4.7 is
satisfied.

Remark 4.9 Let X be a non-empty set,μ = {∅, X} andX = 〈X , μ〉 (see Remark 4.2).
Then all conditions (1)–(4) of Theorem 4.7 are satisfied.

Corollary 4.10 Let X = 〈X , μ〉 be a T1-space such that μ �= {∅}. Then that X is
iso-dense is equivalent to each of the conditions (1)–(4) of Theorem 4.7.

Proof If X consists of at least two points, thenX is not indiscrete, so the result follows
from Theorem 4.7 taken together with items (2) and (4) of Proposition 4.4.

Suppose that X is either empty or a singleton. Then, since μ �= {∅}, we have
μ = {∅, X}, X is iso-dense and, in view of Remark 4.9, each of the conditions (1)–(4)
of Theorem 4.7 is satisfied. ��

5 Final Comments on Questions 1.7 and 1.8

Theorem 4.6 and Corollary 4.10 answer Questions 1.8 and 2.4, and can be regarded as
partial answers to Question 1.7. To search for a more satisfactory answer to Question
1.7, one needs to consider the formulae Fd and FT

d defined as follows.

Definition 5.1 Let X = 〈X , μ〉 be a generalized topological space.

(1) Fd(X) and Fd(μ) denote the statement: for every pair A, B of dense sets ofX, the
set A ∩ B is dense in X.
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(2) FT
d (X) and FT

d (μ) denote the statement: the generalized topology μ[D(X)] is a
topology on X.

Remark 5.2 (1) Note that FT
d (X) is equivalent to the statement: for every pair A, B

of dense sets of X, the set A ∩ B is empty or dense in X. (See Remark 2.3.)
(2) In general, even for a topological space X, FT

d (X) need not imply Fd(X). To see
this, we assume that X is a set consisting of at least two points, τ = {∅, X} and
X = 〈X , τ 〉 (see Remark 4.2). For the indiscrete resolvable space X = 〈X , τ 〉,
FT
d (X) holds but Fd(X) does not.

The following proposition is straightforward.

Proposition 5.3 For every generalized topological space X, the following conditions
are satisfied:

(1) if X is iso-dense, then Fd(X) holds;
(2) Fd(X) implies FT

d (X).

Proposition 5.4 Let X = 〈X , μ〉 be generalized topological space such that μ �=
{∅, X}. Then FT

d (X) and Fd(X) are equivalent. Furthermore, if the space X is
resolvable and non-indiscrete, then FT

d (X) is false.

Proof If μ = {∅}, then both FT
d (X) and Fd(X) are true, so equivalent.

Assume that μ �= {∅}. Since μ �= {∅, X}, we can choose a point x0 ∈ X such
that the set {x0} is not dense in X. Suppose that A, B is a pair of disjoint dense sets
in X. Let C = A ∪ {x0} and D = B ∪ {x0}. The sets C and D are both dense in X
but C ∩ D = {x0} is not dense in X. This shows that if FT

d (X) holds, so does Fd(X);
moreover, if X is resolvable, then FT

d (X) is false. Proposition 5.3(2) completes the
proof. ��
Corollary 5.5 For every generalized topological T0-space X, the statements FT

d (X)

and Fd(X) are equivalent.

Proof Let X = 〈X , μ〉 be a generalized topological T0-space. If μ = {∅, X}, then X
is either empty or a singleton, so FT

d (X) and Fd(X) are both true. If μ �= {∅, X}, it
suffices to apply Proposition 5.4. ��
Corollary 5.6 If X = 〈X , μ〉 is a generalized topological space such that FT

d (X) is
true and Fd(X) is false, then the set X consists of at least two points and μ = {∅, X}.

It follows from Proposition 5.4 that, for the space X from Example 6, Fd(X) and
FT
d (X) are both false.

Proposition 5.7 LetX be a locally compact, dense subspace of aHausdorff topological
space Y. Then the following conditions are satisfied:

(1) Fd(X), Fd(Y), FT
d (X) and FT

d (Y) are all equivalent;
(2) X is resolvable if and only if Y is resolvable.
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Proof Since, by [10, Theorem 3.3.9], X is an open dense set in Y, we have D(X) =
{A ∩ X : A ∈ D(Y)} ⊆ D(Y). In consequence, (2) holds and, moreover, Fd(X) is
equivalent to Fd(Y). Corollary 5.5 completes the proof of (1). ��
Corollary 5.8 For every Hausdorff compactification αR of the real line R equipped
with the natural topology, it holds that αR is resolvable and Fd(αR) is false.

In the light of Proposition 5.4 and Corollary 5.6, a satisfactory answer to the
following question will be also a satisfactory answer to Question 1.7.

Question 5.9 Under which conditions on an irresolvable generalized topological
space X is Fd(X) true?

Of course, for every iso-dense space X, Fd(X) is true; however, to be an iso-dense
space is not a necessary condition for an irresolvable generalized topological space X
to satisfy Fd(X). To investigate which non-trivial irresolvable generalized topological
spacesX satisfyFd(X) inZF is a good topic for extensive future research. Let us finish
this article with the following theorems concerning cofinite topologies on infinite sets.
We recall that, for any set X , τcof (X) denotes the cofinite topology on X (seeDefinition
2.12).

Theorem 5.10 For every infinite set X, the following conditions are equivalent:

(1) Fd(τcof (X)) is true;
(2) the cofinite topology τcof (X) on X is irresolvable;
(3) X is an amorphous set.

Proof We fix an infinite set X . That (1) implies (2) follows from Proposition 5.4. If
X is not amorphous, there exists an infinite subset D of X such that X \ D is also
infinite. Then both the sets D and X \ D are τcof (X)-dense. Hence (2) implies (3).

Assuming that (3) holds, we consider any pair A, B of τcof (X)-dense sets. Then
both A and B are infinite subsets of X . Since X is amorphous, the sets X \ A and X \ B
are both finite. This implies that the set X \ (A ∩ B) = (X \ A) ∪ (X \ B) is finite.
Since X is infinite, we infer that A∩ B is infinite. Therefore, A∩ B is τcof (X)-dense.
In consequence,(3) implies (1). ��

The following theorem is an immediate consequence of Theorem 5.10 and
Proposition 5.4.

Theorem 5.11 It holds in ZF that the following statements are all equivalent:

(1) there are no amorphous sets ([13, Form 64]);
(2) for every infinite set X, τcof (X) is resolvable;
(3) for every infinite set X, Fd(τcof (X)) is false;
(4) for every infinite set X, FT

d (τcof (X)) is false.

Since Form 64 of [13] is known to be independent of ZF (see Remark 2.14), we
deduce from Theorem 5.11 the following independence results:

Corollary 5.12 The statements (1)–(4) of Theorem 5.11 are all independent of ZF.

123



161 Page 18 of 19 T. Richmond, E. Wajch

6 Open Problems

We do not have satisfactory solutions to the following open problems.

(1) Find necessary and sufficient conditions in ZF for an irresolvable (generalized)
topological space X to satisfy Fd(X). (See Question 1.7 and 5.9.)

(2) Find necessary and sufficient conditions inZF for a generalized topological space
X to be such thatDO(X)∪{∅} is a topology on X . (See Example 1 and Proposition
2.5.)

(3) Verify which known ZFC-theorems on resolvable spaces are independent of ZF.
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