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Abstract

In this paper, we investigate the Cauchy problem of one-dimensional compressible
Euler—Fourier—Korteweg system. The global unique strong solutions are established
in the critical Besov spaces with small initial data close to a constant equilibrium state.
This extends the recent work of Kawashima et al. (Commun Partial Differ Equ47:378-
400, 2022) on the dissipative structure of linear Euler—Fourier—Korteweg system to
the non-linear system in critical space.
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1 Introduction

It is known that the motion of the one-dimensional compressible non-isothermal vis-
cous fluid with internal capillarity can be described by the Navier—Stokes—Korteweg
system (see [16, 23] for the derivation of that model):
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0rp + 9x(pu) =0,
0 (ow) + 0 (pu?) = B () + 0K,

s (p (e N %)) 1 9 <pu <e + %»

= 3y (@0c0 + uk + pudcu + W) .

As can be seen, the fluid is characterized by its density p, velocity field u, and tem-

perature 6. Moreover, E = e + # denotes the internal energy density of the system,
and the potential energy e is given by the Helmholtz free energy density W according
to

e=V(p,¢,0)+0s; s=—-0V,

where s denoting the entropy density and ¢ = |3 p|>. The interstitial working W
(Introduced by Dunn and Serrin [16]) and the Korteweg stress tensor /C are defined as

W = —k(p)pdxpdxut = k(0)0;p (30 +udxp), K= (—pzap‘ll + pax(fc(p)axp))
—(0) (3:p)°,
with the capillary coefficient k () = 2p94W. As in [22], we set

K (p)

V(p,¢,0) = ?fﬁ + W (p,0),

where 8 > 0, p > 0, 9oV < 0. Asa particular case of above, we consider that

_Kk(p)
-3,

v

(0p)> + Olnp — OIno.

Thus, the system (NSK) can be rewritten as the following form (see Appendix B):

3 p + 8y (pu) = 0,
0 (o) + 0 (pu?) + 0, P(p, 0) = 0. (o) + 0, K.
0810 + pudyd + Pdyu — @80 = u(du)?

(1.1)

with P(p,0) = p6 and K = pk(0)0xxp + % (,0/(’(,0) — /c(p)) (8¢ p)?. In this paper,
we mainly focus on the case k (p) = kp~!, (k > 0) that so-called quantum-type fluid,
for the technical reasons. And the correspondingly Korteweg stress tensor is defined
as

K = dup— 0 (3cp)*.
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There have been many mathematical results on the compressible Navier—Stokes
equations of Korteweg type. Hattori and Li [21] proved the local existence and global
existence of smooth solutions. Hou et al. [22] investigated the global well-posedness
of classical solutions. Chen et al. [11] proved the global smooth solutions to the
Cauchy problem of one-dimensional non-isentropic system with large initial data.
Recently, the authors and Song [37] studied the large-time behavior in L?-type Besov
space. For isothermal fluid, Chen et al. [10] studied the global stability for the large
solutions around constant states. Charve and Haspot [20] proved the global exis-
tence of large strong solution for ;(p) = ep and k(p) = £%p~! in R. Yang et al.
[42] studied the asymptotic limits of Navier—Stokes equations with quantum effects.
Another interesting and challenging problem is to study the stability of the compress-
ible Navier—Stokes-Korteweg equation in the half space. Chen and Li [12] discussed
the time-asymptotic behaviour of strong solutions to the initial-boundary value prob-
lem on the half-line R, and showed the strong solution converges to the rarefaction
wave as t — oo for the impermeable wall problem under large initial perturbation. Li
and Zhu [32] showed the existence and stability of stationary solution to an outflow
problem (see also [31] for more information to outflow problem) with constant viscos-
ity and capillarity coefficients, respectively. Li and Chen [28] studied the large-time
behavior of solutions to an inflow problem. In two or three space dimensions, Tan and
Wang [39] established global existence and optimal L? decay rates in Sobolev spaces.
Li, Chen and Luo, and Li and Luo showed stability of the planar rarefaction wave to
two- and three-dimensional compressible Navier—Stokes—Korteweg equations in [29,
30], respectively. In the Besov space, Danchin and Desjardins [15] investigated the
global well-posedness in L?-type critical spaces for initial data close enough to stable
equilibria. Later, those results are improved by Charve et al. [13] and shown in more
general critical L? framework, and also the optimal time-decay estimates is estab-
lished by Danchin and Xu [25]. Recently, Bresch et al. [9] studied the weak-strong
uniqueness of the quantum fluids models.

Itis well known that when the viscosity coefficient u© = 0, the Navier—Stokes model
would reduced to the Euler model (see [17, 39]) that may develop singularities (shock
waves) in finite time (see [34]). Looking for conditions that guarantee global existence
of strong solutions of the Euler model is a nature challenging questions, which goes
back to the researches on the partially dissipative hyperbolic systems of Shizuta and
Kawashima [35], the thesis of Kawashima [24] and, more recently, to the paper of Yong
[41]. A classic example of a partially dissipative system is the Euler damped system
(see [17, 38]). Recently, Kawashima et al. [26] researched the dissipative structure
for a class of symmetric hyperbolic-parabolic systems with Korteweg-type dispersion
(containing the the non-isothermal Euler—Fourier—Korteweg linear ) and established a
new Craftsmanship conditions.

Motivate by the above work, in this paper, we devote ourself to the following
Euler—Fourier—Korteweg system:

8y + dy (pu) =0,
0 (ow) + 0 (pu?) + 0. P(0.0) = 8,K, (12)
03,60 + pude6 + PO u — @0y 6 = 0,

@ Springer



162 Page4 of 32 W. Shi, J. Zhang

which governs the evolution of the one-dimensional compressible non-isothermal
non-viscous fluid with internal capillarity.

When 6 = 0, the system (1.2) reduce to Euler—Korteweg system. Gavage et al. [18,
19] proved local well-posedness by reducing the system to a quasi-linear Schrodinger
equation and studied the dispersive properties. Audiard [1] studied the local dis-
persive smoothing, precisely, (3xp,u) € C(0,T; H*) and (3,p,u)/(x)1+9/2 ¢
L*0,T; H “+%). Berti et al. [8] proved the local existence for the classical solu-
tions in the torus T¢. Audiard and Haspot [2, 3] proved the global existence for small
irrotational initial data in R?. However, their method and theory are effective for only
the case d > 3. To our knowledge, the global well-posedness remains open in even
d=72.

For the non-isotherm case, the dissipation provide by the coupled temperature
equation help us study global well-posedness in R from the perspective of dissipation.
To our knowledge, this is the first attempt to consider non-isotherm Euler-Korteweg
system in Besov spaces, which might fills a gap in the global result of Euler-Korteweg
system for 1-D.

The main difficulty lies on the processing of nonlinear terms. The analysis of the
dissipative structure in [26] implies that the density p and the velocity u are mainly
affected by damping in the high-frequencies. That is in stark contrast to the Navier—
Stokes—Korteweg equations [25], in which the density and the velocity are mainly
affected by heat kernel. In other words, there is a regularity loss brought by Korteweg
term because the lost of parabolic smoothness. To overcome this difficult, we make an
innovative symmetric transformation of the system and obtain the first global result of
one-dimensional Euler-Korteweg system in critical Besov space using commutative
estimate and classical product estimates.

The rest of this paper unfolds as follows. In Sect.2, we present an reformulated
system and linearize it, then give out the main results of this paper. In Sect.3, we
devote ourself to the a-priori estimate. In Sect.4, we prove the global existence and
uniqueness of solutions. For the convenience of reader, in Appendix, we present the
basic tools and estimates that will be needed, and the derivation of model (1.1).

2 Reformulated system and main result

In this section, we are going to reformulate (1.2). In order to overcome the difficulty
of regularity loss, we introduce so-called kinetic energy a new unknown m = /P,
which is common especially in the vacuum problems (see [27, 33]). For convenience,
we set 0 2 \/4p, and the system (1.2) can be reformulated as

1
00 + EmaxQ + 0ym =0,
3 I, 1 3 1
B,m + Emaxm — ?m BXQ + anQ + Eane = aXQ — Eaxgaxxg, (21)

~

2 2 2 4a
00 + —mdy0 + —00m — —0md,0 — — 00 =0,
@ @ @ @
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with the evolution equation of d, 0,

Oxr@ = —0yxm — 0Oy (Ll)max9> ,
and the initial data

(0, m, 0)|1=0 = (00, mo, 6p). (2.2)

For simplicity, we assume the heat transfer coefficient & to be 1 and we focus on
the case where the density and temperature goes to 2 and 1 at co. Settinga = o — 2
and 7 £ 6 — 1, and looking for reasonably smooth solutions with positive density,
and (2.1) is equivalent to

dia+9dym = F,
dm + dca + 0, T —2a=G, (23)
T 4 dym — 0, T = H.

Accordingly, the development equation of d, o is rewritten as

Oxr@ + Oyxym = 0 F. 2.4)

. ~ ~ ~ 2
Defining K;(a) = [ Ki(@)da, Ky(a) = e Ko@) = Zlif)% and

8 10
F=Fi+F, G=) G, H=) H,

i=1 i=1

the non-linear term have the following concrete forms

1 1 ~ 1 1 ~
F = _Eaxam» F, = Eax(Kl(a))m; G| = _Eaxaaxxaa Gy = Eax(Kl(a))axxa7

3 1 1 1 ~
Gy = —Smum, Gy = —iaaxT, Gs = ZaxamQ, G = —0,aT, Gy = —ZBX(Kg(a))mz,

3 2
Gg = ZKl(a)ax(m ), Hi = —K2(a)0xxT, Hy = -md, T, H3 = K{(a)dym,
1

Hy=—-T3,m, Hs = Emaxa, He = Ki{(a)md, T, Hy = K(a)d,mT,

1 ~
Hy = — -0y (Ka(a))m,

2
1 1 ~
Hy = EmTaxa, Hy = —§8X(K2(a))m’]'.

One key step in proving global results is a refined analysis of the linearized system
(2.3), and this work is mainly inspired by the work of Kawashima et al. [26]. For
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readers’ convenience, we recall the main results in [26] and firstly rewrite the linearized
part of (2.3) as following hyperbolic-parabolic systems

AU, + AU, = BU,, + DU, (2.5)

with U = (a, m, T)T and

100 010 000 000
A=]lo010),A=|101],B=]000]),D=100
001 010 001 000

Taking the Fourier transform with respect to x, then the linearized system translates
into

AT, +iAU — (i&)*BU —i&°DU =0 (2.6)
with £ € R. And the corresponding eigenvalue problem is

(AAY +igA — (i€)°B — (i§)’D}y = 0.
Then they proved that the system is of “standard type", that is

— &2
L+ g1

Re(r(i&)) < C 2.7

Applying the perturbation theory of one-parameter family of matrices, the following
proposition can be obtained.

Proposition 2.1 (see[26]) Assume . = A;(i§), j = 1,2,3 are the eigenvalues of
(2.3) then there are the following asymptotic expansions as & — 0 and |£] — oo

00 3
16 =Y G6)" . &0, and 1085 = (5 "AET

n=1 n=1

+Y ™, g > oo,

n=0

where

) WD_a, Ve oo o1 oo
A =EV2, 15 =0; M= T My =00 A7) =i, Ay = > i3 =0

and

% (0) 1| 1/2 . 1
AMoyr=—= +i|l+ .
’ 2174 +1 1/4+ 1
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Notice that kg.z) > 0for j=1,2,3. Also, ng) > 0, ReX,((z) = 0 and ReX,((O) <0
for k = 1,2. Therefore these asymptotic expansions suggest the optimality of the
characterization (2.7) for the dissipative structure.

From which, we can observe that there are a real and two complex conjugated
eigenvalues coexist both in high and low frequencies and the solution might verifies
in some way a Schrodinger equation. That is to say the classical method of “effective
velocity" (see [20] and [5]) is not effect. Moreover in high frequencies, the treatment of
the regularity loss term depends on the symmetry of the system which is also bring us
a difficult when we research in L? framework. Therefore, we only discuss the problem
in L? framework.

Our main result is stated as follows:

2
.3 .3
Theorem 2.1 Suppose the initial data (ag, mo, To)" € Bzz’1 X <BZZ’]> , (ag, mo, To)t €

3
.1
(Bz’go) , and the data satisfy for o << 1

d
Xo < (o, mo, I

h
|+ llaol”
B, 2 B

+lmol” y +1%01" ) <00, (28)
1 BZ.I B2,1

Do

2,00

then system (2.3) associated to the initial data (ag, mg, To) admits a unique global-
in-time solution (a, m, T) in the space X defined by

~ L1 ~ .3 ~ .1
@.m, 1) e CRy: B, Z(R) NL'(Ry: By (R) N L*(Ry: BS (R)),
~ .3 ~ .5 ~ .3 ~ 3
a" € CRy; B ,(R) NL'Ry; B (R)), m" € C(Ry; B (R) NL' (Ry; B | (R)),

- 1 ~ .5
T" € C(Ry; B | (R) N L' (Ry; B | (R)).
Moreover, the following inequality holds
(a,m, T)llx < CXo. (2.9)

Remark 2.1 This result in fact reveal the dissipative structure of Euler—Fourier—
Korteweg system more precisely. Comparing the results in [26], it seems that it is more
suitable to work with the same regularity for d,a, d,m, 7 rather than dy,a, dym, 0y 7T
in high-frequencies region (see Proposition 4.3.in [26]). Otherwise, the damping effect
of a, m and the parabolic effect of 7 may not be represented in the L' framework of
time.
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3 Global a priori estimates

For convenience, we define by E(T') the energy functional and by D(T) the corre-
sponding dissipation functional:

E(T):=E"T)+ E"T) = ll(a.m, D" | +@wa, dem, D"
L¥B, %) LF B3

and

D(T) := D"(T)+ D"(T) = (a.m, D" 5
L} (BS o )NL7(BS o)

+ | Bexa, dem, 0 D"

Lh7)

where the low frequencies and high frequencies part defined as (5.3). And then we
give the key a-priori estimates leading to the global existence of solutions for (2.1).

Proposition 3.1 Suppose (a, m, T) is a solution of (2.3) for T > 0, with
@, m. Ty << 1. 3.1
Then, for all 0 <t < T, it holds that
E(T)+ D(T) = C(X + E(T)D(T)), (3.2

where C > 0 is a universal constant and Xy is defined by (2.8).

For clarify, we divide the proof of Proposition 3.1 into two cases: the high-
frequencies and low-frequencies estimates.

3.1 High-frequencies estimates

In this subsection, we establish a priori estimates in high-frequencies region (j >
Jo-+1) and we always assume jo large in this paper. And finally establish the following
Proposition.

Proposition 3.2 Assume (a, m, T) is a solution of (2.1) satisfying (3.1) then
lal™ s +0170" , +ml® o +l@DI" s +ml
LFB5p L¥ B3 LF B3 Ly(B3) Ly (B3 )

< E(T)D(T) + Xo.
(3.3)

To prove the above Proposition, we first consider the temperature equation and
devote to obtain the dissipation for 7 and finally establish the following Lemma.
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Lemma 3.1 (The dissipation for 7°) Assume (a, m, T) is a solution of (2.1) and (2.2),
the initial data satisfying (2.8), then

I T ; SEMDMD) +ml” . +1%l", . (34
L3y Ly B3y L} (B3) B},

Proof In fact, the third equation in (2.3)
0T — 07T =0m+ H
is a parabolic equation, and the standard estimates (see [7, 15]) implies

alig : +17)" ; <||T0||h1 + llm|" ) +H|" IR )
LOO(le) % (321) 321 Lj (le) L (le)

Next, we seriatim bound the non-linear part. Making use of the product law (5.6)
and the para-linearization theorem (5.3), we have

I SIKG@I |y 10Ty Slal__ |y 171
L (Bzzl) L (Bj ) Ly(By ) T(BZI) LT(BZ‘I)

< E(T)D(T).

In the last inequality, we used (5.5) and deduced the fact that

lall_ oy Slal’ el
L7 (B3 ) L (B} ) LP(B, 5)
IITII~1 s STt +IIT|| 3
Lr(B3 ) LL(B7) LL(B2.)
Similarly, we can obtain
h
Il H|" 1 + || Hy " o HIHEIT
Ly(B3) Ly(B7) Ly(By))
SH@DI_ gl oy el 0TIy el
Ly (B3, LT(BZ,]) LF (B3 LPB; ) (Bz 1)

< E(T)D(T).
For H», it follows from the product law (5.6) and Holder inequality

||H2||h 1 Slhml_ o 7M., 3 < E(TMDT).
K 2 2 2 2
I! (3221) L7.(By,) LI(B?)

In the last inequality, we used the interpolation inequality (5.2) and deduced

s SVEMDT),

(B3

1

IITII ST

o 17
L B7)

o~ =

V3
p2
2,1
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1 1
el Slmll”  _dml” 5 SVEMT)D).

L7(Bj) LB, 2 LhBP)

And very similarly, we have

1Hel” Sllall__ o mll 4 1T 3 S ET)D(T),
LB} 7 (B3 L7(B5y) L7(B5

In fact, the interpolation inequality (5.2) also implies

1 1
Slhall2 oy lall? 5 S VE@)D).

lall _ B
¥l LhEZ)

33
T BZ.I

And therefor we can further deduce by the product law (5.6)

1as)" o +IEsl" Slml_, 1 lall_ 5 < E(T)DT),
LL.(BF) LL(B7) L7(B;y) (B3
IHol" A+ MHwol” SITH, g ml, oy lall, s S ET)DT).
LY(BF)) LL(B})) Ly(By)  L(Biy)  Lp(Biy)
Hence
I=|" -, S E@DT). (3.6)
Ly (B p)
The proof of Lemma 3.1 is finished. O

Next, we devote to obtain the dissipation for m and a. And the corresponding
Lemma we established is stated as following.

Lemma 3.2 (The dissipation for m and a) Assume (a, m, T) is a solution of (2.1) and
(2.2), the initial data satisfying (2.8), then

[@cxa, dem, D" |+ [@era, 0em, D" | S ET)DT)+ Xo. (3.7)
L¥ By Ly (B3

Proof Applying the operator A ; to the equations (2.3) gives

Ajata + Ajaxm = AjF,
Ajom + Ajdva+ A;d, T — Ajdda = A;G, (3.8)
Aj8,7+ Ajaxm - AjaxxT = A]H
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Multiplying the second and the third equation in (3.8) by A j0x7 and A j0xm respec-
tively and then adding them together, we can obtain

d . _. . . . .

E/AJ’TAjBXm dx + | Ajoxm|7, — |1A;0: T3, —/AjaxxTAjaxm dx
+/A,a§aA,adex=/AjaxaAjaxT—A,axGA,-TthjHAjaxm dx.
(3.9)

Deriving the second equation in (3.8) with respect to x and then multiplying by Aj Oxm,
we can obtain

1d . . . . . . .
EE||Aj8Xm||iz+/AjaxxTAjaxm+AjaxxaAj8xm—Aja;‘aAjaxm dx
=[AjaxGAjaxm dx.

And similarly, we can deduce by the first equation in (3.8) that

1d

EE||(Ajaxa,Ajax,ca)ni2 —fAjaxmAja”a dx+/A,»axmAja;‘a dx

= / AjaxFAjaxa + A.,BMFA.,Z)”a dx.
Adding the above two equations together, we have

1d . . . 5 , ,
577 150 Ajdeea, Ajaam)IT, + [ AjouTAjoum dx
:/A,axGA.,axmjtAjaxFAjaxa+AjaxxFA,axxa dx.

On the other hand, multiplying the first and the third equation in (3.8) by A j0xxT and
A jdyxa respectively and then adding them together, we can obtain

d [ . . , . , ,
E/AjaxxaAdex—i—/A.;BXX’TA./BXm—i—AjaiaAjBdex
+/AjaxmA,-axxa dx
=/AjFAj8xxT+AjHAj8xxa dx.

The first equation in (3.8) implies that

1d . . . . .
EEnAjaxaniz —/AjaxmAjaxxa dx =/Aj8xFAj8xa dx. (3.10)
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Adding the above two equations together, we have

d , . 1. . , , .
- (/ AjdaA ;T dx + §||Aj8xa||i2> +fAjaxx7Ajaxm + A;j3alA;d,T dx

=fAjFAj8xxT+AjHAj8xxa +Aj8xFAj3xa dx.

(3.11)
Define
L3 = |[(Ajoca, Ajogea, Ajom)|7,
. . . . 1 .
—I—/ AjTAjaxm — AjaxxaAdex — §||Aj8x(1||%2,
then we can deduce by (3.9), (3.1) and (3.11)
L2 A amI, — 148, TI2,
dt J J L J L
= / Ajdca (Ajo, T+ AjoF) — Aja.GA;T + AjHA;dym dx
(3.12)

+2/A,-axGA,-axm+AjaxxFAjaxxa dx
—/AjFAjaxxT+AjHAj8xxadx.

Multiplying the second and third equations in (3.8) by A jm and A ;T respectively,
and then we can obtain

1d . . . . . . .
Ed—tn(Ajm,A,-T)niz+||A,-axT||§2+/A,-axaA,-mdx—/A,-a§aA,-m dx

= / AjGAjm + AjHAdex.
Adding together with (3.10), we can deduce

1d . . . . . .
5o I jm. AT, Ajdca) %, + I1A;8:T %, +/Aj8xaAjm dx
(3.13)

:/AjGAjm—i—AjHAjT—i—AjBXFAjaxadx.
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Summing (3.12) and (3.13) up, we can obtain

d . .
LT+ NA0um Gy + 140 TI7
S IAjdxa, Ajdem, Ay 2 (A F, A;G, AjH) |2 + 1A jdcall7,

+ / AjGAjdym + Aoy FAjdycadx — / Aja,GA;T + AjFA ;3. T dx.
) ) ) (3.14)
And here L’? = L% +1 FAJ-m, Aﬂ.’, Ajdya) ”iZ' Multiplying the first and the second
equation in (3.8) by —A jm, and A ;a, respectively, and then adding them together
we can get the dissipation of a

d . . . . .

m / AjmAjocadx +||Adcal, + 1A dxcall;, — 1A oml|7,
= / AjGAjdca— AjFA;o,m — AjdyTAjda dx
SIAF,AjG) 2 1(Ajora, Ajdem) |2 + CENA; Te|7, + EllAjall7,.

Choosing € > 0 small enough, we can obtain by adding above equation together with
(3.14) for jo >> 1

d . . .
S+ 1A dca, Ajoem, AT

S N(Ajoxea, Ajdem, Ay D2 (A F, AjG, AjH) |
+ / AjdcGA;jdym + Ajd FA;dca dx — / Aja GA;T + AjFA;d,T dx.
o (3.15)
Here H? = E? + % J AjmA;dca dx, and the Cauchy inequality implies
M3~ (|(Ajoxea, Ajoum, AjT)|7..

Next we bound the regular loss part by the symmetry of system and commutator
estimates. More precisely, we bound /; with

I = / A9 GAjaym+ Ajd FAjdyya dx.
For 0, F1, we can rewrite it as following form

/axxAj(axam)A,axxa dx = / A j(Dyyam)A jdyca + ;A (3 adem)A jdyca dx.
(3.16)

Defining the commutator as [ f, g] := fg — gf, then we have
/ B A (Dexam) A j0gpa dx = / 0 (1A, m0xa) A dcra + 0 (mAjdca) A jorca dx.
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By using the commutator estimates (5.2), we can easily get

[ 8.(18) m130s0) & s dx S 10 (18 w10 121 sl

Scjlml
B

llallB [ Ajoxxallp2.

3 5
2 p2
2,1 2,1

Making use of integration by parts, we can deduce that

) . . > 1.
/ax(mAjaxxa>Aj8xxa dx :/me(Ajaxxa) +5max(Ajaxxa)2 dx

A 2
S 0xmllLel|Ajoxcalls.

.1
Hence, we have by the embedding BZZ’ | (R) < L*™(RR)

. . . o
/axAj(axxam>Ajaxxa dx Sejlml s lall 3 1A dual + Iml 3 18 decal}a:
2.1 2,1 2,1

(3.17)

And similarly, we can deduce by the commutator estimates (5.2) that

/ axAj(axaaxm)A,»axxa — BxaAjaxxmAjaxxa dx

S N0x([A, axaloym)ll 2| Ajdxxall 2 + [0xxallze | Ajoxmll 2| Ajoxcall 2
7l . . . .
S272¢jlall 3 lmll 3 [1A;0xxall 2 + llall 3 lA;jOxm 2| AjOxxall 2.
B, By, B;

(3.18)
Substituting (3.17) and (3.18) into (3.16), we have

/axxAj(axam)A,-ama — 3yaljdymA jdcca dx

Ly . .
S (@ Hejllall 3 bl +lal 3 1A 50mlz )14 deall2.
1 2,1

33
BZ, 2,1

For 0, G, we can rewrite it as following form

/axAj(axaaxxa)Ajaxm dx

- / (0 (14, 0caldeea) + o (8.ah 0cra) ) Aj0um dx,

@ Springer



Global Well-Posedness for the One-Dimensional. .. Page 150f32 162

and then it follows the commutator estimates (5.2)

/axA,-(axaaxxa)Ajaxm+axaA,~axxmAjaxxa dx 52—%f'cj||a||2 A ;d m]l 2.
B

5
n2
2,1

(3.19)

Adding (3.1) and (3.19) together, we have
/ A.,-axxFl Ajaxxa + AjaxG1Aj3xm dx

L1y . . .
s (2 es BT (Jlall g +||m||33)+E<T>||Ajaxm||Lz> 1A j3rea, Ajam)ll 2.
2, 2,1

1

Very similarly, we can also establish the following estimates by (5.3)
/ Ajdy FaAjdcca+ AjdyGaAjdem dx

1 . . .
S (22’CjE(T)(|IaII + IIMIIB% ) + E(T)IIA.,‘ameIL2> 1(Ajdxxa, Ajoxm)| 2.
1

o (3.20)

B,

For 0, G3 to 9, Gg, we can rewrite it as following form

8 6
Z/AjaxGiAjaxm dx < Z/ax<[Aj,bk]dk)Ajaxm+ax(bkAjdk)Ajaxm dx.
i=3 k=1

Here by and dy are sequences of functions

by :={m,a,m, T, m2, Ki(a)},
dy = {dym, 3, T, dya, dya, 3, K2(a), dym?).

Making use of the commutator estimates (5.2), we have

[ 8.1 i) Ao dx S 274l m DR 14 0.m1

2
.3
B3,
And the Holder inequality and Bernstein’s inequalities implies
/ 3, (bkA,-dk)A,-axm dx

S 19xbellzee 1A jdell 2 1A jaxmll 2 +/bkA,~axdkA,~axm dx.
It not difficult to obtain thatfor 1 <k <6

I9xbrlizoe | Ajdill 2 1A joxm 2
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S EM2(Aja, AjKa(a), Ajm, AyT)| 21| A joem] 2.
By the integration by parts, we can obtain that
. . 1 . .
/blAjaxdlAjaxm dx = —Efaxm(axAjm)2 dx < [ldxml| | Ajdcm])3,.
And similarly

/b6A,-axd6A,»axm dx

SIK1@llz= 1A, mldem|l 2 10:Ajml 2 + E(T)|Ajdem|7

< E(T) (2—% 2
B

3
52
21

1A joxmll 2 + ”Ajaxm”iz) .
Finally, we can deduce by the Holder inequalities that
5
Z/bkA,-axdkA,-axm dx S E(DAjda, Ao T2l Ajdemll 2.
k=2
Hence, we have for E(T) < §

8

Z/AjaXGiAjaxm dx < 2—%fcj||(a,m,7)||23 IA ;3 m] 2
n2

i=3

B2.1

+2711(Ajdca, A Ka(a), Ajm, Ajay Tl 2 (1A joyml 2.

(3.21)
Adding (3.1) to (3.21) together, we can obtain that
/ Aja GAjaym+ Ajd FAjdya dx
| . .
S 272 ¢ E(T)|(0ca, m, 8XT)”B% I(Ajoxxa, Ajoxm)| 2 (3.22)

2.1

+ 1A jdera, Ao Kaa), Ajdem, Ajd Tl 2| Ajoym] 2.

Next, we bound f A j 8XGA.,~ T dx, and we rewrite it as following commutator form
forkeZand1 <k <8

8 5
Z/ AjaxGiAjT dx < Z/ax ([Aja hk]Zk)AjT-i- ax(hkAjZk>AjT dx.
i=1 k=1
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Here hj and z; are sequences of functions

hi = (9xa, 0x K1 (@), m, a,m*, T, m*, K1(a)),
2k = {0xxa, Oxxa, dxm, 0T, 0ya, dxa, BXEZ(a)v 8Xm2}'

Making use of the commutator estimates (5.2), we have

/ax([Aj, hilex ) AST dx £ 272 e E(Dla,m T

3
p2
2,

1A T2
1

And the Holder inequality and Bernstein’s inequalities implies

/ax(hkA,-Zk)A,-de S lochill ool Azl 2 | AT g2 +fhk8xAjZkAdex~

It is not difficult to obtain that

l9chillzoo A jzicll 2 1A T 2
S22 EM(Ajdca, Ajm, AjKa(a), AT, AymH)|| 2|1 AT | 2.

By the Holder inequalities, we can deduce that

6
Z/hkaxAjZkAjT dx < 2 E(T) (||(A,-axxa, Ajoem) 2 + 27 1A Tl2) 1A, T 2.
k=1

Be similar to the previous, we can obtain that

/maxA,»mA,»T dx < Im? ||z 10x (A}, Ka(@)18xa) || 2 1A T2
+ E(T) (1< Ajall 2 + 1A all2) 1A;T )2

_1; . .
S E(T) (2 Yejllall 3 + ||3xAjaI|L2) IAT N 2.

3
Bzz,l
And also, we have
/hsaxA,,ngjT dx SIK @)l 18 (A, m1dem)|l 2 1A ;T || 2
+ ET) (I1Ajmll 2 + 1A;3emll 2) 1A Tl 2

< E(T) (rifqnmn
B

3
2
2,

+ IIBxAjm||L2> 1A T2
1
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Therefor, we finally establish that

/A(,-axGA,-T dx < 2*%/cJ-E(T)||a, da,m, T\ 3 |A;Tl 2+ ET)D;|A;T] 2.
B

3
2
2,1

(3.23)

Here D; = [|(Ajdxxa, Ajogm, AjdeKa(a), AjdeT, Ajoem?)| 2.
Now, we devote oneself to deal with [ A;jFA;dy T dx. By integration by parts,
we have

/ AjF A3, T dx = / O A (@rxam)A ;T + 3 A j(dcadem)A ;T dx
Making use of the commutator estimates, we can obtain

/axA,-(a“am)AjT dx

S3x (A, m1dsxa) | 2 1A T |l 2 + E(TIIA jdxcall 2 1A T || 2
1.

<2 2c¢jlall s Imll 3

Bzz,l Bzz,l

IA; T2 + E(DIAjdrall 2 1A 0y T Il 2.
And similarly,

/axA,-(axaaxm)A,-T dx

S0x (A, axaldem)ll 2 1A ;T N2 + ECTIA jaym|l 21 A 9T 12

1
S 27 cjllall s
B

Imll 3 IA;T |2+ ETIA;8emll 2 1A 3T |l 2

1 B 2,1
Therefore,

/AjF]Ajaxdex

1 . . . .
S2Heslall s ml 3 18Tl + I da, Bjaem)ll 21400 T 2.
2,1 2,1
(3.24)
And very similarly, we have
/AjF2Ajaxdex
1 ; 2
S27Hg <|Iall.g laml +||a||2_3>||A,-T||Lz -2
By, B;, 322.1

+ E(D)(Ajdxa, Ajaem)| 2|1 A ;8 Tl 2.
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Substituting (3.22) to (3.25) into (3.15), we can deduce by Lemma 5.3

(A j8cca, Ajoxm, AjT)| o2 + 1A jcca, Ajoxm, A;T) |y g2

. . . . 1.
SIAF,AjG, AjDlz + EMINAj0T 2 + 272 ¢ E(DII@a, m, DI
2,1

7l ~ . . .
+2 2fcj||a||?% + E(M)Dj + [[(Ajdxxao, Ajdxmo, AjTo)l 12
BZ.

Multiplying by 272/ then summing up for j > jo + 1, we can obtain

I@xa, dem, D" |+ [@era, 0em, D",
L¥(By)) Ly(B5))
SIF.G D" | +EMDT)+ X.
Lh a3

In the Lemma 3.1, we have bounded || H ||’i ; and obtained (3.6). And next we
Ly (B5)
only need to deal with |[(F, G| ; . Making use of the product law (5.6), para-
Ly (B
linearization theorem (5.3) and interpolation inequality, we can deduce

h
L T I

2p2
LL.(Bf)) L7 (B85,

(B3

)II(Bxa,ax(El(a)))Ilz 1 S EMDT). (3.26)

And similarly, we have

IGI_, 1 Sloxall__ 1 ldwal_ +/||m||.%||m||.% dt
L L (BF)) L‘T(Bz’l) B

1

7 (B4 201 By, (3.27)
+ (T, 3x7')||~2 2 @ da)ll 1
L7(Byy) L7.(By )

By using (5.5), we can get

lcall__ 4 ol
L7 (B3 ) Lr(B;y)

§<||a||i s +llalt ,_1)(||a||ﬁ s +llalt 3>§E(T>D(T).
) )

LF(B5,) LFB, 5 Ly (B3 Ly (B3 (3.28)
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It is easy to obtain the following fact by Holder inequality and (5.5)

T T
h 4
[yl e [ <||m||_3 +Iml, )dt
0 B; B; 0 B; B} B},

1

h 2
Slhml_ oy Aml” 5 +lmll” (3.29)
Ly (Byp) LIT(Bzz.l) LZT(BZZ,I)

S EMDT) + Iml*
L7(By)

Making use of the interpolation inequality, we can deduce that

1 1
”(m’T? aXT)||~2 % S ”(mvTa aXT)”i 1 ”(maTa axT)”i L3
L7 (B3y) L¥(B, %) Ll (3.30)

SVEM)D(T).

Similarly,
1 1
l@ ol |y Sl@aal® | l@dal? , < VETDTD).
L7 (B3 ) LB, 2) LL(B] )
(3.3D)
Substituting (3.28)—(3.31) into (3.27), we have
IGI_, .y SIGI, .y S EMDD). (332)
LT(BZ.I) LT(BZ,I
By substituting (3.6), (3.26) and (3.32) into (3.1), we can finally obtain
I@exa, em, D"+ 1Bxxa, dem, D" | < ET)D(T) + X.
LP (B Ly (Byy)
The proof of Lemma 3.2 is finished. O

Based on the Lemma 3.1 and Lemma 3.2, we can prove the Proposition 3.2. Mul-
tiplying (3.4) by small constant ¢ > 0 and adding together with (3.7), we can directly
obtain (3.33).

3.2 Low-frequencies estimates

In this subsection, we establish a prior estimates in low-frequencies region (j < jo)
and establish the following Proposition.

Proposition 3.3 Assume (a,m,T) is a solution of (2.1) and (2.2), the initial data
satisfying (2.8), then

lam DIy +l@m DI o SEODD) +X. (333
b, 2) B
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Proof Be similar to the before, standard energy method implies

1d . . . . . .
5o 1Aja, &jm, Ay, + 148077, — / AjddaA;m dx
=/AjaAjF-i-AijjG-i-AjTAdex.

Applying the operator A j to (2.4) and then multiplying by A jOxa, we have

1d . , , . :
zEnAjaxauizJr/Aj»ammA,-axa dx =/Aj3xFAj8xa dx.

Adding the above two equation together, we have by Holder’s inequality and Bern-
stein’s inequality for j < jo

1d . . . . .

5 1Aja, &joca, Ajm, AT, + 1480717,
_ . ) . ) . ) . ) . ) . ) . ) . ) (334)
= [ Ajo,FAjda+ AjaAjF + AjmA;G+ A;TA;H dx

SIAja, Ajm, AT 2 1A F, A;G, AjH) || 2.

Multiplying the first and the second equations in (3.8) with —A jOxm and A jOxa and
then adding them together, we can obtain the dissipation of a

E/Aij,-axa dx + |Ajocal?, + 1A jocral?, —||Aj8xm||2Lz—I—/AjBxTAjaxadx

:/AjGAjaxa—AjFAjaxm dx.

To obtain the dissipation of m, we add the second and the third equations of (3.8)
together after multiplying by —A ;9,7 and A ;d,m

d . _. . . . .
E/AjTAjaxm dx + |Ajoeml3, — 1A;0,T 7, —/AjaxaAjE)dex

= / AjaxxTAjaxm + AjaxxaAjaxxT—}— AjHAjaxm - A]GAJBXT dx.

Making use of the Holder’s inequality, Young’s inequality and Bernstein’s inequality,
we can deduce by the above two equation

d . . . . 1 . . .
o </ AjmAjdya + 2AJ~TA.,~8xm dx) + §||(A~,~8xa, Ajoyxa, Ajaxm)”iz

S ”AjaxT”iz +I(A;F, A;G, AjE) | 2 1(Aja, Ajm, A;T)]| 2.

@ Springer



162 Page 22 of 32

W. Shi, J. Zhang

Defining? := [[(Aja, Ajdva, Ajm, A; |7, 4e [ AjmAjda+2A;TAjdmdx,
with ¢ suitably small, and the Cauchy’s inequality implies

U =~ I(Aja, Ajm, AjT)|3,.

Adding (3.34) and (3.2) together, we can deduce for j < jj

d . . . .
Eu} + 25U S(ASF. A G, AjH) | U,

Then we have by Lemma 5.3

(A ja, Ajm, AT o2y + 22 1B ja, Ajm, ATy 12

SIAF,A;G, AjH)IILlT(Lz) + (A jao, Ajmo, AjTo)|| 2.
Multiplying 22/ and then choosing [*° for j < jo, we can obtain

la.m. DI°  , +l@mDIC 5 SIF.GHIY | +X. (335)
LF5By %) L} (B3 LiB,3)

Next, we bound the non-linear part. Taking advantage of the product law (5.7),
Proposition 5.3 and interpolation inequality, we can obtain

IFI, —y Slall 1 dml_ 1 S ET)DD).
Ly (B, %) Li(Bj) LBy,

Similarly,

IGI_, 1 Slam DI (1+l@ml 4 )< ET)DT)

LT(BZ,OO) Lgr(Bz%l) L%O(BZ.])

and
1=y S @ m D2

L1(B, %) 2

2
1 |+l m D ) S ET)DT).
2,00 LT(Bzz_l) Ly 21

7 (B3 1)
Substitute into (3.35), we can obtain

@, m, DI +l@m DI

. 5 S EMDT) + X.
L2, 2) L7 (B3 )

The proof of Proposition 3.3 is finished.

a
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4 Global existence and uniqueness

In this subsection, based on Proposition 3.1, we give out the proof of the global
existence and uniqueness. Firstly, we introduce the Friedrichs’ projector

Enf:=F 'AgFf), ¥fely, n=1,
with 1 is the characteristic function on the annulus %, L,’; the set of L? functions

spectrally supported in the annulus %, := {§ € R|% < |&| < n} endowed with the
standard L? topology, and consider the approximate scheme as follows

a’ —oym" + F
d |m" . —0a — 0, T" + B;’a” + G
7 =E, : “4.1)
" —0,m" + 0, T"+ H
with the initial data )
(@, m", T")|;=0 = E,(ao, mo, To). 4.2)

It is clear that (4.1) is a system of ordinary differential equations in L2 x L2 and
locally Lipschitz with respect to the variable (a”, m", T™) for every n > 1. It follows
the Cauchy-Lipschitz theorem in [4, Page 124] that there exists a time 7, > 0 such
that the problem (4.1)—(4.2) admits a unique solution (a", m", 7") € C([0, T,"]; Lﬁ).

By virtue of Proposition 3.1 and the standard continuity arguments, we can extend
the solution (a", u", 7") globally in time and prove that (a”, m", T™) satisfies the
uniform estimates (2.9) for any # > 0 and n > 1. Actually, because the data satisfies
(2.8), there exists a Tn1 € (0, T;}) such that (a", m", T") satisfies

@", m", T") |l x <280 (4.3)

forallt € (0, T,). Set
T, = sup {T | (4.3)holds}, (4.4)

we can finally claim 7, = oo. Otherwise, 7, < oo, by Proposition 3.1 we can
deduce that (a", m", T") satisfy (3.1) for T = T,**, from which we can deduce

n >’
3
(@", m", T"lx < 580. (4.5)

forallz € (0, T,!), due to 1 small. It implies there exists a 7,/** > T such that (4.3)
holds. Which contradicts (4.4). Therefore (a”, m", T") is indeed a global solution to
the problem (2.1) and satisfies the uniform estimates (2.9).

Be similar to [6], we can prove the strong convergence of the approximate sequence
(a", u", T™). More precisely, there exists a limit (a, m, 7)) such that as n — oo, the
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following convergence holds:

d
(@, m", T") — (a,m,T) strongly in Lm(O,T;B;’I), VT >0. (4.6)

Thus, we can prove that the limit (a, m, 7) solves (2.1) in the sense of distributions,
and thanks to the uniform estimates (2.9) and the Fatou property, (a, m, 7) is indeed
a global strong solution to the Cauchy problem of System (2.1) subject to the initial
data (ag, mo, 7g) and satisfies the estimates (2.8).
Finally, we prove the uniqueness;vLet (a1, my, 7T1) and (ap, my, 7T») are two solutions
of System (2.1), and define (@, m,7) = (a) — az, m; —my, Ty — Tp) which satisfies
0:d + 0ym = F(ar,my) — F(az, m2),
Ui+ ,d + 0T — 03 = Glar.m1. ) — G(ar.mp. ), (47)
0T + i — dexT = H(ay,my, Ty) — H(az, mp, To).

Arguing similarly as in Subsections 3.2, for r € (0, T'], one can infer that

<I(F. G, H)| ! (4.8)

@, DIl __ 3 Lo
LT T(BZ,oo) LT(B2,oo)

@D
) L

2,00
with

F := F(a1,m)) — F(a2,m3), G := G(a1,m1, T) — G(az, m3, To),
and H := H(ay,m1, 7)) — H(ap, myp, D).

Next, we bound the non-linear part. First, we rewrite the F as
Fy = Fi(a;,my) — Fi(az, my) = 0yxaym| — dyaomy + dyazmy — dyazmy,

then the product law (5.7) and the interpolation inequality implies

WE, oy Shar—aall o lmall )y A llaall 1 i —mall
LB, %) (B3 B3 757 7B
Sx(l@ml. oy +l@ml_ 5 )
L5, %) L} (8o

Similarly, we can obtain

1Bl 1 SIKi@) =K@l 1 Imill_ 1 +laall_ 1 lmi—mall_
Ly, 2) L2.(82.) LZ(B2) L2872, L2.(B7)
_ o o
SH(@AN ) +I@ DI, )
T 2,00 T'\722,00

In the last inequality, we use the Corollary 5.1. Adding above two together, we have

IFI_, o S%0@mI__ oy +Il@ml ) 4.9)

LhB,2) LF(B, ) L7 (B3 o)
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By the same argument, we can deduce

G, DIl 1 <XO@m DI 1 +l@m DI 3
L L) ( Te0 (5, 2 isl ) @0

2,00 2,00 voo)

Inserting (4.9) and (4.10) into (4.8), we can finally obtain

L @ m DI s 0. (4.11)
2 1 ;w)

I@. . Dl
LT 2.00) T

The uniqueness is proved.

5 Appendix
5.1 Appendix A: Fourier analysis

To make the paper self-contained, we briefly recall Littlewood-Paley decomposition,
Besov spaces and analysis tools. The reader is referred to Chap. 2 and Chap. 3 of [4]
for more details.

Firstly, we introduce the following so-called Bernstein’s inequalities.

Lemma 5.1 (Bernstein’s inequalities see [17]) Letk € N, 1 <a < b < oo, Cisa con-
stant and f is an any function in L?, then we have if Supp F f C {E eRY: g < RA}
for some R > 0

1 1
sup ||D% fllp < CARTGT) ) £l L.
la|=k

More generally, If Supp F f C {S eRY:RA<|E] < Rzk}forsomeo < R; < Ry,

we have

—k—14k k+14k
Co "M ulle < sup |D%ullpe < Co™ ' AM||ull o

la|=k

and L
IAD) fllpp S WG £l e,
Now, we define homogeneous Besov space as follows:

Definition 5.1 Foro € Rand 1 < p, r < 0o, the homogeneous Besov spaces B;,r is
defined by

By, 2 {f e Shilflg, <+oof.

where
1
1
def is A . def T
lullgy = (ZZ’”HAJ-uller) if r<oo and [lullz = igngsllAjullw.

JEZL
(5.1
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We often use the following classical properties:

e Completeness: B;, is a Banach space whenever s < dors<4andr =1.

e Action of Fourier multipliers: If F is a smooth homogeneous of degree m function
on R4\{0} and F (D) maps S, to itself, then

F(D): B}, — B}

In particular, the gradient operator maps Bfw in B; r], further we have

||Dkf||BJ = ||f||Bg+k for all k € N by the homogeneous Besov space and
Bernsteln s mequahtles

The mixed space-time Besov spaces are also used, which was initiated by Chemin
and ~Lerner [14].

Deﬁnltlon 52 ForT >0,s e R, 1 <r, 6 < oo, the homogeneous Chemin-Lerner
space LY (B ) is defined by

LBy 2 {1 e L. 758 : 1 lizg s, < +0o)
where
~ . A ks A .
”f”LHT(B‘;z,r) =12 ”Akf”]f;([‘p))”é (Z)- (5.2)

For notational simplicity, index 7" will be omitted if 7 = +o00. We also use the
following functional space:

Co R By,) 2 € CRw: B ) st Sl ) < +00) -

The above norm (5.2) may be linked with those of the standard spaces LY (B ) by
means of Minkowski’s inequality.

Remark 5.1 It holds that
”f”LH(Bs )= ”f”Lf)(Ba ) it r >0, ”f”L@(BA )= ||f||L9(Bs 2 if r <0.

Restricting the above norms (5.1) and (5.2) to the low or high frequencies parts
of distributions will be fundamental in our approach and we give out the following
definition

Definition 5.3 Assume kg is some fixed integer (the value of which will follow from
the proofs of our main results) and 7', p, s is setting as in Definition 5.2 then we can
define

l A ks || A h A Jsy A
10 2 3 2 NALf e and 1F 1, 230 2 NAkf e, (53)

k<ko P kzko+
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||f||Loo(Bq V2D 2 1Ak f s and ||f||Lm(BY 0= 20 2 IA S g
k<ko k>ko+1
(5.4)

Remark 5.2 1t is obviously that, when s < o (when s = o, r» < ry), the Bernstein’s
inequality implies

£ £ h h
1o S0 and I1FN0G, S UG - (5.5)
piry ) pry P2

Next, we states interpolation inequalities for high and low frequencies.

Lemma 5.2 (see [40]) Let S1 < sz, qg,r €[1,400],0 € 0, 1)and 1 < a1 <a <
oy < o0 satisfying & = + ~—~, then we have

0 1-6
12 14 L
1703, oy, S (||f||La1 " )) (Ilfll o (B;?r)> ,

6 1-6
h
”f”zu(B@ler(l 0);2) (”f”LDtl(Bvl )) (”f”ZO;Z(B;zr)) .

The following product estimates in Besov spaces play a fundamental role in our
analysis of the nonlinear terms.

Rroposition 5.1 (Product estimates see [17, 36]) Let o > O and 1 < p,r < oo. Then
By . N L is an algebra and

1fglzs, S Ufleeliglzy +lgheel fllz -

Let the real numbers o1, o2, p1 and py be such that

d d 1 1
01+02>0,01<—,00<—,01>0, —+— =<1
p1 P2 Pt P2
Then we have
Ifgllz2 S lgll ith ! ! + Lo (5.6)
e -0 - 0" wi —_—= — _— .
e ~ 1 Tay T8TA, ¢ p p d

Additionally, for exponents s > 0 and 1 < p1, p2, g < oo satisfying

d d d d 1 1 1 s
—+ ——d<s<min{—,— ) and —=—+——[—Z,

P1 P2 Pl P2 q P1 P2
we have
H—S < DS s .
IIfgIIBq_.OON ||f||3 IIgIIszoo (5.7
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Next, we states the commutator estimates as follows.

Proposition 5.2 (see [4]) Assumed = 1,1 < p < oo and % + # = 1. Then, we have

in(l L) 1
o Ifs e (—mm(p p) —|—1] then

27NA;. f1ocglir S cjldsf I 1 gl . with D cj=1.
BP
Pl JEZ

1
oIfse[ mln(p p) —+1),then

sup 29 [[A ;, f18xgllr S 1105 £l

1 llgllgs
JEZ pp P2

1 1
oIst( 1—m1n<p p) ],then

27119:(1A . F1)lLe S 1105 1l gl ss - with D=1

1
F
p JEZ

To investigate the effect of composition by smooth function on Besov spaces, we
state the following Lemma that called para-linearization theorem

Proposition 5.3 (Para-linearization theorem see [17]) Let F : R — R lge smooth with
FO) =0. Forall1 < p,r < coand o > 0 we have F(f) € BZ,, N L for
fe Bgr N L and

IF(Hllgg, < CllF g,

with C depending only on || f||L~, o, p andd.
The following corollary are also used.

Corollary 5.1 (see [7]) Assume that F(m) is a smooth function satisfying F’(0) = 0.
Let 1 < p < oo. For any couple (m1, m>) of functions in B;’l N L, there exists a
constant Cyy, m, > 0 depending on F" and ||(my, m2)||po such that

o Let —min{%,d(l — %)} <s < % and 1 <r < oo. Then, we have

IF (my) = F@mo)llgs - = Climy,mo)ll 4 llmy —mallg, . (5.8)

d
P
p 1

o [n the limiting case r = oo, for any — min{%, d(l — %)} <s < %, it holds that

[F(m1) — Fma)llg, = Cll(mi, ma)ll

B%l lmy —mallgs - (5.9)
p,
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Finally, we state the following Lemma that proofed in [5].

Lemma5.3 Let p > 1 and X : [0, T] — R™ be a continuous function such that X?
is differentiable almost everywhere. We assume that there exists a constant B > 0 and
a measurable function A : [0, T] — R such that

1d .
—EXP+BXP < AXP™" a.e.on [0,T]. (5.10)
p

Then, for all t € [0, T], we have

t t
X(t)—i—B/ Xdt < X(O)—i—/ Adr. (5.11)
0 0

5.2 Appendix B: Derivation of model (1.1)

The purpose of this appendix is to give the derivation process of (1.1), and the special
case that « (p) is a constant has be proved by Hou et al. in [22]. It is clear that

1
K = <§K<p)<axp)2 bt pax<x<p)axp>) O K - P,
K(p) = 2pWy = &(p),

& then we can rewrite the conservation of momentum as following by the mass
conservation equation

(o) + 0 (pu?) + 0P (. 0) = 00 (udan) + 0, K.
And then the energy conservation equation can be written as
0 (pe) + 0y (pue) + Poyu = ,u(8xu)2 + 00xx0 + KOyu + 0, W.
Substituting into the following equations

e=\p—9w9=9+@axp,
2p

then the conservation equation of mass implies

pik6 + pud + by (@(axp)z) +a, (u"(z" ) (axp)2> + Pou

= 1 (Oxu)? + T0yx0 + Kdyu + 9 W.

By direct calculation, we can obtain

1 1
Kuy = k(p)pxxpux + EK/(IO):O)%IO”X - EK(,O)P;%”x,

@ Springer



162 Page 30 of 32 W. Shi, J. Zhang

Wy = k(p)pxx (0r + pxtt) + k' (0)p2 (or + pxtt) + ke (p)p2utx + K () Px Pxxit
+ k() px Pxt-

And further, we have

1 1
Kuy + W, = EK/(IO):O% (or + pxu) + EK(P)P;%Mx + k(0) px pxxut + K (0) Px Pxt
_ k(p) 2 K(p) 2
B <u 2 px)x " ( 2 & t.

The derivation of model (1.1) is finished.
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