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Abstract
In this paper, we consider the critical problem involving local and nonlocal operator
with critical exponent under the zero mass case. First, we establish the continuous
and compactness Sobolev embedding results. Second, we establish the non-existence
result by Pohožaev identity. Finally, we prove the existence results for upper-crtical
and lower-crtical cases via Sobolev embedding theorem, Mountain-pass theorem and
Nehari manifold.
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1 Introduction

In this study, we are specifically focusing on analyzing Schrödinger equation that
incorporates both local and nonlocal operator under the zero mass case, as follows

−λ�u + μ(−�)su = f (x, u), x ∈ �. (Sλ,μ)

Here 0 < s < 1 and � is a domain in R
N with N � 3. The operator (−�)s is the

fractional Laplacian, which is defined by the Fourier transform as follows

F((−�)su)(ξ) = |ξ |2sF(u)(ξ), ξ ∈ R
N ,
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the details of this definition can be found in references such as [9, 30]. Equation (Sλ,μ)
with λ = μ = 1 and � ⊂ R

N being a bounded open set with C1 boundary arises
in population dynamics models incorporating both classical and nonlocal diffusion,
as discussed by Dipierro-Lippi-Valdinocci [18]. Biagi-Dipierro-Valdinoci-Vecchi [4]
have highlighted the applicability of equation (Sλ,μ) in studying different types of
“regional" or “global" restrictions that may mitigate the spread of a pandemic disease.
Furthermore, Dipierro-Valdinocci [17] introduced equation (Sλ,μ) as a description of
an ecological niche for mixed local and nonlocal dispersal.

Equation (Sλ,μ) with λ = 1, μ = 0 and f (x, u) = |u|p−2u
|x |α corresponds to the

nonlinear Schrödinger equation

−�u = |u|p−2u

|x |α , x ∈ �, (S)

where α ∈ (−∞, 2), p ∈ (2, 2∗
1,α) and 2∗

1,α = 2(N−α)
N−2 . This equation has a rich

history in quantum mechanics and quantum field theory [8, 10]. We point out that

⎧
⎪⎨

⎪⎩

2∗
1,α is the Hardy Sobolev critical exponent for α ∈ (0, 2),

2∗
1,α is the Sobolev critical exponent for α = 0,

2∗
1,α is the Henon Sobolev critical exponent for α ∈ (−∞, 0).

For α = 0 and � = R
N , Anbin [1] and Talenti [33] established the existence of

solutions for equation (S) with the Sobolev critical exponent. For α ∈ (0, 2) and � =
R

N , Lieb [25] and Ghoussoub-Yuan [22] explored the existence resutls for equation
(S) with Hardy Sobolev critical exponent. For α ∈ (−∞, 0), Ni [31] considered the
existence results for equation (S) with p ∈ (1, 2∗

1,α) and � is a ball, and investigated
the existence of radial solution for equation (S) with Henon Sobolev critical exponent
and � = R

N .
Equation (Sλ,μ) with λ = 0, μ = 0, � = R

N and f (x, u) = |u|p−2u
|x |α transforms

into the fractional Schrödinger equation

(−�)su = |u|p−2u

|x |α , x ∈ R
N . (F S)

For α = 0, Lieb [25] and Cotsiolis-Tavoularis [16] investigated the existence results
for equation (F S) with Sobolev critical exponent. For α ∈ (0, 2s), Ghoussoub-
Shakerian [21] studied the existence ground state for equation (F S) with Hardy
Sobolev critical exponent. Moreover, Chen [12] considered the existence ground state
for fractional Schrödinger equation with two kinds of Hardy-Sobolev critical expo-
nents, Ghoussoub-Shakerian [21] and Yang-Yu [34] established existence results of
fractional Schrödinger equation with Sobolev and Hardy Sobolev critical cases.

For the following more generalized operator cases: fractional t-Laplacian equation
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(−�)s
t u = |u|p−2u

|x |α , x ∈ �. (FPS)

where (−�)s
t is a fractional t-Laplacian, see [11, 24]. For α = 0 and � = R

N ,
Brasco-Mosconi-Squassina [6] obtained the existence and sharp asymptotic behavior
of solution for equation (FPS)with Sobolev critical exponent. Forα ∈ (0, ps) and� =
R

N , Marano-Mosconi [27] established the existence and sharp asymptotic behavior of
solution for equation (FPS) with Hardy Sobolev exponent. Assuncao-Silva-Miyagaki
[2] studied the existence of weak solution to fractional p-Laplacian equation involving
the Hardy potential and multiple critical Sobolev nonlinearities with singularities.
Fiscella-Mirzaee [19] established the existence of innitely many solutions involving
a Hardy potential and Hardy Sobolev terms. Mirzaee [28] proved the existence of
infinitely many solutions by using variational methods.

For the case where λ = μ = 1, significant research efforts have been dedicated to
exploring various aspects of equation (Sλ,μ). Chergui-Gou-Hajaiej [15] delved into
the existence and multiplicity of solutions, shedding light on the behavior of the equa-
tion in this setting. Luo-Hajaiej [26] focused on the existence of normalized solutions,
providing valuable insights into the nature of solutions under these conditions. Mean-
while, Chergui’s work [14] centered on the exploration of normalized solutions for
equation (Sλ,μ) with Hartree type nonlinearity, contributing to a deeper understanding
of the equation’s properties. For a comprehensive overview of related research, we
also recommend [13, 23].

The prior research naturally leads to an important inquiry:What are the existence
results for equation (Sλ,μ) with critical exponents? This paper aims to address this
fundamental question and provide a comprehensive understanding of the equation’s
behavior under critical exponents.

We consider λ = μ = 1 and � = R
N . Moreover, if f (x, u) = |u|p−2u

|x |α , then
equation (Sλ,μ) is

−�u + (−�)su = |u|p−2u

|x |α , x ∈ R
N . (P)

If f (u) = |u|2∗1,α−2
u

|x |α + β
|u|p−2u

|x |α , then equation (Sλ,μ) is

−�u + (−�)su = |u|2∗
1,α−2u

|x |α + β
|u|p−2u

|x |α , x ∈ R
N . (U )

If f (u) = |u|2∗s,α−2u
|x |α + β

|u|p−2u
|x |α , then equation (Sλ,μ) is

−�u + (−�)su = |u|2∗
s,α−2u

|x |α + β
|u|p−2u

|x |α , x ∈ R
N , (L)
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where 2∗
1,α = 2(N−α)

N−2 and 2∗
s,α = 2(N−α)

N−2s .
Initially, we will demonstrate the non-existence of solutions for equation (P) with

critical exponents via the Pohožaev identity.

Theorem 1.1 Let N � 3, 0 < s < 1 and 0 � α < 2s. If p = 2∗
s,α or p = 2∗

1,α , then
equation (P) has no non-trivial solution.

Remark 1.1 From Theorem 1.1, we know that p ∈ (2∗
s,α, 2∗

1,α) is the potential case
for the existence result.

Furthermore, in this paper, we will establish the existence of solutions for equation
(Sλ,μ) with critical exponents. Our approach will involve novel techniques that extend
beyond the existing methods used to study the equation with critical exponents.

Theorem 1.2 Let N � 3, 0 < s < 1, 0 � α < 2s and p ∈ (2∗
s,α, 2∗

1,α). Then we have
the following results:

(i) equation (P) has a radial ground state solution;
(ii) there exists β1 ∈ (0,+∞) such that for any β > β1, equation (U) has a radial

ground state solution;
(iii) there exists β2 ∈ (0,+∞) such that for any β > β2, equation (L) has a radial

ground state solution.

We also study the case −∞ < α < 0, which is called Henon Sobolev case.

Theorem 1.3 Let N � 3, 1
2 < s < 1, −∞ < α < 0 and p ∈ (2∗

s,α, 2∗
1,α). Then we

have the following results:

(i) equation (P) has a radial solution;
(ii) there exists β3 ∈ (0,+∞) such that for any β > β3, equation (U) has a radial

solution;
(iii) there exists β4 ∈ (0,+∞)such that for any β > β4, equation (L) has a radial

ground state solution.

Motivated by all of the quoted papers above, it is quite natural to present some
essential difficulties. For example

Question 1. For the zero mass case, we loss the term of L2(RN ) in equation (Sλ,μ).
Hence, the working space is not H1(RN ). We set the working space as

E :=D1,2(RN ) ∩ Ds,2(RN ).

But, we do not have the continuous and compact embedding from E to
Lt (RN , |x |α) at hand.

Answer 1. For 0 � α < 2s, we establish the following embedding results, see
Lemmas 2.3 and 2.6 forα = 0, andLemmas 3.1 and 3.2 for 0 < α < 2s,

E ↪→ Lt (RN , |x |α), t ∈ [2∗
s,α, 2∗

1,α],
Erad ↪→↪→ Lt (RN , |x |α), t ∈ (2∗

s,α, 2∗
1,α).
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Question 2. Particularly, for −∞ < α < 0, we can not establish the continuous
embedding from E to Lt (RN , |x |α).

Answer 2. For s ∈ ( 12 , 1), by using the radial inequalities in Lemmas 2.4 and 4.1,
we establish the following embedding results, see Lemmas 4.2 and 4.5
for −∞ < α < 0,

Erad ↪→ Lt (RN , |x |α), t ∈ [2∗
s,α, 2∗

1,α],
Erad ↪→↪→ Lt (RN , |x |α), t ∈ (2∗

s,α, 2∗
1,α).

Remark 1.2 In Answer 2, we just consider the case s ∈ ( 12 , 1). Due to the absense of
radial inequality for Ds,2(RN ) for s ∈ (0, 1

2 ], this remainder case is open.

2 Sobolev Embedding for˛ = 0

Define the following space

D1,2(RN ) = {u ∈ L2∗
(RN )||∇u| ∈ L2(RN )},

its norm is taken as

‖u‖2D1,2(RN )
=

∫

RN
|∇u|2dx .

Let C∞
0 (RN ) be the collection of smooth functions with compact support. For N �

3 and s ∈ (0, 1), let the homogeneous fractional Sobolev space Ds,2(RN ) be the
completion of C∞

0 (RN ) with the semi-norm

‖u‖2Ds,2(RN )
:=

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy.

The mixed Sobolev space E defined by the completion of C∞
0 (RN ) under the semi-

norm

‖u‖2E :=
∫

RN
|∇u|2dx +

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy.

Lemma 2.1 E ↪→ D1,2(RN ) and E ↪→ Ds,2(RN ).

Proof It is easy to see that

‖u‖2D1,2(RN )
� ‖u‖2E ,

and

‖u‖2Ds,2(RN )
� ‖u‖2E .
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These show E ↪→ D1,2(RN ) and E ↪→ Ds,2(RN ). 
�
Lemma 2.2 [21] Let s ∈ (0, 1), α ∈ (0, 2s) and N > 2s. Then there exists a constant
Ss > 0 such that for any u ∈ Ds,2(RN ),

(∫

RN

|u|2∗
s,α

|x |α dx

) 2
2∗s,α

� S−1
s ‖u‖2Ds,2(RN )

,

where 2∗
s,α := 2(N−α)

N−2s is the so-called the critical fractional Hardy-Sobolev exponent.
In particular [8], when s = 1 and N � 3, then there is a constant S > 0 such that

(∫

RN

|u|2∗
1,α

|x |α dx

) 2
2∗1,α

� S−1
∫

RN
|∇u|2dx,

where 2∗
1,α:= 2(N−α)

N−2 is the so-called the critical Hardy-Sobolev exponent.

Lemma 2.3 E ↪→ Lt (RN ), t ∈ [2∗
s , 2

∗].
Proof Using Hölder’s inequality, we have

∫

RN
|u|tdx �

(∫

RN
|u| 2N

N−2s dx

) (t N−2N−2t)(N−2s)
4N (s−1)

(∫

RN
|u| 2N

N−2 dx

) (t N−2N−2ts)(N−2)
4N (1−s)

.

From Lemma 2.1, we know

(∫

RN
|u| 2N

N−2s dx

) 2
2∗s � ‖u‖2Ds,2(RN )

� ‖u‖2E ,

and

(∫

RN
|u| 2N

N−2 dx

) 2
2∗

� ‖u‖2D1,2(RN )
� ‖u‖2E .

Then we get

∫

RN
|u|tdx �

(∫

RN
|u| 2N

N−2s dx

) (t N−2N−2t)(N−2s)
4N (s−1)

(∫

RN
|u| 2N

N−2 dx

) (t N−2N−2ts)(N−2)
4N (1−s)

�‖u‖t
E < ∞.

The proof is completed. 
�
Lemma 2.4 [3, 31] For u ∈ D1,2(RN ) and N � 3, we have

|u(x)| � C |x |− N−2
2 ‖u‖

1
2
D1,2(RN )

,
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where C > 0 is independent of u.

Lemma 2.5 [3, Theorem A.I.] Let P and Q : R → R be two continuous functions
satisfying

P(s)/Q(s) → 0, as |s| → +∞.

Let {un} be a sequence of measurable functions: RN → R such that

sup
n

∫

RN
|Q(un)|dx < +∞,

and

P(un) → v a.e. in R
N , as n → ∞.

Then for any bounded Borel set B one has
∫

B |P(un) − v|dx → 0, as n → ∞.
If one further assumes that

P(s)/Q(s) → 0, as |s| → 0,

and

un(x) → 0, as |x | → ∞, uniformly with respect to n,

Then P(un) converges to v in L1(RN ) as n → ∞.

Lemma 2.6 Erad ↪→↪→ Lt (RN ), t ∈ (2∗
s , 2

∗), where 2∗ = 2N
N−2 , 2∗

s = 2N
N−2s and

Erad is the set of radial functions of E.

Proof Let {un} ⊂ Erad be a sequence such that ‖un‖E is bounded. From Lemma 2.4,
we have

lim|x |→+∞ |un(x)| = 0,

with respect to n. We can extract a subsequence {unk } which converges almost every-
where in R

N , and weakly in Erad to a radial u. Appling Lemma 2.5 with P(s) = st

and Q(s) = s2
∗
s + s2

∗
, t ∈ (2∗

s , 2
∗), we know that {unk } converges strongly to u in

Lt (RN ). 
�

3 Sobolev Embedding for˛ ∈ (0, 2s)

In this section, we present the continuous and compact embedding results for α ∈
(0, 2s).

Lemma 3.1 E ↪→ Lt (RN , |x |α), t ∈ [2∗
s,α, 2∗

1,α].
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Proof It follows from Hölder’s inequality that

∫

RN

|u|t
|x |α dx

�
(∫

RN

|u| 2(N−α)
N−2s

|x |α dx

)
2(N−α)

N−2 −t

2(N−α)
N−2 − 2(N−α)

N−2s

(∫

RN

|u| 2(N−α)
N−2

|x |α dx

)
t− 2(N−α)

N−2s
2(N−α)

N−2 − 2(N−α)
N−2s

.

(3.1)

We recall the following Hardy-Sobolev inequality and fractional Hardy-Sobolev
inequality in Lemma 2.2

C

(∫

RN

|u| 2(N−α)
N−2

|x |α dx

) 2
2(N−α)

N−2
�

∫

RN
|∇u|2dx, (3.2)

and

C

(∫

RN

|u| 2(N−α)
N−2s

|x |α dx

) 2
2(N−α)

N−2s
�

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy. (3.3)

Combining (3.1)-(3.3), we have

∫

RN

|u|t
|x |α dx �

(∫

RN

|u| 2(N−α)
N−2

|x |α dx

)
t− 2(N−α)

N−2s
2(N−α)

N−2 − 2(N−α)
N−2s

(∫

RN

|u| 2(N−α)
N−2s

|x |α dx

)
2(N−α)

N−2 −t

2(N−α)
N−2 − 2(N−α)

N−2s

�C

(∫

RN
|∇u|2dx

)
2(N−α)

N−2
2 · t− 2(N−α)

N−2s
2(N−α)

N−2 − 2(N−α)
N−2s

·
(∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

)
2(N−α)

N−2s
2 ·

2(N−α)
N−2 −t

2(N−α)
N−2 − 2(N−α)

N−2s

�C

(∫

RN
|∇u|2dx +

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

) t
2

=C‖u‖t
E .

The proof is completed. 
�
Lemma 3.2 Erad ↪→↪→ Lt (RN , |x |α), t ∈ (2∗

s,α, 2∗
1,α), where Erad is the set of radial

functions of E.

Proof Let un be a bounded sequence in Erad . Up to a sequence, one has

un⇀u, in Erad ,

un → u, a.e. in R
N .
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We will show that there exists 
(ε) > 0 such that

∫

RN

|un − u|t
|x |α dx <ε.

By using Holder’s and Hardy’s inequalities [20, Theorem 1.1], we have

∫

RN

|un − u|t
|x |α dx =

∫

RN

|un − u|α
|x |α |un − u|t−αdx

�
(∫

RN

|un − u|2
|x |2 dx

) α
2

(∫

RN
|un − u| 2(t−α)

2−α dx

) 2−α
2

�C

(∫

RN
|un − u| 2(t−α)

2−α dx

) 2−α
2

,

where

2(N − sα)

N − 2s
< t <

2(N − α)

N − 2
⇔

{
2∗

s <
2(t−α)
2−α

2(t−α)
2−α

< 2∗ .

It follows from Erad ↪→↪→ Lt (RN ) with t ∈ (2∗
s , 2

∗) and 2(N−sα)
N−2s < t <

2(N−α)
N−2

that

∫

RN

|un − u|t
|x |α dx < ε. (3.4)

By using Holder’s and fractional Hardy’s inequalities [20, Theorem 1.1], we obtain

∫

RN

|un − u|t
|x |α dx =

∫

RN

|un − u| α
s

|x |α |un − u|t− α
s dx

�
(∫

RN

|un − u| α
s
2s
α

|x |α 2s
α

dx

) α
2s (∫

RN
|un − u| 2s(t− α

s )

2s−α dx

) 2s−α
2s

=
(∫

RN

|un − u|2
|x |2s

dx

) α
2s

(∫

RN
|un − u| 2(ts−α)

2s−α dx

) 2s−α
2s

�C

(∫

RN
|un − u| 2(ts−α)

2s−α dx

) 2s−α
2s

,

where

2(N − α)

N − 2s
< t <

2(N − α
s )

N − 2
⇔

{
2∗

s <
2(ts−α)
2s−α

2(ts−α)
2s−α

< 2∗ .
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It follows from Erad ↪→↪→ Lt (RN ) with t ∈ (2∗
s , 2

∗) and 2(N−α)
N−2s < t <

2(N− α
s )

N−2
that

∫

RN

|un − u|t
|x |α dx < ε. (3.5)

Clearly,

{
2(N− α

s )

N−2 � 2(N−sα)
N−2s , α � N

N−1 ,
2(N− α

s )

N−2 <
2(N−sα)

N−2s , α < N
N−1 .

For α � N
N−1 , to check

2(N− α
s )

N−2 � t � 2(N−sα)
N−2 , we set 2(N−α)

N−2s < t1 <
2(N− α

s )

N−2 and
2(N−sα)

N−2s < t2 <
2(N−α)

N−2 . By using Holder’s inequality, (3.4) and (3.5), one has

∫

RN

|un − u|t
|x |α dx �

(∫

RN

|un − u|t1
|x |α dx

) t2−t
t2−t1

(∫

RN

|un − u|t2
|x |α dx

) t−t1
t2−t1

<ε
t2−t
t2−t1 ε

t−t1
t2−t1

=ε.

The proof is completed. 
�

4 Sobolev Embedding for˛ ∈ (−∞, 0)

In this section, we present the continuous and compact embedding results for α ∈
(−∞, 0).

Lemma 4.1 [29] Let N � 2 and s ∈ ( 12 , 1). For u ∈ Ds,2(RN ), we have

|u(x)| � C |x |− N−2s
2 ‖u‖

1
2s
Ds,2(RN )

,

where C > 0 is independent of u.

Lemma 4.2 Let α ∈ (−∞, 0) and s ∈ ( 12 , 1). Then Erad ↪→ Lt (RN , |x |α), t ∈
[2∗

s,α, 2∗
1,α].

Proof From Lemma 2.4, we have

∫

RN

|u|2∗
1,α

|x |α dx =
∫

RN
|u|2∗

1,α−2∗ 1

|x |α |u|2∗
dx

�C
∫

RN

(
1

|x | N−2
2

)2∗
1,α−2∗

1

|x |α |u|2∗
dx

=C
∫

RN
|u|2∗

dx .
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It follows from Lemma 4.1 that

∫

RN

|u|2∗
s,α

|x |α dx =
∫

RN
|u|2∗

s,α−2∗
s

1

|x |α |u|2∗
s dx

�C
∫

RN

(
1

|x | N−2s
2

)2∗
s,α−2∗

s 1

|x |α |u|2∗
s dx

=C
∫

RN
|u|2∗

s dx .

(4.1)


�
Lemma 4.3 [31] Let α ∈ (−∞, 0) and N � 3. Then for any u ∈ D1,2

rad(RN ), we have

(∫

RN

|u|2∗
1,α

|x |α dx

) 2
2∗1,α

� H−1‖u‖2D1,2(RN )
.

Lemma 4.4 Let α ∈ (−∞, 0) and s ∈ ( 12 , 1). Then u ∈ Ds,2
rad(RN ), we know

(∫

RN

|u|2∗
s,α

|x |α dx

) 2
2∗s,α

� H−1
s ‖u‖2Ds,2(RN )

.

Proof By using (4.1) and the Sobolev inequality, we have

(∫

RN

|u|2∗
s,α

|x |α dx

) 2
2∗s,α

�C
∫

RN
|u|2∗

s dx

�C‖u‖2Ds,2(RN )
.


�
Lemma 4.5 Let α ∈ (−∞, 0) and s ∈ ( 12 , 1). Then Erad ↪→↪→ Lt (RN , |x |α), t ∈
(2∗

s,α, 2∗
1,α).

Proof Step 1. By using Lemma 2.4, we have

∫

RN

|u|t
|x |α dx =

∫

RN
|u|2∗

1,α−2∗ 1

|x |α |u|t+2∗−2∗
1,αdx

�C
∫

RN

(
1

|x | N−2
2

)2∗
1,α−2∗

1

|x |α |u|t+2∗−2∗
1,αdx

=C
∫

RN
|u|t+2∗−2∗

1,αdx .

(4.2)

123



163 Page 12 of 28 Q.Bao

Let t ∈ (2∗
s − 2∗ + 2∗

1,α, 2∗
1,α). Then we have

2∗
s < t + 2∗ − 2∗

1,α < 2∗.

By using Lemma 2.6 and (4.2), we know

Erad ↪→↪→ Lt (RN , |x |α), t ∈ (2∗
s − 2∗ + 2∗

1,α, 2∗
1,α). (4.3)

Step 2. By using Lemma 4.1, we know

∫

RN

|u|t
|x |α dx =

∫

RN
|u|2∗

s,α−2∗
s

1

|x |α |u|t+2∗
s −2∗

s,αdx

�C
∫

RN

(
1

|x | N−2s
2

)2∗
s,α−2∗

s 1

|x |α |u|t+2∗
s −2∗

s,αdx

=C
∫

RN
|u|t+2∗

s −2∗
s,αdx .

(4.4)

Let t ∈ (2∗
s,α, 2∗ − 2∗

s + 2∗
s,α), we have

2∗
s < t + 2∗

s − 2∗
s,α < 2∗.

By using Lemma 2.6 and (4.4), we know

Erad ↪→↪→ Lt (RN , |x |α), t ∈ (2∗
s,α, 2∗ − 2∗

s + 2∗
s,α). (4.5)

Step 3. For α ∈ [−N , 0), we have

2∗
s − 2∗ + 2∗

1,α � 2∗ − 2∗
s + 2∗

s,α.

Then from (4.3) and (4.5), we get

Erad ↪→↪→ Lt (RN , |x |α), t ∈(2∗
s,α, 2∗

1,α)

=(2∗
s,α, 2∗ − 2∗

s + 2∗
s,α) ∪ (2∗

s − 2∗ + 2∗
1,α, 2∗

1,α).

Step 4. For α ∈ (−∞,−N ), we have

2∗
s − 2∗ + 2∗

1,α > 2∗ − 2∗
s + 2∗

s,α.

Then from (4.3) and (4.5), we get

Erad ↪→↪→ Lt (RN , |x |α), t ∈(2∗
s,α, 2∗ − 2∗

s + 2∗
s,α) ∪ (2∗

s − 2∗ + 2∗
1,α, 2∗

1,α).

(4.6)
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For t ∈ [2∗
s − 2∗ + 2∗

1,α, 2∗ − 2∗
s + 2∗

s,α], let t1 ∈ (2∗
s,α, 2∗ − 2∗

s + 2∗
s,α) and t2 ∈

(2∗
s − 2∗ + 2∗

1,α, 2∗
1,α), applying Holder’s inequality, one has

∫

RN

|u|t
|x |α dx �

(∫

RN

|u|t2
|x |α dx

) t1−t
t1−t2

(∫

RN

|u|t1
|x |α dx

) t−t2
t1−t2

. (4.7)

Combining (4.6) and (4.7), we have

Erad ↪→↪→ Lt (RN , |x |α), t ∈ [2∗
s − 2∗ + 2∗

1,α, 2∗ − 2∗
s + 2∗

s,α].

The proof is completed. 
�

5 The Proof of Theorem 1.1

Lemma 5.1 Let u ∈ E be a weak solution of equation (P). Then u satisfies the fol-
lowing Pohožaev identity

N − 2

2
‖u‖2D1,2(RN )

+ N − 2s

2
‖u‖2Ds,2(RN )

= N − α

p

∫

RN

|u|p

|x |α dx . (5.1)

Proof Multiply the equation (P) by x · ∇u on both sides and integrate by parts, we
get

〈−�u, x · ∇u〉L2(RN ) + 〈(−�)su, x · ∇u〉L2(RN ) =
〈 |u|p−2u

|x |α , x · ∇u

〉

L2(RN )

.

From [3], we have

〈−�u, x · ∇u〉L2(RN ) = − N − 2

2
‖u‖2Ds,2(RN )

.

From [5, Proposition B.1], we have

〈(−�)su, x · ∇u〉L2(RN ) = − N − 2s

2
‖u‖2Ds,2(RN )

.

From [22, Theorem 2.1], we get

〈 |u|p−2u

|x |α , x · ∇u

〉

L2(RN )

= − N − α

p

∫

RN

|u|p

|x |α dx .

Then we get the Pohožaev identity. 
�
By applying the Pohožaev identity, we can prove Theorem 1.1.
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The proof of Theorem 1.1 If u ∈ E is a weak solution of equation (P), then u satisfies
the following Nehari identity

‖u‖2D1,2(RN )
+ ‖u‖2Ds,2(RN )

=
∫

RN

|u|p

|x |α dx . (5.2)

Combining (5.1) and (5.2), one has

N − 2

2
‖u‖2D1,2(RN )

+ N − 2s

2
‖u‖2Ds,2(RN )

= N − α

p
‖u‖2D1,2(RN )

+ N − α

p
‖u‖2Ds,2(RN )

,

which gives

(
N − 2

2
− N − α

p

)

‖u‖2D1,2(RN )
+

(
N − 2s

2
− N − α

p

)

‖u‖2Ds,2(RN )
= 0.

(5.3)

If p = 2(N−α)
N−2 , then N−2

2 − N−α
p = 0 and N−2 s

2 − N−α
p > 0, and from (5.3), we

have
(

N − 2s

2
− N − α

p

)

‖u‖2Ds,2(RN )
= 0.

This shows u ≡ 0, which is a contradiction.
If p = 2(N−α)

N−2s , then N−2
2 − N−α

p < 0 and N−2 s
2 − N−α

p = 0, from (5.3) again, we
deduce

(
N − 2

2
− N − α

p

)

‖u‖2D1,2(RN )
= 0.

This implies u ≡ 0, which is a contradiction. 
�

6 Mountain-Pass Geometric Structure and Nehari Manifold

The energy functionals corresponding to the equations (P), (U ) and (L) are

Ip(u) = 1

2

(∫

RN
|∇u|2dx +

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

)

− 1

p

∫

RN

|u|p

|x |α dx,

and

I2∗
1,α

(u) =1

2

(∫

RN
|∇u|2dx +

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

)

− 1

2∗
1,α

∫

RN

|u|2∗
1,α

|x |α dx − β

p

∫

RN

|u|p

|x |α dx,
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and

I2∗
s,α

(u) =1

2

(∫

RN
|∇u|2dx +

∫

RN

∫

RN

|u(x) − u(y)|2
|x − y|N+2s

dxdy

)

− 1

2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx − β

p

∫

RN

|u|p

|x |α dx .

It is worth noting that the mountain-pass geometric structure and Nehari manifold of
the three energy functionals mentioned above exhibit remarkable similarities. As a
result, we will focus on presenting the case of I2∗

s,α
, which captures the essence of the

analysis. In particular, we will consider the Fréchet derivative I ′
2∗

s,α
(u) corresponding

to I2∗
s,α

(u), where φ ∈ E ,

〈I ′
2∗

s,α
(u), φ〉 =

∫

RN
∇u∇φdx +

∫

RN

∫

RN

(u(x) − u(y))(φ(x) − φ(y))

|x − y|N+2s
dxdy

−
∫

RN

|u|2∗
s,α−1φ

|x |α dx − β

∫

RN

|u|p−1φ

|x |α dx .

We set

c = inf
γ∈�

sup
t∈[0,1]

I2∗
s,α

(γ (t)) > 0 and � = {γ ∈ C ([0, 1], E) |γ (0) = 0, I2∗
s,α

(γ (1)) < 0}.

Lemma 6.1 Let N � 3, 0 < s < 1 and 0 < α < 2s. Then the functional I2∗
s,α

has
mountain pass geometric structure.

Proof Using Lemma 2.3, one has

I2∗
s,α

(u) � ‖u‖2E − Cβ‖u‖p
E − C‖u‖2

∗
s,α

E .

We should keep in mind that the exponent p lies within the range 2∗
s,α < p < 2∗

1,α .
Under this condition, then there exists a sufficiently small positive number ρ such that

ς := inf‖u‖E =ρ
I2∗

s,α
(u) > 0 = I (0).

For u ∈ E \ {0}, we have

I2∗
s,α

(tu) = t2

2
‖u‖2E − β

t p

p

∫

RN

|u|p

|x |α dx − t2
∗
s,α

2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx .

From 2∗
s,α < p < 2∗

1,α , it follows that I2∗
s,α

(tu) < 0 for t large enough.
From above, we can choose tu > 0 corresponding to u such that I2∗

s,α
(tuu) < 0 for

t > tu and ‖tuu‖E > ρ. 
�
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We now set the Nehari manifold as follows

N = {u ∈ E \ {0}|〈I ′
2∗

s,α
(u), u〉 = 0}.

Lemma 6.2 Let N � 3, 0 < s < 1 and 0 < α < 2s. Then for any u ∈ E \ {0}, there
exists a unique tu > 0 such that tuu ∈ N and I2∗

s,α
(tuu) = max

t>0
I2∗

s,α
(tu).

Proof For any u ∈ E\{0} and t ∈ (0,∞), we define

f1(t) = I2∗
s,α

(tu) = t2

2
‖u‖2E − β

t p

p

∫

RN

|u|p

|x |α dx − t2
∗
s,α

2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx .

Let’s perform the computation

f ′
1(t) =t‖u‖2E − βt p−1

∫

RN

|u|p

|x |α dx − t2
∗
s,α−1

∫

RN

|u|2∗
s,α

|x |α dx .

We know that f ′
1(·) = 0 iff

‖u‖2E = βt p−2
∫

RN

|u|p

|x |α dx + t2
∗
s,α−2

∫

RN

|u|2∗
s,α

|x |α dx .

Let

f2(t) = βt p−2
∫

RN

|u|p

|x |α dx + t2
∗
s,α−2

∫

RN

|u|2∗
s,α

|x |α dx .

Clearly, lim
t→0

f2(t) → 0, lim
t→+∞ f2(t) → +∞. Therefore, according to the intermediate

value theorem, there must exist a value 0 < tu < ∞ such that

f2(tu) = ‖u‖2E .

Additionally, we can observe that the function f2(·) is strictly increasing on the interval
(0,∞). This property leads to the conclusion that the value tu is unique. And then

‖u‖2E = βt p−2
u

∫

RN

|u|p

|x |α dx + t
2∗

s,α−2
u

∫

RN

|u|2∗
s,α

|x |α dx,

which gives

‖tuu‖2E = β

∫

RN

|tuu|p

|x |α dx +
∫

RN

|tuu|2∗
s,α

|x |α dx .

This implies that tuu ∈ N . 
�
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Lemma 6.3 Let N � 3, 0 < s < 1 and 0 < α < 2s. Then we have c̄ = inf
u∈N

I2∗
s,α

(u) >

0.

Proof By applying 〈I ′
2∗

s,α
(u), u〉 = 0, we know

0 = 〈I ′
2∗

s,α
(u), u〉 � ‖u‖2E − Cβ‖u‖p

E − C‖u‖2
∗
s,α

E ,

which implies

Cβ‖u‖p−2
E + C‖u‖2

∗
s,α−2

E � 1,

and

‖u‖2E � C .

Then, for u ∈ N , we get

I2∗
s,α

(u) =I2∗
s,α

(u) − 1

2∗
s,α

〈I ′
2∗

s,α
(u), u〉

=1

2
‖u‖2E − β

1

p

∫

RN

|u|p

|x |α dx − 1

2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx

− 1

2∗
s,α

(

‖u‖2E − β

∫

RN

|u|p

|x |α dx −
∫

RN

|u|2∗
s,α

|x |α dx

)

=
(
1

2
− 1

2∗
s,α

)

‖u‖2E + β

(
1

2∗
s,α

− 1

p

) ∫

RN

|u|p

|x |α dx

�
(
1

2
− 1

2∗
s,α

)

‖u‖2E � C .

Therefore, we can conclude that the functional I2∗
s,α

is bounded from below on N .
And then c̄ > 0. 
�

Set

¯̄c:= inf
u∈E\{0} supt�0

I2∗
s,α

(tu).

Lemma 6.4 Let N � 3, 0 < s < 1 and 0 < α < 2s. Then we have c = c̄ = ¯̄c.

Proof By using Lemma 6.2, We can directly obtain the following result:

c̄ = ¯̄c.
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For any u ∈ E \ {0}, there exists some t̃ > 0 that is sufficiently large such that
I2∗

s,α
(t̃u) < 0. We can construct a path γ : [0, 1] → E by setting γ (t) = t t̃u. It is

clear that γ ∈ � and that

c � ¯̄c.

Alternatively, for every path γ ∈ �, we can define g(t) = 〈I ′
2∗

s,α
(γ (t)), γ (t)〉. It is

evident that g(0) = 0 and g(t) > 0 for small values of t . By performing a direct
calculation, we obtain the following expression:

I2∗
s,α

(γ (1)) − 1

2∗
s,α

〈I ′
2∗

s,α
(γ (1)), γ (1)〉

�
(
1

2
− 1

2∗
s,α

)

‖γ (1)‖2E + β

(
1

2∗
s,α

− 1

p

) ∫

RN

|γ (1)|p

|x |α dx � 0,

which shows

〈I ′
2∗

s,α
(γ (1)), γ (1)〉 �2∗

s,α · I2∗
s,α

(γ (1))

=2∗
s,α · I2∗

s,α
(t̃u) < 0.

Thus, there exists ˜̃t ∈ (0, 1) such that g( ˜̃t) = 0, i.e. γ ( ˜̃t) ∈ N and c � c̄. This deduces
c = c̄ = ¯̄c.


�

Lemma 6.5 Let N � 3, 0 < s < 1 and 0 < α < 2s. For u ∈ N , we have �′(u) �= 0,
where

�(u) = 〈I ′
2∗

s,α
(u), u〉 = ‖u‖2E − β

∫

RN

|u|p

|x |α dx −
∫

RN

|u|2∗
s,α

|x |α dx, (6.1)

and

〈�′(u), u〉 =2‖u‖2E − pβ

∫

RN

|u|p

|x |α dx − 2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx . (6.2)

Moreover, if u ∈ N and I2∗
s,α

(u) = c, then u is a ground state solution for equation
(L).
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Proof For u ∈ N , it follows from (6.1) and (6.2) that

〈�′(u), u〉 =〈�′(u), u〉 − 2∗
s,α�(u)

=
(

2‖u‖2E − pβ

∫

RN

|u|p

|x |α dx − 2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx

)

− 2∗
s,α

(

‖u‖2E − β

∫

RN

|u|p

|x |α dx −
∫

RN

|u|2∗
s,α

|x |α dx

)

=(2 − 2∗
s,α)‖u‖2E + β(2∗

s,α − p)

∫

RN

|u|p

|x |α dx

<0.

Thus, �′(u) �= 0 for u ∈ N .
Suppose u ∈ N and I2∗

s,α
(u) = c̄, where c̄ is the minimum of I2∗

s,α
on N . By

applying the Lagrange multiplier theorem, we can conclude that there exists a scalar
λ ∈ R such that I ′

2∗
s,α

(u) = λ�′(u).So

〈λ�′(u), u〉 = 〈I ′
2∗

s,α
(u), u〉 = �(u) = 0.

This shows λ = 0 and I ′
2∗

s,α
(u) = 0. Thus, u is a ground state solution for equation

(L). 
�

7 The Proof of Theorem 1.2

We recall the (P S)c sequence as follows.

Definition 7.1 If sequence {un} ⊂ E satisfies the condition

I2∗
s,α

(un) → c and I ′
2∗

s,α
(un) → 0 in E−1, as n → ∞.

Then {un} is called the Palais-Smale sequence of I2∗
s,α

with respect to c, short for

(P S)c sequence, where E−1 is the dual space of E .

Lemma 7.1 Let N � 3, 0 < s < 1 and 0 < α < 2s. Then there exists a bounded
(P S)c sequence {un} ⊂ N such that

I2∗
s,α

(un) → c and ‖I ′
2∗

s,α
(un)‖E−1 → 0, as n → ∞.

Proof Based on Lemmas 6.2 and 6.4, we know thatN �= ∅ and inf
u∈N

I2∗
s,α

(u) = c̄ = c.

By applying Ekeland’s variational principle, there exist {un} ⊂ N and λn ∈ R such
that

I2∗
s,α

(un) → c̄ and I ′
2∗

s,α
(un) − λn�′(un) → 0 in E−1, as n → ∞.
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So

c̄ = I2∗
s,α

(un) =I2∗
s,α

(un) − 1

2∗
s,α

〈I ′
2∗

s,α
(un), un〉

�
(
1

2
− 1

2∗
s,α

)

‖un‖2E + β

(
1

2∗
s,α

− 1

p

) ∫

RN

|un|p

|x |α dx,

which implies that {un} is bounded in E .
Taking n → ∞, we have

|〈I ′
2∗

s,α
(un), un〉 − 〈λn�′(un), un〉| � ‖I ′

2∗
s,α

(un) − λn�
′(un)‖E−1‖un‖E → 0,

we have

〈I ′
2∗

s,α
(un), un〉 − λn〈�′(un), un〉 → 0, as n → ∞. (7.1)

Note that {un} ⊂ N . From Lemma 6.5, we obtain

〈I ′
2∗

s,α
(un), un〉 = 0, (7.2)

and

〈�′(un), un〉 �= 0. (7.3)

Combining (7.1)–(7.3), we conclude λn → 0.
It follows from Hölder’s and Sobolev’s inequalities that

‖I ′
2∗

s,α
(un)‖E−1

= sup
ϕ∈E,‖ϕ‖E =1

|〈�′(un), ϕ〉|

= sup
ϕ∈E,‖ϕ‖E =1

∣
∣
∣
∣
∣
2

∫

RN
∇u∇ϕdx − β p

∫

RN

|un |p−2unϕ

|x |α dx − 2∗
s,α

∫

RN

|un |2∗
s,α−2unϕ

|x |α dx

+2
∫

RN

∫

RN

(un(x) − un(y))(ϕ(x) − ϕ(y))

|x − y|N+2s
dxdy

∣
∣
∣
∣

� C .

Then we obtain

‖I ′
2∗

s,α
(un)‖E−1 � ‖I ′

2∗
s,α

(un) − λn�
′(un)‖E−1 + |λn|‖�′(un)‖E−1 = o(1).

That is, I ′
2∗

s,α
(un) → 0 in E−1. Hence, {un} is a (P S)c sequence of I2∗

s,α
. 
�
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Lemma 7.2 Let N � 3, 0 < s < 1 and 0 < α < 2s. Then there exists a bounded
nonnegative radial sequence {un} ⊂ N such that

I2∗
s,α

(un) → c and 〈I ′
2∗

s,α
(un), un〉 = 0.

Proof According to Lemma 7.1, we can deduce that there exists a bounded (P S)c

sequence {un} ⊂ N . It is easy to see that

∫

un(y)�0

∫

un(x)<0

||un(x)| − |un(y)||2
|x − y|N+2s

dxdy +
∫

un(y)<0

∫

un(x)�0

||un(x)| − |un(y)||2
|x − y|N+2s

dxdy

�
∫

un(y)�0

∫

un(x)<0

|un(x) − un(y)|2
|x − y|N+2s

dxdy +
∫

un(y)<0

∫

un(x)�0

|un(x) − un(y)|2
|x − y|N+2s

dxdy,

which implies

‖ |un| ‖Ds,2(RN ) � ‖un‖Ds,2(RN ).

Then,

I2∗
s,α

(t |un|) � I2∗
s,α

(tun), t > 0.

Note that {un} ⊂ N . Then |un| �≡ 0. And there exists a sequence t1,un > 0 such that
t1,un |un| ∈ N and

‖ |un| ‖2D1,2(RN )
+ ‖ |un| ‖2Ds,2(RN )

= t
2∗

s,α−2
1,un

∫

RN

|un|2∗
s,α

|x |α dx + t p−2
1,un

β

∫

RN

|un|p

|x |α dx .

It follows from {un} ⊂ N that

∫

RN

|un|2∗
s,α

|x |α dx + β

∫

RN

|un|p

|x |α dx =‖un‖2D1,2(RN )
+ ‖un‖2Ds,2(RN )

�‖ |un| ‖2D1,2(RN )
+ ‖ |un| ‖2Ds,2(RN )

=t
2∗

s,α−2
1,un

∫

RN

|un|2∗
s,α

|x |α dx + t p−2
1,un

β

∫

RN

|un|p

|x |α dx,

which gives

t1,un ∈ (0, 1].

Furthermore, we have

c̄ � I2∗
s,α

(t1,un |un|) � I2∗
s,α

(t1,un un) � max
t�0

I2∗
s,α

(tun) = I2∗
s,α

(un) = c̄.

Then we know I2∗
s,α

(t1,un |un|) = c̄ = c.
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Let us define v∗
n as the symmetric decreasing rearrangement of vn :=t1,un |un|. Then

‖v∗
n‖D1,2(RN ) � ‖vn‖D1,2(RN ),

and

‖v∗
n‖Ds,2(RN ) � ‖vn‖Ds,2(RN ),

and

∫

RN

|v∗
n |2∗

s,α

|x |α dx �
∫

RN

|vn|2∗
s,α

|x |α dx,

and

∫

RN

|v∗
n |p

|x |α dx �
∫

RN

|vn|p

|x |α dx .

These deduce

I2∗
s,α

(t |v∗
n |) � I2∗

s,α
(tvn), t > 0.

Notice that {vn} ⊂ N . Then vn �≡ 0 and there exists t1,v∗
n

> 0 such that t1,v∗
n
v∗

n ∈ N .
And

‖v∗
n‖2D1,2(RN )

+ ‖v∗
n‖2Ds,2(RN )

= t
2∗

s,α−2
1,v∗

n

∫

RN

|v∗
n |2∗

s,α

|x |α dx + t p−2
1,v∗

n
β

∫

RN

|v∗
n |p

|x |α dx .

It follows from vn :=t1,un |un| ∈ N that

∫

RN

|v∗
n |2∗

s,α

|x |α dx + β

∫

RN

|v∗
n |p

|x |α dx �
∫

RN

|vn|2∗
s,α

|x |α dx + β

∫

RN

|vn|p

|x |α dx

=‖vn‖2D1,2(RN )
+ ‖vn‖2Ds,2(RN )

�‖v∗
n‖2D1,2(RN )

+ ‖v∗
n‖2Ds,2(RN )

=t
2∗

s,α−2
1,v∗

n

∫

RN

|v∗
n |2∗

s,α

|x |α dx + t p−2
1,v∗

n
β

∫

RN

|v∗
n |p

|x |α dx,

which gives

t1,v∗
n

∈ (0, 1].

and

c̄ � I2∗
s,α

(t1,v∗
n
|v∗

n |) � I2∗
s,α

(t1,v∗
n
vn) � max

t�0
I2∗

s,α
(tvn) = I2∗

s,α
(vn) = c̄.
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Then we know I2∗
s,α

(t1,v∗
n
|v∗

n |) = c̄ = c. 
�
Lemma 7.3 Assume that the assumptions of Theorem 1.2 hold. There exist β1 ∈
(0,+∞) such that for any β > β1, we have

c ∈ (0, c∗),

where

c∗:=
(
1

2
− 1

2∗
s,α

)

S

2∗s,α
2∗s,α−2
s ,

where Ss is the best constant of Sobolev inequality, see Lemma 2.2.

Proof Let us select w ∈ E in the following way:

‖w‖E = 1 and
∫

RN
|w|pdx > 0.

From the Mountain Pass geometric structure, one can deduce

lim
t→+∞ I2∗

s,α
(tw) = −∞,

and tw,β > 0 such that tw,βw ∈ N

sup
t�0

I2∗
s,α

(tw) = I2∗
s,α

(tw,βw).

Thus, tw,β satisfies

t2w,β‖w‖2E = t
2∗

s,α
w,β

∫

RN

|w|2∗
s,α

|x |α dx + βt p
w,β

∫

RN

|w|p

|x |α dx . (7.4)

Furthermore,

t2w,β‖w‖2E � t
2∗

sα
w,β

∫

RN

|w|2∗
s,α

|x |α dx .

This gives {tw,β}β is bounded.
We assert that tw,β → 0 as β → +∞. Let us argue by contradiction and assume

that there exist t0 > 0 and a sequence {βn} with βn → ∞ such that tw,βn → t0 as
n → +∞. Then, we have the following:

βnt p
w,βn

∫

RN

|w|p

|x |α dx → +∞, as n → +∞.
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Putting this into (7.4), we know

t20‖w‖2E = +∞.

This is a contradiction with ‖w‖E = 1.
By applying tw,β → 0 as β → +∞, we obtain

lim
β→+∞ sup

t�0
I2∗

s,α
(tw) = lim

β→+∞ I2∗
s,α

(tw,βw) = 0.

Then there exists β1 ∈ (0,+∞) such that for any β > β1 there holds

sup
t�0

I2∗
s,α

(tw) < c∗.

For any β > β1, we construct a mountain pass path as: taking e = T w and γ (t) = te
with T large enough to satisfies I2∗

s,α
(e) < 0, then

c � max
t∈[0,1] I2∗

s,α
(γ (t)).

Hence, c � sup
t�0

I2∗
s,α

(tw) < c∗. 
�

Lemma 7.4 Let N � 3, 0 < s < 1 and 0 < α < 2s. Let {un} ⊂ N be a bounded
nonnegative radial sequence such that

I2∗
s,α

(un) → c and 〈I ′
2∗

s,α
(un), un〉 = 0.

Then un converges strongly to u �≡ 0 in E. Moreover, we know that I2∗
s,α

(u) = c.

Proof From Lemma 7.2, we know that bounded nonnegative radial sequence {un} ⊂
N with c ∈ (0, c∗). If lim

n→∞
∫

RN
|un |p

|x |α dx = 0, then

c = I2∗
s,α

(un) = 1

2
‖un‖2E − 1

2∗
s,α

∫

RN

|un|2∗
s,α

|x |α dx,

and

0 = 〈I ′
2∗

s,α
(un), un〉 = ‖un‖2E −

∫

RN

|un|2∗
s,α

|x |α dx, (7.5)

which gives

c =
(
1

2
− 1

2∗
s,α

)

‖un‖2E . (7.6)
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From (7.5) and Lemma 2.2

‖un‖2E =
∫

RN

|un|2∗
s,α

|x |α dx � S
− 2∗s,α

2
s ‖un‖2

∗
s,α

Ds,2(RN )
� S

− 2∗s,α
2

s ‖un‖2
∗
s,α

E ,

which shows

S
2∗s,α
2

s � ‖un‖2
∗
s,α−2

E ⇒ ‖un‖2E � S

2∗s,α
2∗s,α−2
s .

(7.7)

Combining (7.6) and (7.7),

c �
(
1

2
− 1

2∗
s,α

)

S

2∗s,α
2∗s,α−2
s .

This contradicts 0 < c < c∗ =
(
1
2 − 1

2∗
s,α

)
S

2∗s,α
2∗s,α−2
s in Lemma 7.3. Then we get

lim
n→∞

∫

RN
|un |p

|x |α dx > 0. By using Lemma 3.2, we know that {un} converges strongly
to u �≡ 0 in L p(RN , |x |α).

Now, by virtue of the Brezis-Lieb Lemma [7], one deduces

c̄ � I2∗
s,α

(u) =I2∗
s,α

(u) − 1

2∗
s,α

〈I ′
2∗

s,α
(u), u〉

=1

2
‖u‖2E − β

1

p

∫

RN

|u|p

|x |α dx − 1

2∗
s,α

∫

RN

|u|2∗
s,α

|x |α dx

− 1

2∗
s,α

(

‖u‖2E − β

∫

RN

|u|p

|x |α dx −
∫

RN

|u|2∗
s,α

|x |α dx

)

=
(
1

2
− 1

2∗
s,α

)

‖u‖2E + β

(
1

2∗
s,α

− 1

p

)∫

RN

|u|p

|x |α dx

� lim
n→∞

[(
1

2
− 1

2∗
s,α

)

‖un‖2E + β

(
1

2∗
s,α

− 1

p

) ∫

RN

|u|p

|x |α dx

]

= lim
n→∞ I2∗

s,α
(un) − 1

2∗
s,α

lim
n→∞〈I ′

2∗
s,α

(un), un〉

= lim
n→∞ I2∗

s,α
(un)

=c = c̄,

which gives I2∗
s,α

(u) = c̄. 
�
At this point, we are ready to prove Theorem 1.2.
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Proof of Theorem 1.2 According to Lemma 7.4, we can conclude that there exists u �≡
0 such that I2∗

s,α
(u) = c. Utilizing Lemma 6.5, we can further deduce that u serves as

a ground state solution for equation (L). 
�

8 Proof of Theorem 1.3

Let

Ip,rad = Ip|Erad , I2∗
1,α,rad = I2∗

1,α
|Erad , and I2∗

s,α,rad = I2∗
s,α

|Erad .

It is worth noting that the mountain-pass geometric structure and Nehari manifold of
the three energy functionals mentioned above exhibit remarkable similarities. As a
result, we will focus on presenting the case of I2∗

s,α,rad , which captures the essence of
the analysis. We set the Nehari manifold as follows

M = {u ∈ Erad \ {0}|〈I ′
2∗

s,α,rad(u), u〉 = 0}.

We set

crad = inf
γ∈�

sup
t∈[0,1]

I2∗
s,α,rad(γ (t)) > 0 and

� = {γ ∈ C ([0, 1], Erad) |γ (0) = 0, I2∗
s,α,rad(γ (1)) < 0},

and

c̄rad = inf
u∈M

I2∗
s,α,rad(u) > 0,

and

¯̄crad = inf
u∈Erad\{0} supt�0

I2∗
s,α,rad(tu).

The proof of Theorem 1.3 We have the similarly results for I2∗
s,α,rad without the proof

of Lemmas 6.1-6.5. Repeatting the proof of Lemma 7.1, we know that there exists a
bounded (P S)crad sequence {un} ⊂ M such that

I2∗
s,α,rad(un) → crad and ‖I ′

2∗
s,α,rad(un)‖E−1

rad
→ 0, as n → ∞.

Arguement as Lemma 7.3, there exists β3 ∈ (0,+∞) such that for any β > β3, we
have

0 < crad < c∗
rad =

(
1

2
− 1

2∗
s,α

)

H

2∗s,α
2∗s,α−2

s .
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According to Lemma 7.4, we can conclude that there exists u �≡ 0 such that
I2∗

s,α,rad(u) = crad . Then we have I ′
2∗

s,α,rad(u) = 0. From the Palais’ principle of
symmetric criticality [32], we know that the critical point of I2∗

s,α,rad are also the
critical point of I2∗

s,α
. 
�

Data Availibility There is no data in this paper.
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