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Abstract
On reproducing kernel Hilbert spaceswith normalized complete Pick kernel, we estab-
lish an equivalent result to the Gleason–Kahane–Żelazko theorem without assuming
linearity. On the way of establishing this, we observe that linearity on a multiplier
algebra is enough to conclude linearity on the whole Hilbert space. By construct-
ing a counter-example, we show that the condition of complete Pick kernel can
not be removed. Also, we demonstrate the automatic continuity of such function-
als. Leveraging these findings, we extend the Kowalski–Słodkowski theorem in this
setup.

Keywords Reproducing kernel Hilbert space · Complete Pick kernel · Multiplier
algebra · Cyclic function · Gleason–Kahane–Żelazko theorem ·
Kowalski–Słodkowski theorem · Automatic continuity.
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1 Introduction

Theorem 1.1 [1–3] Let A be a complex unital Banach algebra, and � : A → C be a
linear functional such that � �≡ 0. Then, the following statements are equivalent.

1. �(1) = 1 and �(a) �= 0 for all invertible elements a ∈ A.

2. �(ab) = �(a)�(b) for all a, b ∈ A.
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The above theorem is known as the Gleason–Kahane–Żelazko (GKZ) theorem, and
it is one of the interesting theorems in Banach algebra that characterizes the multi-
plicativity of a linear functional. Unlike Banach algebra, there is no multiplication
operation in Hilbert space. Whereas, in reproducing kernel Hilbert space, multipli-
cation can be defined pointwise. Can we generalize this theorem to Hilbert spaces?
Cheng Chu, Michael Hartz, Javad Mashreghi and Thomas Ransford gave a general-
ization in a special class of Hilbert spaces, namely reproducing kernel Hilbert space
(RKHS) with complete normalized Pick property, as follows:

Theorem 1.2 [4] Let H be a RKHS with normalized complete Pick kernel, and let
� : H → C be a linear functional such that � �= 0. Then the following statements
are equivalent

1. �(1) = 1 and �( f ) �= 0 for all cyclic elements f ∈ H.

2. �( f g) = �( f )�(g) for all f , g ∈ H such that f g ∈ H.

Note that a functional � satisfying (2) in Theorem 1.2 is considered multiplicative
functional in Hilbert space. There is another version of the GKZ theorem for Dirichlet
space [5]. This paper attempts to prove the implications (2) �⇒ (1) in Sect. 2 and
(1) �⇒ (2) in Sect. 3 by weakening the linearity assumption in the above theorem.
We deduced the linearity in the hypothesis of theorem 1.2 using some conditions on
the functionals.

In Sect. 2, we prove a functional linear in multiplier algebra will be linear in whole
RKHS with normalized complete Pick kernel. To underscore the importance of a
complete Pick kernel, we construct a concrete example to show that this condition
can not be removed. Using this, we prove the continuity of such functionals. Also,
we introduce additional conditions from the work of Kowalski and Słodkowski [6]
to demonstrate a weaker version of (2) implies (1) of Theorem 1.2. Additionally, our
discussion extends to the prospect of generalizing the Kowalski-Słodkowski theorem
to RKHS with normalized complete Pick kernel.

In Sect. 3, we generalize (linearity) the reverse implication by incorporating con-
ditions from the paper [7] by one of the authors of this paper, whereas to prove the
reverse implication, authors used their GKZ theorem for modules [8]. Also, we add
some additional conditions to deduce the linearity of such functionals. And we con-
struct a counter example to show that the condition of complete Pick kernel can not
be removed from the statement.

1.1 Preliminaries

The subsection provides foundational definitions of reproducing kernel Hilbert spaces,
kernels, multiplier algebra, and cyclic functions. Those with a solid understanding of
these concepts can proceed directly to the following section. For amore in-depth explo-
ration of these topics, we recommend consulting the book by Paulsen and Ragupathi
[9] and the book authored by Agler and McCarthy [10].

Definition 1.1 (Reproducing kernel Hilbert space) [9] Let X be a non-empty set and
F(X ,C) be the collection of all functions from X to C. We call H ⊂ F(X ,C) a
reproducing kernel Hilbert space (RKHS) on X if
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1. H ⊆ F(X ,C) be a Hilbert space.
2. for every x ∈ X , the evaluation functional Ex : H → C defined by Ex ( f ) = f (x)

is bounded.

Definition 1.2 (Kernel function) LetX be a non-empty set. A function K : X×X → C

is said be kernel function if

1. K is Hermitian, that is K (x, y) = K (y, x) for all x, y ∈ X ,

2. K is a positive semi-definite function.

Since evaluation functionals Ex are continuous inRKHSH, byRiesz representation
theorem, there exists a unique function kx satisfying Ex ( f ) = f (x) = 〈 f , kx 〉 for all
f ∈ H. The reproducing kernel associated to H is defined as K : X × X → C, such
that K (x, y) := ky(x) = 〈ky, kx 〉 for all x, y ∈ X . This K satisfies the conditions of
the kernel function. Also, every kernel function K : X × X → C gives a RKHS on X
with K as its reproducing kernel.

Definition 1.3 (Normalized Kernel) A reproducing kernel K of a RKHS H on X is
said to be normalized if there exists x0 ∈ X such that K (x, x0) = 1 for all x ∈ X . The
function K (·, x0) ∈ H acts as the constant function 1H in the Hilbert space H.

Definition 1.4 (Complete Pick kernel) [10] A reproducing kernel K of a RKHSH on
X is said to be complete Pick kernel if

1. K (x, y) �= 0 for all x, y ∈ X ,
2. There exists x0 ∈ X such that F(x, y) = 1 − K (x,x0)K (x0,y)

K (x,y)K (x0,x0)
is a positive semi-

definite function on X × X .

The concept of the complete Pick kernel establishes a significant link with the Pick
interpolation problem, with further insights provided in [10]. From now on, for easier
readability, we will abbreviate ’Reproducing Kernel Hilbert Space with Complete
normalized Pick kernel’ as ’RKHS with CNP kernel’. Examples include the Hardy
Hilbert space H2, the Dirichlet space D, and the Drury-Arveson space H2

d . Notably,
the Drury-Arveson space is recognized as a universal RKHS with CNP kernel [11].

Definition 1.5 (Multiplier algebra) LetH be a RKHS on non-empty set X . A function
h : X → C is said to be a multiplier if for all f ∈ H, h f ∈ H.

LetM denote the collection of all multipliers, and Mh represent the multiplication
operator by h. With the norm ||h||M = ||Mh ||op, the collection M becomes Banach
algebra. If the corresponding kernel function is also normalized, then constant function
1 ∈ M, andM becomes unital Banach algebra. It is essential to observe that the norm
onM, which makes it a Banach algebra, differs from the norm from the Hilbert space
H. Note that the norm associatedwithM andH gives rise to distinct separate algebraic
and metric structures associated with M and H.

For extending the GKZ theorem to RKHS with CNP kernel, the conditions on
invertible elements are replaced with conditions on cyclic elements. The definition of
cyclic function in this context is as follows.
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Definition 1.6 (Cyclic function) Let H be a RKHS on X with multiplier algebra M.
For an element f ∈ H, the closed M invariant subspace generated by f is denoted
by [ f ] = M f . We say f is cyclic if [ f ] = H, meaning that for every g ∈ H, there
exists a sequence (hn) ∈ M, such that hn f → g. It is important to note that every
cyclic function is non-vanishing.

Multiplier algebra of Hardy Hilbert space H2(D) is the set of all bounded analytic
functions H∞(D). By Beurling’s theorem, the set of all cyclic functions is the collec-
tion of all outer functions. Please refer to [12] for the definition of H2(D) and outer
functions.

2 Generalized GKZ Theorem-I

In this section, without assuming linearity, we will prove the backward implication
of Theorem 1.2. In fact, we deduce the linearity. Additionally, we will discuss the
continuity of such multiplicative functional. Furthermore, we embark on proving the
Kowalski–Słodkowski theorem for RKHS with CNP kernel.

To substantiate our results, we leverage a factorization theorem articulated in the
paper [13] authored by Aleman, McCarthy, Richer, and Michael Hartz. This theorem
serves as a foundational element in our proof methodology.

Theorem 2.1 [13] Let H be a RKHS on X with CNP kernel, and M be its multiplier
algebra. If f ∈ H, then there exists h1, h2 ∈ M, where h2 is cyclic in H, such that
f = h1

h2
.

Another factorization, elucidated in [14], aligns with Theorem 2.1. Additionally,
this factorization includes the noteworthy property that 1

h2
∈ H.

Theorem 2.2 [6] Let A be complex unital Banach algebra, and A−1 be the set of all
invertible elements of A. If � : A → C be functional such that �(0) = 0 and

((�(a) − �(b))1 − a − b) /∈ A−1, for all a, b ∈ A,

then � is linear and multiplicative on A.

The above theorem is known as the Kowalski–Słodkowski theorem. This theorem
holds significance as it provides insights into the linearity and multiplicativity of
functionals within the context of Banach algebra.

Our enquiry started with the question, does there exist a multiplicative functional
that is linear only in Multiplier algebra? The following theorem asserts this question
in a special space.

Theorem 2.3 Let H be a RKHS with CNP kernel. If � is multiplicative functional and
� is linear in multiplier algebra M, then � is linear in the entire H.
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Proof Let� be amultiplicative functional, which is linear inM. Let f1, f2 ∈ H. Then
by factorization Theorem 2.1, f1 = h1

g1
and f2 = h2

g2
. where h1, h2, g1, g2 ∈ M(H)

and g1, g2 are cyclic. From this

�( f1 + f2) = �
(h1

g1
+ h2

g2

)

= �
(h1g2 + g1h2

g1g2

)
.

Given that g1, g2 ∈ M, it follows that the product ( f1 + f2).g1.g2 ∈ H. Moreover,
the multiplicative property of � implies

�( f1 + f2) = �(h1g2 + g1h2)

�(g1g2)

= �(h1)�(g2) + �(g1)(h2)

�(g1)�(g2)

= �(h1)

�(g1)
+ �(h2)

�(g2)

= �( f1) + �( f2).


�
Can we generalize the previous theorem to any RKHS that does not have complete

Pick property? That is, if � is multiplicative functional on a general RKHS and � is
linear in its multiplier algebra M, then is � linear on whole H? The answer to this
question is negative, as demonstrated by the following example.

Example 1 Consider Segal-Bargmann spaceF2(C) defined onC, with the reproducing
kernel k(z, w) = ezw, defined by

F2(C) =
{

f is entire :
∫

C

| f (z)|2e−π |z|2dz < ∞
}
.

Since every element of F2(C) is an entire function and φ(x) is an eigenvalue of M∗
φ ,

it follows that the multiplier algebra contains only constants. For fixed x, y ∈ X , let’s
define the multiplicative functional as follows:

�( f ) = √
f (x) f (y).

It is not linear onH. But for any constant function a ∈ M,

�(a) = a.

This function is linear in whole multiplier algebra. So, this example highlights the
necessity of the complete Pick property in the Theorem 2.3. That is, there is a mul-
tiplicative functional on some normalized RKHS, which is linear on its multiplier
algebra and not on the entire space.

123



159 Page 6 of 10 M. R. Nandan, S. Daniel

Theorem 2.4 [4] Let H be a RKHS with CNP kernel, and let M be its multiplier
algebra. Let � : H → C be a linear functional, such that �( f g) = �( f )�(g) for
all f ∈ M and g ∈ H. Then � is continuous on H.

The fact that everymultiplicative linear functional is continuous in aBanach algebra
finds its parallel in RKHS with a CNP kernel, as indicated by the theorem mentioned
above from [4]. The subsequent theorem delves into the automatic continuity of a
multiplicative functional, which is linear only on the multiplier algebra of a RKHS
with CNP kernel.

Theorem 2.5 Let H be a RKHS with CNP kernel, and let M be its multiplier algebra.
Let � : H → C be functional, which is linear only in multiplier algebraM, satisfying
�( f g) = �( f )�(g) for all f ∈ M and g ∈ H. Then � is continuous on whole
Hilbert space H.

Proof According to Theorem 2.3, the map � will be linear in whole Hilbert spaceH.
Furthermore, as per Theorem 2.4, the map � is continuous on the entire Hilbert space
H. 
�
Theorem 2.6 Let H be a RKHS with a CNP kernel, and let � : H → C be a function
such that � �= 0. If

1. �( f g) = �( f )�(g) for all f , g ∈ H, such that f g ∈ H,
2. ((�(m1) − �(m2))1 − m1 − m2) /∈ M−1 for all m1, m2 ∈ M,

then �(1) = 1 and �( f ) �= 0 for all cyclic function f ∈ H.

Proof �(1) = �(1.1) = �(1)2, so�(1) =0or 1.But�( f ) = �(1. f ) = �(1)�( f ),
if�(1) = 0, then�( f ) = 0 for all f ∈ H contrary to hypothesis� �= 0. so�(1) = 1.

Let f be a cyclic function inH. According to the definition of cyclicity, a sequence
of multipliers hn exists such that hn f → 1 in H. By Theorem 2.5, � satisfying the
hypothesis will be continuous in H. Implies �(hn f ) = �(hn)�( f ) → �(1). Since
�(1) = 1, �( f ) �= 0 for any cyclic elements. 
�

In [4], the authors proved the same conclusion for linearmultiplicative functional�.
But we proved for multiplicative functional, which is linear only in multiplier algebra
M. Using the Theorem 2.3, we get a generalization of the Kowalski–Słodkowski
theorem to RKHS with CNP kernel, as follows.

Theorem 2.7 (A generalized Kowalski–Słodkowski theorem) Let M be the multiplier
algebra of a RKHS with CNP kernel H. Let � : H → C be functional such that

1. �(0) = 0,
2. ((�(m1) − �(m2))1 − m1 − m2) /∈ M−1 for all m1, m2 ∈ M,

3. �( f g) = �( f )�(g) for all f ∈ M and g ∈ H.

Then � is linear and continuous on H.

Proof Since M is complex unital Banach algebra, if � satisfies the hypothesis, by
Theorem 2.2, � is linear in M. By Theorem 2.3, � is linear in H, and by Theorem
2.5, � is continuous as well. 
�
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Question: In the Theorem 2.5 mentioned above, the condition (3) is about � being
multiplicative on the entire RKHS.However, according to Theorem 2.2, the conditions
(1) and (2) in the hypothesis imply that � is multiplicative on multiplier algebra.
Notably, the multiplier algebra is dense within the RKHS with CNP kernel. Instead of
relying on condition (3), can we assume a weaker condition solely on the multiplier
algebra, leveraging the density of the multiplier algebra within the RKHS with CNP
kernel?

3 Generalized GKZ Theorem-II

In this section, without assuming linearity, we will generalize (2) implies (1) of the
Theorem 1.2 and discuss the linearity of such functionals. To facilitate this, we will
employ the following theorem from [7] by one of the authors of this paper, as follows.

Theorem 3.1 [7] Let A be complex unital Banach algebra, and let A−1 be the set of
all invertible elements of A. Let U be a left A-module, and S be a non empty subset
of U satisfying

1. 0 /∈ S, S generates U as A-module,
2. If x ∈ A−1& s ∈ S, then xs ∈ S,
3. For all s1, s2 ∈ S, there exists a1, a2 ∈ A, such that a j s j ∈ S ( j = 1, 2) and

a1s1 = a2s2.

Let �: U → C be a non zero map that satisfies

• �(0) = 0,
• (�(x) − �(y))s − (x − y)�(s) /∈ S for all x, y ∈ U & s ∈ S.

Then there exist unique character χ : A → C, such that

�(au) = χ(a)�(u) (a ∈ A, u ∈ U ).

The � satisfying the hypothesis of the above theorem may not be linear. The
following theorem from the same paper [7] tells about the linearity of such �.

Theorem 3.2 [7] Let all the assumptions of Theorem 3.1 hold. If

n∑
j=1

�(s j ) = �(

n∑
j=1

s j ) n ∈ N, s j ∈ S,

then � is linear and there exist unique character χ : A → C, such that

�(au) = χ(a)�(u) (a ∈ A, u ∈ U ).

Theorem 3.3 Let H be a RKHS with CNP kernel, let � : H → C be a non-zero
functional, and S be the set of all cyclic functions. If

1. �(1) = 1, and �(0) = 0,
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2. �( f ) �= 0, for f ∈ S,
3. (�( f ) − �(g))s − ( f − g)�(s) /∈ S for all f , g ∈ H & s ∈ S,

then �( f g) = �( f )�(g) for all f , g ∈ H such that f g ∈ H.

Proof To prove this theorem, we will employ Theorem 3.1, takingM as the complex
unital Banach algebra, Hilbert space H as the left M-module and S as the set of all
cyclic functions in H. This satisfies the hypothesis of the Theorem 3.1. By Theorem
3.1 there exists a unique character χ : M → C such that

�(h f ) = χ(h)�( f ) (h ∈ M, f ∈ H). (1)

For f ∈ M,�( f ) = �(1. f ) = χ( f )�(1). Implies χ( f ) = �( f ) for all f ∈ M.
To get the result for the whole H. Consider f , g ∈ H be such that f g ∈ H. By

Theorem 2.1, we can write f = h1
h2
, where h1, h2 ∈ M and h2 cyclic inH by repeated

usage of (1), we have

�(h2)�( f g) = �(h2 f g)

= �(h1g)

= �(h1)�(g).

�(h2)�( f )�(g) = �(h2 f )�(g)

= �(h1)�(g).

since h2 is cyclic, we have �(h2) �= 0, so we conclude that �( f g) = �( f )�(g) for
f , g ∈ H. 
�
The next Theorem tells when such a functional is linear.

Theorem 3.4 Let H be a RKHS with CNP kernel, let � : H → C be a non-zero
functional, and S be the set of all cyclic functions. If

1. �(1) = 1, and �(0) = 0,
2. �( f ) �= 0, for f ∈ S,
3. (�( f ) − �(g))s − ( f − g)�(s) /∈ S for all f , g ∈ H & s ∈ S,

4.
n∑

j=1

�(s j ) = �(

n∑
j=1

s j ), s j ∈ S, n ∈ N,

then � is linear and multiplicative on H.

Proof ByTheorem3.2, it is established that� is linear inmultiplier algebra.Moreover,
as per Theorem 3.3, � is multiplicative in Hilbert space H. Consequently, according
to Theorem 2.3, we can conclude that � is linear in the entire Hilbert space H. 
�

The question of whether the complete Pick property can be omitted from Theorem
3.3 is addressed. The affirmative answer is established by providing an example of a
functional that satisfies all the hypotheses of Theorem 3.3 but is not multiplicative in
some RKHS. The subsequent example illustrates this.
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Example 2 Consider the Segal-Bargmann space F2(C) as described in Example 1.
Notably, there is no cyclic function in F2(C), since only constant functions serve as
multipliers. Define � : H → C by

�
( ∞∑

n=0

an
zn

√
n!

)
=

{
a0, a0 �= 0

a1, a0 = 0

Clearly, �(1) = 1, and given the absence of a cyclic function, � satisfies both (2) and
(3) conditions in Theorem 3.3. According to the theory of Segal-Bargmann spaces,
both z and z2 belong to F2(C). However, �(z) = 1, while �(z2) = 0, indicating
that �(z2) is not equal to (�(z))2. Consequently, � is not a multiplicative functional.
Furthermore,� is not linear, as�(1+z) does not equal�(1)+�(z). This non-linearity
arises from the fact that F2(C) lacks a complete Pick kernel.
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3. Żelazko,W.: A characterization ofmultiplicative linear functionals in complexBanach algebras. Studia
Math. 30, 83–85 (1968). https://doi.org/10.4064/sm-30-1-83-85

4. Chu, C., Hartz, M., Mashreghi, J., Ransford, T.: A Gleason-Kahane-Żelazko theorem for reproducing
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