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Abstract
In this paper we introduce and study a new graph-theoretic invariant called the bi-
Wiener index. The bi-Wiener index Wb(G) of a bipartite graph G is defined as the
sum of all (shortest-path) distances between two vertices from different parts of the
bipartition of the vertex set of G. We start with providing a motivation connected with
the potential uses of the new invariant in the QSAR/QSPR studies. Then we study its
behavior for trees. We prove that, among all trees of order n ≥ 4, the minimum value
of Wb is attained for the star Sn , and the maximum Wb is attained at path Pn for even
n, or at path Pn and Bn(2) for odd n where Bn(2) is a broom with maximum degree
3. We also determine the extremal values of the ratio Wb(Tn)/W (Tn) over all trees
of order n. At the end, we indicate some open problems and discuss some possible
directions of further research.
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1 Introduction

All graphs considered in this paper are finite, undirected, simple and connected. If
G = (V (G), E(G)) is a graph, we will use n(G) = |V (G)| for its order and m(G) =
|E(G)| for its size. The degree dG(v) of v ∈ V (G) is the number of vertices in G
adjacent to v. We denote by NG(v) the open neighborhood of vertex v in G. For
two vertices u, v ∈ V (G), we use dG(u, v) to denote the (shortest-path) distance
between u and v in G. If the graph G is clear from the context, dG(v) and dG(u, v)

will be simplified into d(v) and d(u, v), respectively. The eccentricity εG(v) of a
vertex v ∈ V (G) is the maximum distance from v to any other vertex of G. The
complement of G is denoted with Gc. A vertex v ∈ V (G)with maximum eccentricity
is a diametral vertex inG. Moreover, the vertexwith the secondmaximum eccentricity
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is a semi-diametral vertex. For a connected graph G, its distance matrix D(G) is a
square matrix whose rows and columns are indexed by the vertices of G and whose
entry (i, j) is equal to the shortest-path distance between the vertices i and j . Clearly,
the distance matrix of an undirected simple graph is symmetric and has zeros on its
main diagonal. Once computed, the distance matrix encodes all information about
distances, eccentricities, and all other distance-related concepts such as the diameter,
the radius, the center, the periphery, etc. We refer the readers to [4] and also to [9] for
more on distances in graphs.

We denote by Sn and Pn the star and the path on n vertices, respectively. Other
undefined notations and terminologies on graph theory can be found in [3].

A graphical invariant is a function from the set of graphs to the reals which
is invariant under graph isomorphisms. In the chemical literature, graphical invari-
ants are also known as topological indices and as molecular descriptors. The oldest
topological index in chemical graph theory is the Wiener index [16]. Despite being
introduced in 1947 and studied ever since, it still generates a lot of interest [5–7,
10, 11, 13, 15, 17–19]. For a connected graph G, its Wiener index is defined as
W (G) = ∑

{u,v}⊆V (G) dG(u, v). It is the sum of all entries in the upper (or in the
lower) triangle of D(G).

Let G be a bipartite graph with the bipartition V (G) = A ∪ B. By considering
only the distances between the vertices belonging to different classes of bipartition,
one arrives at the following modification of the Wiener index:

Wb(G) =
∑

(u,v)∈A×B

dG(u, v).

We call the new invariant the bi-Wiener index of G and denote it by Wb(G). Clearly,
the bi-Wiener index of a bipartite graph G cannot exceed its full Wiener index, an
observation which we will formalize shortly.

Before presenting inmore detail the properties of the new invariant, wemake a short
digression to provide some motivation. It is reasonable to expect that the bi-Wiener
index, like the full Wiener index, but often easier to calculate, correlates well with
various properties of molecules, including "boiling point, molar volume, refractive
index, heat of isomerization, heat of vaporization, density, critical pressure, surface
tension, viscosity, chromatographic retention time and sound velocity, · · · · · · " [12].

Although the Wiener index is closely correlated with the boiling points of lin-
ear and branched hydrocarbons, it does not work well for some cyclic molecules
and their corresponding isomers. In Table 1 below, we compare the Wiener and the
bi-Wiener indices for cyclohexane and methylcyclohexane with some of their cor-
responding substituted cyclobutyl counterparts. The Wiener index of cyclohexane is
27 and its bi-Wiener index is 15. Compared to the Wiener index of cyclohexane,
only the isomeric 1,1-dimethylcyclobutane has a smaller Wiener index, while for
1,3-dimethylcyclobutane is larger. On the other hand, the bi-Wiener indices for both
isomers (the 1,3-dimethylcyclobutane and 1,1-dimethylcyclobutane) are smaller than
the bi-Wiener of cyclohexane. Thus bi-Wiener index appears to be a better indicator to
predict the physical properties of the isomers, consistent with the lower boiling points
and densities of the cyclobutyl isomers compared to that of cyclohexane.
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Table 1 Comparison of the Wiener and the bi-Wiener indices of Cyclohexane, Methylcyclohexane and
some of their corresponding substituted cyclobutyl counterparts

Compound Wiener(W) Bi-Wiener(Wb) B.P ◦C Density g/mL

G1 27 15 80.75 0.779

G2 28 12 Cis 61 0.711

Trans 58 0.702

G3 26 12 56 0.713

G4 42 22 101 0.770

G5 42 16 81.7 Predicted

0.758

Another example involves comparison of the Wiener and bi-Wiener indices of
methylcyclohexane and its corresponding trisubstituted cyclobutyl counterparts. The
Wiener index of methylcyclohexane is 42, while its bi-Wiener index is 22. Of
all the three possible isomeric trisubstituted cyclobutyl counterparts, namely 1,1,2-
trimethylcyclobutane, 1,2,3-trimethylcyclobutane, and the1,1,3-trimethylcyclobutane,
only the latter has been successfully synthesized (Table 1). While the Wiener index
for this isomer is the same as that of methylcyclohexane, its bi-Wiener index is
much smaller than that of methylcyclohexane. The smaller bi-Wiener index for 1,1,3-
trimethylcyclobutane is consistent with its lower boiling point compared to that of
methylcyclohexane. Moreover, the values of the densities also fall in the expected
range as predicted by the lower bi-Wiener indices (Table 1).

The two examples illustrated in this article, namely the cyclohexane and methyl-
cyclohexane and their corresponding cyclobutyl isomeric counterparts, show that the
bi-Wiener index is a better predictor for physical properties compared to that of the
Wiener index. To test the generality of our approach, we will investigate the di-and
trisubstituted cyclohexanes in order to compare their Wiener and bi-Wiener indices
with their isomeric substituted cylobutyl counterparts.

In general, for many of the cyclic molecules that are bipartite, the value of the
bi-Wiener index conforms with the Wiener index in predicting the physical properties
of the various isomers as noted above.
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In chemical graph theory, trees are frequently used as models for studying chemical
and physical properties of acyclic molecules, in particular the alkanes [16]. A vertex

123



156 Page 4 of 20 X. Chen et al.

of degree at least 3 is a branching vertex in a tree. A vertex adjacent to a leaf of a tree is
a support vertex. Clearly, any diametral vertex in a tree T must be a leaf, and any semi-
diametral vertex must be a support vertex to a diametral leaf. A tree T of order n with a
unique branching vertex vwith T−v = Pn1∪Pn2∪. . .∪Pnk , with n1 ≤ n2 ≤ · · · ≤ nk
satisfying

∑k
i=1 ni = n − 1, will be denoted by T = Tn(n1, n2, . . . , nk). (Such trees

are known as starlike trees and also as spiders; see [1] for some recent applications in

chemical context.) If n j appears � j ≥ 2 times in Tn(n1, n2, . . . , nk), then we write n
� j
j

in it. For example, T11(1, 2, 2, 2, 3) will be denoted with T11(1, 23, 3). In particular,
Tn(1k, n−k−1)with k ≥ 2 is a broom and denoted by Bn(k) in the following. Denote
by H(n − a − b, a, b) the bi-broom obtained by attaching a and b pendant vertices,
respectively, to the two leaves of a path Pn−a−b, where a ≥ b ≥ 2. Moreover, for
convenience, Pn can be viewed as the special case of Bn(k) with k = 1 and Bn(a) is
the special case of H(n − a − b, a, b) with b ∈ {0, 1}. Throughout this paper, we use
the notation [k] = {1, 2, . . . , k} for any positive integer k.

For any positive integer n ≤ 3, there is a unique tree of order n. Therefore, in what
follows, we only consider the trees of order n ≥ 4.

2 Preliminary Results

In this section, we prove some preliminary results. Most of them are concerned with
trees, but we start with some valid for all bipartite graphs. The following results are
direct consequences of the definition of bipartite graphs and hold at a glance.

Proposition 2.1 If G is a bipartite graph with a vertex bipartition A∪B, then dG(u, v)

is odd for any vertex u ∈ A and any vertex v ∈ B.

Corollary 2.2 The bi-Wiener index of a graph G is the sum of all odd entries in the
upper triangle of the distance matrix D(G) of G.

Corollary 2.3 For a bipartite graph G, Wb(G) ≤ W (G) with equality if and only if
G ∼= K2.

Proof If a bipartite graph G has at least 3 vertices, then its diameter is at least 2, and
there is at least a pair of vertices at distance 2 in G. Hence, at least one element of
D(G) is even, and the difference W (G) − Wb(G) is positive. 	


Corollary 2.4 Let G be a bipartite graph with the bipartition V (G) = A ∪ B. Then
Wb(G) is odd if and only if both |A| and |B| are odd.

Proof It has been known for a long time [2] that the Wiener index of a bipartite graph
G is odd if and only if both classes of the bipartition of V (G) have odd cardinalities.
The claim now follows from the fact that the difference W (G) − Wb(G) is always an
even number, being the sum of even entries in the upper triangle of D(G). 	


Corollary 2.5 Let G be a bipartite graph of odd order. Then Wb(G) is even.
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Fig. 1 Graphs T and T ′ associated with Transformation I

Since trees are bipartite, all of the above results are valid for trees. In the rest of
this section, we restrict our attention to trees and study a number of transformations
which affect their bi-Wiener numbers.

Denote by γ (G, k) the number of vertex pairs with distance k in a graph G. For a
bipartite graph G with vertex bipartition A ∪ B with |A| = p ≥ q = |B|, we say that
A ∪ B is a (p, q)-bipartition of G. Below we provide a new formula for computing
the value of Wb.

Proposition 2.6 For a bipartite graph G with a vertex bipartition A ∪ B and V0 ⊆
V (G), V1 = V (G) \ V0, Wb1(G) = ∑

u∈A∩V0
v∈B∩V0

dG(u, v), Wb2(G) = ∑

u∈A∩V1
v∈B∩V1

dG(u, v),

Wb3(G) = ∑

u∈A∩V0
v∈B∩V1

dG(u, v) + ∑

u∈B∩V0
v∈A∩V1

dG(u, v). Then

Wb(G) = Wb1(G) + Wb2(G) + Wb3(G).

Let T be a tree of order n with a (p, q)-bipartition A ∪ B. Let P =
u1u2 . . . ut−1ut (t ≥ 4) be a diametral path of T . Let ui (3 ≤ i ≤ t − 1)
be a branching vertex with dT (u2, ui ) as small as possible. Let D1 be the com-
ponent of T − {ui−1ui , uiui+1} containing ui , vm be a leaf of D1 with a path
P ′ = ui (= v0)v1 . . . vhvh+1 . . . vm (0 ≤ h < m,m + 1 ≤ i) where vh is the closest
branching vertex to vm in D1. Let D2 be the component of T − {ui−1ui } containing
ui and W1 = D2 \ P ′. Without loss of generality, we assume that u1 ∈ A. Next we
introduce five transformations.

Transformation I Let T be the aforementioned tree with a (p, q)-bipartition with
d(u2) = 2, d(u2, ui ) and d(ui , vm) having the same parity. Clearly, d(ui , vm) + 1 ≤
d(u1, ui ). We construct a new tree T ′ = T − {vhvh+1} + {vmu1} and say that T ′ is
obtained from T by running Transformation I for path P ′′ = vhvh+1 . . . vm . Since
u1 ∈ A, we have vm ∈ B and T ′ is also a tree with a (p, q)-bipartition (Fig. 1).

Lemma 2.7 Let T , T ′ be trees in Transformation I. Then Wb(T ′) > Wb(T ).

Proof Let T , T ′ be trees in Transformation I and V0 = {vh+1, vh+2, . . . , vm} with
W2 = V (T ) − V0 − W1. Then V1 = W1 ∪ W2. Based on the structures of T , T ′ and
Proposition 2.6, it suffices to prove Wb3(T

′) > Wb3(T ).
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Fig. 2 Graphs T and T ′ associated with Transformation II

For every u ∈ V0 ∩ A, v ∈ W1 ∩ B (or u ∈ V0 ∩ B, v ∈ W1 ∩ A), we have
dT (u, v) = dT (u, v j ) + dT (v j , v), dT ′(u, v) = dT ′(u, v j ) + dT ′(v j , v), where v j ∈
V (P ′) (0 ≤ j ≤ h) is the closest vertex from v to P ′. Note that dT (u, v j ) < dT ′(u, v j ),
dT (v j , v) = dT ′(v j , v). Then dT ′(u, v) > dT (u, v). It follows that

∑

u∈V0∩A
v∈W1∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W1∩A

dT ′(u, v) >
∑

u∈V0∩A
v∈W1∩B

dT (u, v) +
∑

u∈V0∩B
v∈W1∩A

dT (u, v),

∑

u∈V0∩A
v∈W2∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W2∩A

dT ′(u, v) =
∑

u∈V0∩A
v∈W2∩B

dT (u, v) +
∑

u∈V0∩B
v∈W2∩A

dT (u, v).

Therefore

Wb3(T
′) =

∑

u∈V0∩A
v∈W1∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W1∩A

dT ′(u, v) +
∑

u∈V0∩A
v∈W2∩B

dT ′(u, v)

+
∑

u∈V0∩B
v∈W2∩A

dT ′(u, v)

> Wb3(T ).

That is, we have Wb(T ′) > Wb(T ), finishing the proof. 	

Transformation II Let T be the aforementioned tree with a (p, q)-bipartition with

d(u2) ≥ 3 such that d(u2, ui ) and d(ui , vm) have the same parity, d(vm, vh) is even.
Clearly,d(ui , vm)+1 ≤ d(u1, ui ).We construct a new tree T ′ = T−{vhvh+1, u2u3}+
{u3vm, u2vh+1} and say that T ′ is obtained from T by running Transformation II for
path P ′′ = vhvh+1 . . . vm . For u1 ∈ A, we have vm, vh ∈ B. Thus T ′ is also a tree
with a (p, q)-bipartition.

Lemma 2.8 Let T , T ′ be trees in Transformation II. Then Wb(T ′) > Wb(T ).

Proof Let T , T ′ be trees in Transformation II with d(u2) = x + 1 where x ≥ 2 and
NT (u2) \ {u3} = {u1, z1, . . . , zx−1}. Let V0 = {u1, u2, z1, . . . , zx−1, vh+1, . . . , vm},
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W2 = V (T )−V0−W1. ThenV1 = W1∪W2. By the structures of T , T ′ andProposition
2.6, we have

Wb1(T ) =
∑

u∈V0∩A
v∈V0∩B

dT (u, v)

=
∑

u∈V0∩A
v∈V0∩B

dT ′(u, v) + dT (vm, vh)

2
dT (u2, vh) + dT (vm, vh)

2
dT (u2, vh)x

= Wb1(T
′) + (x + 1)dT (u2, vh)

dT (vm, vh)

2
,

Wb2(T ) =
∑

u∈V1∩A
v∈V1∩B

dT (u, v) = Wb2(T
′).

Similarly as the proof in Lemma 2.7, we have

∑

u∈V0∩A
v∈W1∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W1∩A

dT ′(u, v) >
∑

u∈V0∩A
v∈W1∩B

dT (u, v) +
∑

u∈V0∩B
v∈W1∩A

dT (u, v),

∑

u∈V0∩A
v∈W2∩B

dT ′(u, v)=
∑

u∈V0∩A
v∈W2∩B

dT (u, v) + 2
dT (vm, vh)

2
|W2 ∩ B| + xdT (vm, vh)|W2 ∩ B|

=
∑

u∈V0∩A
v∈W2∩B

dT (u, v) + (x + 1)dT (vm, vh)|W2 ∩ B|,

∑

u∈V0∩B
v∈W2∩A

dT ′(u, v) =
∑

u∈V0∩B
v∈W2∩A

dT (u, v) − 2
dT (vm, vh)

2
|W2 ∩ A| + dT (vm, vh)|W2 ∩ A|

=
∑

u∈V0∩B
v∈W2∩A

dT (u, v).

Therefore, we have

Wb3(T
′) > Wb3(T ) + (x + 1)dT (vm, vh)|W2 ∩ B|.

Since |W2 ∩ B| = dT (u2,vh)
2 , we have

Wb(T
′) > Wb1(T ) − (x + 1)dT (vm, vh)|W2 ∩ B| + Wb2(T ) + Wb3(T )

+ (x + 1)dT (vm, vh)|W2 ∩ B|
= Wb(T ).

This completes the proof. 	
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Fig. 3 Graphs T and T ′ associated with Transformation III

Transformation III Let T be the aforementioned tree with a (p, q)-bipartition and
d(u2) ≥ 3 such that d(u2, ui ) and d(ui , vm) have a same parity, d(vm, vh) is odd.
Clearly,d(ui , vm)+1 ≤ d(u1, ui ).We construct a new tree T ′ = T−{vhvh+1, u2u3}+
{u3vm, u1vh+1} and say that T ′ is obtained from T by running Transformation III for
path P ′′ = vhvh+1 . . . vm . For u1 ∈ A, we have vm ∈ B, vh ∈ A. Thus T ′ is also a
tree with a (p, q)-bipartition (Fig. 3).

Lemma 2.9 Let T , T ′ be trees in Transformation III. Then Wb(T ′) > Wb(T ).

Proof Let T , T ′ be trees in Transformation III with d(u2) = x + 1 where x ≥ 2 and
NT (u2) \ {u3} = {u1, z1, . . . , zx−1}. Let V0 = {u1, u2, z1, . . . , zx−1, vh+1, . . . , vm},
W2 = V (T )−V0−W1. ThenV1 = W1∪W2. By the structures of T , T ′ andProposition
2.6, we have

Wb1(T ) =
∑

u∈V0∩A
v∈V0∩B

dT (u, v)

=
∑

u∈V0∩A
v∈V0∩B

dT ′(u, v) + dT (vm, vh) − 1

2
dT (u3, vh)

+ dT (vm, vh) + 1

2
dT (u3, vh)(x − 1) + dT (vm, vh) + 1

2
dT (u1, vh),

Wb2(T ) =
∑

u∈V1∩A
v∈V1∩B

dT (u, v) = Wb2(T
′).

Similarly as the proof in Lemma 2.7, we have

∑

u∈V0∩A
v∈W1∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W1∩A

dT ′(u, v) >
∑

u∈V0∩A
v∈W1∩B

dT (u, v) +
∑

u∈V0∩B
v∈W1∩A

dT (u, v),

∑

u∈V0∩A
v∈W2∩B

dT ′(u, v)=
∑

u∈V0∩A
v∈W2∩B

dT (u, v) + (dT (vm, vh) − 1)|W2 ∩ B|

+ (x − 1)(dT (vm, vh) + 1)|W2 ∩ B|,
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Fig. 4 Graphs T and T ′ associated with Transformation IV

∑

u∈V0∩B
v∈W2∩A

dT ′(u, v)=
∑

u∈V0∩B
v∈W2∩A

dT (u, v) + (dT (vm, vh) + 1)|W2 ∩ A|,

|W2 ∩ A| = |W2 ∩ B| + 1.

Then it follows that

Wb3(T
′) > Wb3(T ) + (dT (vm, vh) − 1)|W2 ∩ B| + x(dT (vm, vh) + 1)|W2 ∩ B|

+ dT (vm, vh) + 1.

Since |W2 ∩ B| = dT (u3,vh)
2 , we have

Wb(T
′) > Wb1(T ) − (dT (vm, vh) − 1)|W2 ∩ B| −

[
dT (vm, vh) + 1

]

−
[
dT (vm, vh) + 1

]
|W2 ∩ B| − (x − 1)

[
dT (vm, vh) + 1

]
|W2 ∩ B|

+ Wb2(T ) + Wb3(T ) + (dT (vm, vh) − 1)|W2 ∩ B|
+ x

[
dT (vm, vh) + 1

]
|W2 ∩ B| + dT (vm, vh) + 1

= Wb(T ).

This completes the proof. 	

Transformation IV Let T be the tree defined above with a (p, q)-bipartition with
d(u2) ≥ 2 such that d(u2, ui ) and d(ui , vm) have different parity, d(vm, vh) is even.
Clearly, d(ui , vm) ≤ d(u1, ui ). We construct a new tree T ′ = T − {u2u3, vhvh+1} +
{u2vm, vh+1u3} and say that T ′ is obtained from T by running Transformation IV for
path P ′′ = vhvh+1 . . . vm . Since u1 ∈ A, we have vm, vh ∈ A. Then T ′ is also a tree
with a (p, q)-bipartition (Fig. 4).

Lemma 2.10 Let T , T ′ be trees in Transformation IV. Then Wb(T ′) > Wb(T ).

Proof Let T , T ′ be trees in Transformation IV with d(u2) = x + 1 where x ≥ 1. If
x = 1, we have NT (u2) \ {u3} = {u1} and assume that V0 = {u1, u2, vh+1, . . . , vm}.
For x ≥ 2, we have NT (u2) \ {u3} = {u1, z1, . . . , zx−1} and assume that V0 =
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{u1, u2, z1, . . . , zx−1, vh+1, . . . , vm}. LetW2 = V (T )−V0−W1. ThenV1 = W1∪W2.
By the structures of T , T ′ and Proposition 2.6, we have

Wb1(T ) =
∑

u∈V0∩A
v∈V0∩B

dT (u, v)

=
∑

u∈V0∩A
v∈V0∩B

dT ′(u, v) + dT (vm, vh)

2

[
dT (u2, vh+1) + dT (u3, vh)x

]
,

Wb2(T ) =
∑

u∈V1∩A
v∈V1∩B

dT (u, v) = Wb2(T
′).

Similarly as the proof in Lemma 2.7, we have

∑

u∈V0∩A
v∈W1∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W1∩A

dT ′(u, v) >
∑

u∈V0∩A
v∈W1∩B

dT (u, v) +
∑

u∈V0∩B
v∈W1∩A

dT (u, v),

∑

u∈V0∩A
v∈W2∩B

dT ′(u, v) =
∑

u∈V0∩A
v∈W2∩B

dT (u, v) + xdT (vm, vh)|W2 ∩ B|,

∑

u∈V0∩B
v∈W2∩A

dT ′(u, v) =
∑

u∈V0∩B
v∈W2∩A

dT (u, v) + dT (vm, vh)|W2 ∩ A|.

Therefore

Wb3(T
′) > Wb3(T ) + xdT (vm, vh)|W2 ∩ B| + dT (vm, vh)|W2 ∩ A|.

Note that |W2 ∩ A| = dT (u2,vh+1)
2 , |W2 ∩ B| = dT (u3,vh)

2 . We have

Wb(T
′) > Wb1(T ) − dT (vm, vh)|W2 ∩ A| − xdT (vm, vh)|W2 ∩ B| + Wb2(T )

+ Wb3(T ) + xdT (vm, vh)|W2 ∩ B| + dT (vm, vh)|W2 ∩ A| = Wb(T ).

This finishes the proof. 	

Transformation V Let T be the tree defined above with a (p, q)-bipartition with
d(u2) ≥ 2 such that d(u2, ui ) and d(ui , vm) have different parity, d(vm, vh)

is odd. Clearly, d(ui , vm) ≤ d(u1, ui ). We construct a new tree T ′ = T −
{u2u3, vhvh+1, vmvm−1} + {u2vm, vh+1u2, vm−1u3} for m > h + 1 and T ′ =
T − {vhvh+1} + {vh+1u2} for m = h + 1 and say that T ′ is obtained from T by
running Transformation V for path P ′′ = vhvh+1 . . . vm . Since u1 ∈ A, we have
vm ∈ A, vh ∈ B. Then T ′ is also a tree with a (p, q)-bipartition (Fig. 5).

Lemma 2.11 Let T , T ′ be the trees in Transformation V. Then Wb(T ′) ≥ Wb(T ) with
equality if and only if T is a bi-broom with even diameter.
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Fig. 5 Graphs T and T ′ associated with Transformation V

Proof Let T , T ′ be trees in Transformation V with d(u2) = x + 1 where x ≥ 1. If
x = 1, we have NT (u2) \ {u3} = {u1} and assume that V0 = {u1, u2, vh+1, . . . , vm}.
For x ≥ 2, we have NT (u2) \ {u3} = {u1, z1, . . . , zx−1} and assume that V0 =
{u1, u2, z1, . . . , zx−1, vh+1, . . . , vm}. LetW2 = V (T )−V0−W1. ThusV1 = W1∪W2.
By the structures of T , T ′ and Proposition 2.6, we have

Wb1(T ) =
∑

u∈V0∩A
v∈V0∩B

dT (u, v)

=
∑

u∈V0∩A
v∈V0∩B

dT ′(u, v) + dT (vm, vh) + 1

2
dT (u2, vh)

+ dT (vm, vh) − 1

2
dT (u2, vh+2)x − x(dT (vm, vh) − 1)

=
∑

u∈V0∩A
v∈V0∩B

dT ′(u, v) + dT (vm, vh) + 1

2
dT (u2, vh)

+ dT (vm, vh) − 1

2
dT (u2, vh)x,

Wb2(T ) =
∑

u∈V1∩A
v∈V1∩B

dT (u, v) = Wb2(T
′).

Similarly as the proof in Lemma 2.7, we have

∑

u∈V0∩A
v∈W1∩B

dT ′(u, v) +
∑

u∈V0∩B
v∈W1∩A

dT ′(u, v) ≥
∑

u∈V0∩A
v∈W1∩B

dT (u, v) +
∑

u∈V0∩B
v∈W1∩A

dT (u, v),

∑

u∈V0∩A
v∈W2∩B

dT ′(u, v) =
∑

u∈V0∩A
v∈W2∩B

dT (u, v) + 2
dT (vm, vh) + 1

2
|W2 ∩ B|

+ x(dT (vm, vh) − 1)|W2 ∩ B|,
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∑

u∈V0∩B
v∈W2∩A

dT ′(u, v) =
∑

u∈V0∩B
v∈W2∩A

dT (u, v).

Therefore

Wb3(T
′) ≥ Wb3(T ) + (dT (vm, vh) + 1)|W2 ∩ B| + x(dT (vm, vh) − 1)|W2 ∩ B|.

Since |W2 ∩ B| = dT (u2,vh)
2 , we have

Wb(T
′) ≥ Wb1(T ) − (dT (vm, vh) + 1)|W2 ∩ B| − x(dT (vm, vh) − 1)|W2 ∩ B|

+ Wb2(T ) + Wb3(T ) + (dT (vm, vh) + 1)|W2 ∩ B|
+ x(dT (vm, vh) − 1)|W2 ∩ B|

= Wb(T )

with equality holding if and only if d(u2, ui ) is even and d(ui , vm) = 1, i = t−1, that
is, T is a bi-broom of order n with a (p, q)-bipartition with even diameter, completing
the proof. 	


3 Main Result

In this section we focus on the determination of extremal trees with respect to bi-
Wiener index among all trees of order n ≥ 4. Let Tn be the set of all trees of order
n = p + q ≥ 4 with a (p, q)-bipartition with d(u2) = 2 where P = u1u2 . . . ut is a
diametral path. We first give a characterization of minimum trees with respect to Wb.

Theorem 3.1 Let T be a tree of order n ≥ 4. Then Wb(T ) ≥ n − 1 with equality if
and only if T ∼= Sn.

Proof Assume that A∪B is an (a, b)-bipartition of T with |A| = a ≤ b = n−a = |B|.
By Proposition 2.1, we have γ (T , 1) + γ (T , 3) + . . . + γ (T , k) = a(n − a) where k
is the maximum odd distance between two vertices from A and B, respectively. Note
that γ (T , 1) = n − 1. From the definition of bi-Wiener index, we have

Wb(T ) = γ (T , 1) + 3γ (T , 3) + . . . + kγ (T , k)

≥ n − 1 + 3[a(n − a) − (n − 1)]
≥ n − 1.

The above equalities holds simultaneously if and only if a = 1, that is, T ∼= Sn . This
completes the proof. 	


Next we turn to determine the maximum trees with respect to Wb.

Lemma 3.2 Let G ∈ Tn with maximum bi-Wiener index. Then G must be a broom.
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Proof Let G ∈ Tn with a (p, q)-bipartition and maximum bi-Wiener index. If q =
1, then G ∼= Sn . Therefore, suppose in the following that p ≥ q ≥ 2. Let P =
u1u2 . . . ut−1ut be a diametral path of G, clearly t ≥ 4. Using d(u2) = 2, to prove
that G is a broom, it suffices to show d(ui ) = 2 (3 ≤ i ≤ t − 2). Assuming that there
exists d(u j ) ≥ 3 where 3 ≤ j ≤ t−2, let ui (3 ≤ i ≤ t−2) be such a vertex such that
d(u2, ui ) is as small as possible and D1 be the component of G − {ui−1ui , uiui+1}
containing ui . Then, let m be a leaf in D1 with h ∈ V (D1) being a closest branching
vertex to it.

Suppose that d(u2, ui ) and d(ui ,m) are all even (or odd), then G1 can be obtained
from G by running Transformation I. By Lemma 2.7, we have Wb(G1) > Wb(G), a
contradiction.

Suppose that d(u2, ui ) is odd (even) and d(ui ,m) is even (odd), d(m, h) is even.
Then by running Transformation IV for G, we can obtain G2, and by Lemma 2.10,
we have Wb(G2) > Wb(G), a contradiction.

Suppose that d(u2, ui ) is odd (even) and d(ui ,m) is even (odd), d(m, h) is odd,
then G3 can be obtained from G by running Transformation V. By Lemma 2.11, we
have Wb(G3) > Wb(G), a contradiction.

This completes the proof of the lemma. 	

Lemma 3.3 Let T ∗ be a tree of order n ≥ 4 with maximum bi-Wiener index. Then T ∗
must be a bi-broom with even diameter or a broom.

Proof Let T be a tree of order n with a (p, q)-bipartition A ∪ B. If q = 1, then
T ∼= Sn . Therefore suppose in the following that p ≥ q ≥ 2 and k is the number of
branching vertices in T . Now we prove the result by induction on k.

For k = 0, the result holds trivially since T ∼= Pn with Pn = Bn(1) from the
assumption.

If k = 1, then T is a starlike tree. Let u be the branching vertex of T with {u} =
�⋂

i=1
Pni where 2 ≤ n1 ≤ n2 ≤ · · · ≤ n� and there exist x odd paths and � − x even

paths. If n�−1 = 2, then T is a broom and there is nothing to prove. So we assume
that n�−1 > 2 in the following. Then Pn�

∪ Pn�−1 is a diametral path of T . Next we
will run transformations for paths other than Pn�

and Pn�−1 .
Assume that Pn�

, Pn�−1 are both even paths. When x = 0, there exist � even
paths, and we can obtain Pn by repeating Transformation IV on � − 2 even paths. By
Lemma 2.10, we have Wb(T ) < Wb(Pn). If x ≥ 1, we can obtain G1 by running
Transformation IV on � − 2 − x even paths with Wb(G1) > Wb(T ) by Lemma
2.10; and then by running Transformation I on an odd path of G1, we get G2 with
Wb(G2) > Wb(G1) by Lemma 2.7. At last we get Bn(x) by repeating Transformation
V on x − 1 odd paths of G2. Moreover, we have Wb(Bn(x)) > Wb(G2) by Lemma
2.11.

Assume that Pn�
, Pn�−1 are both odd paths. We can firstly obtain G3 by running

successively Transformation I on � − x even paths with Wb(G3) > Wb(T ) from
Lemma 2.7. Next by repeating Transformation V on x − 2 odd paths of G3, in view
of Lemma 2.11, we get Bn(x − 1) with Wb(Bn(x − 1)) > Wb(G3).

Assume that Pn�
is an odd (or even) path and Pn�−1 is an even (or odd) path. Firstly,

we can obtainG4 by repeating Transformation I on �−x−1 even paths withWb(T ) <
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Wb(G4) by Lemma 2.7. Then we can obtain Bn(x) by running Transformation V on
x − 1 odd paths in G4 with Wb(Bn(x)) > Wb(G4) by Lemma 2.11.

Therefore, for k = 1, the broom maximizes the bi-Wiener index among all trees
with a (p, q)-bipartition where p + q = n.

For k = 2, we assume that P = u1u2 . . . ut−1ut is a diametral path of T . If
d(u2) = 2, we have proven the desired result in Lemma 3.2. Thus it suffices to deal
with the case when d(u2) ≥ 3. Let u2 be a branching vertex with d(u2) = r + 1 and
ui (3 ≤ i ≤ t − 1) be another branching vertex at which s pendant paths, that are x
odd paths and s − x even paths, are attached except P ′ = ui . . . ut . Then we will run
transformations for the above s paths.

Assume that d(u2, ui ) is even. We can obtain Bn(r + x) by performing Transfor-
mation II on s − x even paths and Transformation V on x odd paths in sequence. By
Lemmas 2.8 and 2.11, we have Wb(Bn(r + x)) ≥ Wb(T ). The equation holds if T is
a bi-broom with even diameter.

Assume that d(u2, ui ) is odd. By runningTransformation IV on s−x even paths and
Transformation III on x odd paths successively, we can get G5 satisfying dG5(ui ) = 2
or dG5(v2) = 2 where v2 is a semi-diametral vertex of G5. By Lemmas 2.10 and 2.9,
we have Wb(G5) > Wb(T ). If dG5(ui ) = 2, then G5 is a broom; if dG5(v2) = 2, by
Lemma 3.2, the result follows. Thus the result holds for k = 2.

Weassumehenceforth that k ≥ 3. Let T be a (p, q)-bipartition treewith k branching
vertices and a diametral path P = u1u2 . . . ut−1ut in it. By Lemma 3.2, it suffices
to show the case of d(ut−1) ≥ d(u2) ≥ 3. Let ui (3 ≤ i ≤ t − 1) be a vertex of
degree at least 3 with dT (u2, ui ) as small as possible and D1 be the component of
T − {ui−1ui , uiui+1} containing ui . Let dT (ui ) = r + 2. Next we divide into the
following two cases based on the existence of branching vertices in D1 − ui .

Case 1. There is no branching vertex in D1 − ui .
In this case there are r pendant paths attaching to ui including x odd paths, r − x

even paths. Assume that d(u2, ui ) is even. We can obtain T1 with dT1(ui ) = 2 by
performing Transformation II on r − x even paths and Transformation V on x odd
paths in sequence. Thus there are k −1 branching vertices in T1. And, by Lemmas 2.8
and 2.11, we haveWb(T1) ≥ Wb(T ). The equation holds if and only if T is a bi-broom
with even diameter. Then from the induction hypothesis, the result holds for k ≥ 3.

Assume that d(u2, ui ) is odd. By running Transformation IV on r − x even paths
and Transformation III on x odd paths successively until we get T2 with dT2(ui ) = 2
or dT2(v

′
2) = 2 where v′

2 is a semi-diametral vertex of T2. Then there are at most k−1
branching vertices in T2. By Lemmas 2.10 and 2.9, we have Wb(T2) > Wb(T ). Then
our result for k ≥ 3 follows from the induction hypothesis.

Case 2. There is at least one branching vertex in D1 − ui .
Let h be the farthest branching vertex from ui with dT (h) = s+1. Then there exist

s pendant paths attaching to h including y odd paths, s − y even paths.
Assume that d(u2, ui ) and d(ui , h) are all even (or odd). We can obtain T3 with

dT3(ui ) = 1 by performing Transformation II on s− y even paths and Transformation
V on y odd paths in sequence. Thus there exist k − 1 branching vertices in T3. And by
Lemmas 2.8 and 2.11, we have Wb(T3) > Wb(T ). Then by the induction hypothesis,
our result holds for k ≥ 3.

123



Extremal Trees with Respect... Page 15 of 20 156

Assume that d(u2, ui ) is odd (or even) and d(ui , h) is even (or odd). By running
Transformation IV on s − y even paths and Transformation III on y odd paths succes-
sively, we can get T4 with dT4(ui ) = 2 or dT4(c2) = 2 where c2 is a semi-diametral
vertex of T4. Then there are at most k − 1 branching vertices in T4. By Lemmas 2.10
and 2.9, we haveWb(T4) > Wb(T ). Then by the induction hypothesis, our result holds
for k ≥ 3.

Combining the above arguments, we complete the proof of the result. 	

Lemma 3.4 Let k ≥ 3, n ≥ 5 be two integers. Then Wb(Bn(k − 2)) > Wb(Bn(k)).

Proof Let H1 = Bn(k)with k ≥ 3 be a broomof order nwith a (p, q)-bipartition A∪B
and a branching vertex u1 with p+q = n, p > q. We have p = n+k−1

2 , q = n−k+1
2 if

n − k is odd or p = n+k
2 , q = n−k

2 if n − k is even. Let NH1(u1) = {w1, . . . , wk, u2}
with dH1(wi ) = 1 for i ∈ [k], P = w1u1 . . . un−k be a diametral path of H1. Next
we set H2 = H1 − {u1w1, u1w2} + {un−kw1, w1w2}. Clearly, H2 = Bn(k − 2) is a
broom with (p − 1, q + 1)-bipartition. Setting V0 = {w1, w2}, by the structures of
H1, H2 and Proposition 2.6, we have

Wb(H1) = 0 + Wb2(H1) + Wb3(H1) = Wb2(H1) + 2
q∑

i=1

(2i − 1),

Wb(H2) = 1 + Wb2(H2) + Wb3(H2)

= Wb2(H2) + 1 +
q∑

i=1

(2i − 1) +
q∑

i=2

(2i − 1) + (p − q − 1)(2q + 1)

= Wb2(H1) + 2
q∑

i=1

(2i − 1) + (p − q − 1)(2q + 1) i f n − k is odd,

Wb(H2) = 1 + Wb2(H2) + Wb3(H2)

= Wb2(H2) + 1 +
q∑

i=1

(2i + 1) +
q∑

i=1

(2i − 1) + (p − q − 2)(2q + 1)

= Wb2(H1) + 2
q∑

i=1

(2i − 1) + (p − q − 1)(2q + 1) i f n − k is even.

Since k ≥ 3, we have p − q − 1 > 0. Therefore, regardless of the parity of n − k, we
still have Wb(H2) − Wb(H1) = (p − q − 1)(2q + 1) > 0, completing the proof. 	

Lemma 3.5 Let a ≥ b ≥ 2, n ≥ 6 be three integers. If n − a − b + 2 is odd, then we
have Wb(H(n − a − b + 2, a, b − 2)) > Wb(H(n − a − b, a, b)).

Proof Let H1 = H(n − a − b, a, b) be a bi-broom of order n obtained by attaching a
(b, respectively) pendant vertices to the end vertex wn−a−b (w1, respectively) of path
Pn−a−b = w1w2 . . . wn−a−b with a (p, q)-bipartition A ∪ B. Let N (w1) \ {w2} =
{z1, z2 . . . , zb}. Recall that |A| = p ≥ q = |B|. Thus w1 ∈ B, z1, z2 ∈ A. Let
H2 = H1 − {w1w2, z1w1} + {z1z2 + z1w2}. Now we have z1 ∈ B in H2. Therefore
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H2 = H(n − a − b + 2, a, b − 2) is a bi-broom with (p − 1, q + 1)-bipartition.
Setting V0 = {w1, z1 . . . , zb}, V1 = V (H1) \ V0 and k = p−a−b−1

2 , by the structures
of H1, H2 and Proposition 2.6, we have

Wb1(H2) = b − 1 + 1 + 3(b − 2) = 4b − 6 > b = Wb1(H1),

Wb2(H2) = Wb2(H1),

Wb3(H1) =
∑

u∈V0∩A
v∈V1∩B

dH1(u, v) +
∑

u∈V0∩B
v∈V1∩A

dH1(u, v)

=
∑

v∈V1∩A

dH1(w1, v) + b
k∑

i=1

(2i + 1),

Wb3(H2) =
∑

u∈V0∩A
v∈V1∩B

dH2(u, v) +
∑

u∈V0∩B
v∈V1∩A

dH2(u, v)

=
∑

v∈V1∩A

dH2(z1, v) +
∑

v∈V1∩A

dH2(w1, v)

+
k∑

i=1

(2i + 1) + (b − 2)
k∑

i=1

(2i + 3);

∑

v∈V1∩A

dH1(w1, v) =
∑

v∈V1∩A

dH2(z1, v),
∑

v∈V1∩A

dH2(w1, v) >

k∑

i=1

(2i + 1).

Therefore we have

Wb(H2) = Wb1(H2) + Wb2(H2) + Wb3(H2) > Wb(H1),

completing the proof. 	

Corollary 3.6 Let a ≥ b ≥ 2, n ≥ 6 be three integers. If n − a − b + 2 is odd, then
Wb(Bn(a)) > Wb(H(n − a − b, a, b)).

Theorem 3.7 Let T be a tree of order n ≥ 4. Then

Wb(T ) ≤ f (n) =
{

n(n2−1)
12 , n is odd

n(n2+2)
12 , n is even

with equality holding if and only if T ∼= Pn for even n or T ∈ {Pn, Bn(2)} for odd n.

Proof Let T ∗ be the tree of order n ≥ 4 with maximum Wb. By Lemma 3.3, T ∗
must be a bi-broom with even diameter or a broom. By Corollary 3.6, T ∗ cannot
a bi-broom with even diameter. If T ∗ is a broom, by Lemma 3.4, we find that Pn
is the broom with maximum bi-Wiener index with Wb(Bn(2)) = Wb(Pn) if n is
odd. So T ∗ ∼= Pn for even n or T ∗ ∈ {Pn, Bn(2)} for odd n. Moreover, we have
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Wb(Pn) = Wb(Bn(2)) = k(k+1)(2k+1)
3 for n = 2k + 1, or Wb(Pn) = k(2k2+1)

3 for

n = 2k. Thus Wb(T ) ≤ f (n) with f (n) =
{

n(n2−1)
12 , n is odd

n(n2+2)
12 , n is even

with equality

holding if and only if T ∼= Pn for even n or T ∈ {Pn, Bn(2)} for odd n. 	


Combining Theorems 3.1 and 3.7, we arrive at the main result as follows.

Theorem 3.8 Let T be a tree of order n ≥ 4. Then

n − 1 ≤ Wb(T ) ≤
{

n(n2−1)
12 , n is odd

n(n2+2)
12 , n is even

with left equality holding if and only if T ∼= Sn and right equality holding if and only
if T ∼= Pn for even n or T ∈ {Pn, Bn(2)} for odd n.

4 Concluding Remarks

In this paper we have introduced and studied a new topological index, called the bi-
Wiener index. We have established some of its basic properties and determined its
extremal values over all trees on a given number of vertices. However, many other
interesting problems remain unresolved even for trees.Weaddress heremaybe themost
natural one, namely the one about the largest value of the ratioWb(Tn)/W (Tn) over all
trees of order n. We have shown that lim

n→∞
Wb(Sn)
W (Sn)

= 0 and that lim
n→∞

Wb(P2n+1)
W (P2n+1)

= 1
2 ,

but what can happen for general trees? It turns out, somewhat unexpectedly, that this
cannot be bounded away from one when n tends to infinity.

Theorem 4.1 Let T denote the set of all trees on n ≥ 4 vertices. Then

sup
T∈T

Wb(T )

W (T )
= 1.

Proof Assume that T ∗
n = H(k + 1, (n − k − 1)/2, (n − k − 1)/2) with k being odd.

Let us denote m = (n − k − 1)/2 and consider trees H(k + 1,m,m). It follows by
a straightforward computation that their bi-Wiener and ordinary Wiener indices are
given by

Wb((H(k + 1,m,m)) = (k + 2)m2 + (k + 1)2

2
m + 1

12
(k3 + 3k2 + 5k + 3)

and

W (H(k + 1,m,m)) = (k + 4)m2 + k(k + 3)m + 1

6
k(k + 1)(k + 2),
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respectively. Now, their ratio is given by

Wb(H(k + 1,m,m))

W (H(k + 1,m,m))
= (k + 2)m2 + (k+1)2

2 m + 1
12 (k

3 + 3k2 + 5k + 3)

(k + 4)m2 + k(k + 3)m + 1
6k(k + 1)(k + 2)

.

For large enoughm (and hence large enough n), this will behave as the ratio of leading
terms, k+2

k+4 , and this, in turn, can be made arbitrarily close to 1 by choosing large
enough k.

The supremum value of 1 is never achieved, since, by Corollary 2.3, the ratio
remains strictly below one for the number of vertices greater than two. It is reached
for P2, though, if we consider all trees.

The above proof works for even n. It would require only a minor modification to
work also for n odd, but the conclusion would remain the same, settling the case for
all trees. 	


The problem still remains, though, if we consider all trees on a given number of
vertices. Since those are finite sets, there we can ask about the maximum value of the
ratio.

Problem 4.2 What is the maximum value of the ratio Wb(Tn)
W (Tn)

among all trees Tn of a
given order n ≥ 4?

The results of Theorem 4.1 could be refined in several ways. For example, it would
be interesting to investigate for which rational numbers p/q between 0 and 1 one
could construct a sequence of trees so that the considered ratio tends to p/q. Also,
one could ask are the stars the only trees with the ratio tending to zero.

It is natural to ask what happens for bipartite graph which are not trees, i.e., which
contain cycles.

Problem 4.3 What is the supremum of the ratio Wb(G)
W (G)

over all bipartite graphs which

contain a cycle? What is the maximum value of the ratio Wb(Gn)
W (Gn)

among all bipartite
graphs Gn of a fixed order n ≥ 4 containing at least one cycle?

In particular, what can be said about bipartite graphs with low cyclomatic numbers?
The bi-Wiener index could (and maybe should) be generalized in many (if not

all) of the ways the original index was generalized. For example, one could consider
its additively and multiplicatively weighted variants [14], then the terminal variant,
the polarity variant, etc. It might be also interesting to investigate the corresponding
polynomials [8]. Some work on those topics is under way and we hope to be able to
report on it soon.

More generally, it may be interesting to extend the definition of the bi-Wiener index
of a bipartite graph to the k-Wiener index for k-partite graphs with integer k ≥ 3.
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