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Abstract
We study the monic orthogonal polynomials with respect to a singularly perturbed
Airy weight. By using Chen and Ismail’s ladder operator approach, we derive a dis-
crete systemsatisfiedby the recurrence coefficients for the orthogonal polynomials.We
find that the orthogonal polynomials satisfy a second-order linear ordinary differential
equation, whose coefficients are all expressed in terms of the recurrence coefficients.
By considering the time evolution, we obtain a system of differential-difference equa-
tions satisfied by the recurrence coefficients. Finally, we study the asymptotics of
the recurrence coefficients when the degrees of the orthogonal polynomials tend to
infinity.

Keywords Orthogonal polynomials · Singularly perturbed Airy weight · Ladder
operators · Recurrence coefficients · Differential and difference equations ·
Asymptotics
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1 Introduction

As is well-known, classical orthogonal polynomials (e.g., Hermite, Laguerre and
Jacobi polynomials) are orthogonal with respect to a weight function w(x) on the
real line which satisfies the Pearson equation

d

dx
(σ (x)w(x)) = τ(x)w(x), (1.1)
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where σ(x) is a polynomial of degree ≤ 2 and τ(x) is a polynomial of degree 1.
Semi-classical orthogonal polynomials have a weight function w(x) that satisfies the
Pearson equation (1.1) where σ(x) and τ(x) are polynomials with deg σ > 2 or deg
τ �= 1. See, e.g., [33, Section 1.1.1].

Various semi-classical orthogonal polynomials have been studied during the past
few years. For example, very recently, Clarkson and Jordaan [13] considered the
orthogonal polynomials with respect to the so-called generalized Airy weight

w(x) = xλe− 1
3 x

3+t x , x ∈ R
+

with parameters λ > −1 and t ∈ R. They derived the differential and difference
equations satisfied by the orthogonal polynomials and also by the recurrence coeffi-
cients, and investigated various asymptotic properties of the recurrence coefficients.
Orthogonal polynomials associated with the exponential cubic weight have also been
studied in e.g. [22, 23, 34], and have important applications in numerical analysis [15]
and random matrix theory [3–5].

In the present paper, we are concerned with the monic orthogonal polynomials with
respect to the singularly perturbed Airy weight

w(x; t) = xλe−x3− t
x , x ∈ R

+ (1.2)

with parameters λ > −1 and t > 0. The weight (1.2) is a semi-classical weight since
it satisfies the Pearson equation (1.1) with

σ(x) = x2, τ (x) = −3x4 + (λ + 2)x + t .

Note that the factor e− t
x induces an infinitely strong zero at the origin for the weight

(1.2).
Semi-classical orthogonal polynomials with singularly perturbed Gaussian,

Laguerre, Jacobi and Freud weights have been studied in [6, 8, 11, 27–29, 35]. The
weights with an essential singularity at the origin play an important role in many
mathematical and physical problems, such as the study of statistics for zeros of the
Riemann zeta function [2], the calculation of finite temperature expectation values in
integrable quantum field theory [21], the study of the Wigner time-delay distribution
[7, 25, 32], etc.

Let Pn(x; t), n = 0, 1, 2, . . ., be the monic polynomials of degree n orthogonal
with respect to the weight (1.2), such that

∫ ∞

0
Pm(x; t)Pn(x; t)w(x; t)dx = hn(t)δmn, m, n = 0, 1, 2, . . . ,

where hn(t) > 0 and δmn denotes the Kronecker delta. Here Pn(x; t) has the following
expansion

Pn(x; t) = xn + p(n, t)xn−1 + · · · + Pn(0; t), n = 0, 1, 2, . . . ,
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where p(n, t) denotes the sub-leading coefficient of Pn(x; t) with the initial value
p(0, t) = 0.

One of the most important characteristics of orthogonal polynomials is the fact that
they obey the three-term recurrence relation of the form [12, 31]

x Pn(x; t) = Pn+1(x; t) + αn(t)Pn(x; t) + βn(t)Pn−1(x; t), (1.3)

with the initial conditions

P0(x; t) = 1, β0(t)P−1(x; t) = 0.

It can be seen that the recurrence coefficients αn(t) and βn(t) have the following
integral representations:

αn(t) = 1

hn(t)

∫ ∞

0
x P2

n (x; t)w(x; t)dx > 0,

βn(t) = 1

hn−1(t)

∫ ∞

0
x Pn(x; t)Pn−1(x; t)w(x; t)dx . (1.4)

Obviously, the expression (1.4) is equivalent to

βn(t) = hn(t)

hn−1(t)
> 0. (1.5)

Moreover, we have by comparing the coefficients of xn on both sides of (1.3) that

αn(t) = p(n, t) − p(n + 1, t). (1.6)

Taking a telescopic sum of (1.6), we find

n−1∑
j=0

α j (t) = −p(n, t). (1.7)

As an easy consequence of the three-term recurrence relation (1.3), we have the
Christoffel-Darboux formula

n−1∑
j=0

Pj (x)Pj (y)

h j (t)
= Pn(x)Pn−1(y) − Pn(y)Pn−1(x)

hn−1(t)(x − y)
,

which plays an important role in the derivation of the ladder operators introduced in
the next section.
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It is well known that the orthogonal polynomials can be expressed as the determi-
nants [20, (2.1.6)],

Pn(x; t) = 1

Dn(t)

∣∣∣∣∣∣∣∣∣∣∣

μ0(t) μ1(t) · · · μn(t)
μ1(t) μ2(t) · · · μn+1(t)

...
...

...

μn−1(t) μn(t) · · · μ2n−1(t)
1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣
,

where Dn(t) is the Hankel determinant for the weight (1.2) defined by

Dn(t) := det(μi+ j (t))
n−1
i, j=0 =

∣∣∣∣∣∣∣∣∣

μ0(t) μ1(t) · · · μn−1(t)
μ1(t) μ2(t) · · · μn(t)

...
...

...

μn−1(t) μn(t) · · · μ2n−2(t)

∣∣∣∣∣∣∣∣∣
and μ j (t) is the j th moment given by

μ j (t) :=
∫ ∞

0
x jw(x; t)dx .

An evaluation of the above integral shows that the moment μ j (t) can be expressed in
terms of the generalized hypergeometric functions.

Furthermore, the Hankel determinant Dn(t) can be expressed as a product of h j (t)
[20, (2.1.6)],

Dn(t) =
n−1∏
j=0

h j (t). (1.8)

From (1.5) and (1.8), it is easy to see that the recurrence coefficient βn(t) and the
Hankel determinant Dn(t) have the following relation:

βn(t) = Dn+1(t)Dn−1(t)

D2
n(t)

.

The remainder of this paper is organized as follows. In Sect. 2, we apply the lad-
der operators and associated compatibility conditions to orthogonal polynomials with
the singularly perturbed Airy weight. Based on the identities for the recurrence coeffi-
cients and auxiliary quantities, we derive the discrete system satisfied by the recurrence
coefficients. We also obtain the second-order differential equation for the orthogonal
polynomials. In Sect. 3, we study the time evolution and find that the recurrence coef-
ficients satisfy the coupled differential-difference equations. The relation between the
logarithmic derivative of the Hankel determinant and the recurrence coefficients has
also been discussed. In Sect. 4, we consider the large n asymptotics of the recurrence
coefficients by using Dyson’s Coulomb fluid approach. Finally, the conclusions are
outlined in Sect. 5.
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2 Ladder Operators and the Associated Compatibility Conditions

Ladder operators for orthogonal polynomials were known tomany authors before (one
can even go back to Laguerre), but mostly these were obtained case by case. Chen
and Ismail [10] found a general setting for ladder operators which contains all the
earlier known cases; see also Ismail [20, Chapter 3] and Van Assche [33, Chapter
4]. The ladder operator approach has been demonstrated to be very useful to analyze
the recurrence coefficients of various orthogonal polynomials; see, e.g., [1, 8, 11, 13,
14, 18, 26, 28]. The lowering and raising ladder operators for our monic orthogonal
polynomials are given by

(
d

dx
+ Bn(x)

)
Pn(x) = βn An(x)Pn−1(x), (2.1)

(
d

dx
− Bn(x) − v′(x)

)
Pn−1(x) = −An−1(x)Pn(x), (2.2)

where v(x) := − lnw(x) is the potential and

An(x) := 1

hn

∫ ∞

0

v′(x) − v′(y)
x − y

P2
n (y)w(y)dy, (2.3)

Bn(x) := 1

hn−1

∫ ∞

0

v′(x) − v′(y)
x − y

Pn(y)Pn−1(y)w(y)dy. (2.4)

Note that we often suppress the t-dependence for brevity, and we have w(0) =
w(∞) = 0.

The functions An(x) and Bn(x) are not independent but must satisfy the following
compatibility conditions:

Bn+1(x) + Bn(x) = (x − αn)An(x) − v′(x), (S1)

1 + (x − αn)(Bn+1(x) − Bn(x)) = βn+1An+1(x) − βn An−1(x), (S2)

B2
n (x) + v′(x)Bn(x) +

n−1∑
j=0

A j (x) = βn An(x)An−1(x). (S′
2)

The conditions (S1) and (S2) are essentially a consequence of the three-term recurrence
relation (1.3). Equation (S′

2) is obtained from the suitable combination of (S1) and (S2)
and usually gives a better insight into the recurrence coefficients compared with (S2)
in practice.

For our weight (1.2), we have

v(x) = − lnw(x) = x3 − λ ln x + t

x
. (2.5)
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It follows that

v′(x) = 3x2 − λ

x
− t

x2
(2.6)

and
v′(x) − v′(y)

x − y
= 3(x + y) + λ

xy
+ t

xy2
+ t

x2y
. (2.7)

Substituting (2.7) into the definition of An(x) in (2.3), we find

An(x) = 1

hn

∫ ∞

0

[
3(x + y) + λ

xy
+ t

xy2
+ t

x2y

]
P2
n (y)w(y)dy

= 3x + 3αn + 1

x

(
λ

hn

∫ ∞

0

1

y
P2
n (y)w(y)dy + t

hn

∫ ∞

0

1

y2
P2
n (y)w(y)dy

)

+ t

x2hn

∫ ∞

0

1

y
P2
n (y)w(y)dy. (2.8)

The formula in the brackets can be simplified through integration by parts. In fact, we
have

λ

hn

∫ ∞
0

1

y
P2
n (y)w(y)dy = λ

hn

∫ ∞
0

P2
n (y)yλ−1e−y3− t

y dy = 1

hn

∫ ∞
0

P2
n (y)e−y3− t

y dyλ

= − 1

hn

∫ ∞
0

P2
n (y)w(y)

(
−3y2 + t

y2

)
dy

= 3

hn

∫ ∞
0

y2P2
n (y)w(y)dy − t

hn

∫ ∞
0

1

y2
P2
n (y)w(y)dy

= 3
(
α2
n + βn + βn+1

)
− t

hn

∫ ∞
0

1

y2
P2
n (y)w(y)dy,

where use has been made of the three-term recurrence relation (1.3) in the last step. It
follows that

λ

hn

∫ ∞

0

1

y
P2
n (y)w(y)dy + t

hn

∫ ∞

0

1

y2
P2
n (y)w(y)dy = 3

(
α2
n + βn + βn+1

)
.

Hence, we obtain from (2.8) that

An(x) = 3x + 3αn + 3
(
α2
n + βn + βn+1

)
x

+ t

x2hn

∫ ∞

0

1

y
P2
n (y)w(y)dy.
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Similarly, plugging (2.7) into the definition of Bn(x) in (2.4) gives

Bn(x) = 1

hn−1

∫ ∞

0

[
3(x + y) + λ

xy
+ t

xy2
+ t

x2y

]
Pn(y)Pn−1(y)w(y)dy

= 3βn + 1

x

(
λ

hn−1

∫ ∞

0

1

y
Pn(y)Pn−1(y)w(y)dy

+ t

hn−1

∫ ∞

0

1

y2
Pn(y)Pn−1(y)w(y)dy

)

+ t

x2hn−1

∫ ∞

0

1

y
Pn(y)Pn−1(y)w(y)dy. (2.9)

Using integration by parts, we find

λ

hn−1

∫ ∞

0

1

y
Pn(y)Pn−1(y)w(y)dy = 3(αn + αn−1)βn − n

− t

hn−1

∫ ∞

0

1

y2
Pn(y)Pn−1(y)w(y)dy.

That is,

λ

hn−1

∫ ∞

0

1

y
Pn(y)Pn−1(y)w(y)dy

+ t

hn−1

∫ ∞

0

1

y2
Pn(y)Pn−1(y)w(y)dy = 3(αn + αn−1)βn − n.

Then we obtain the expression of Bn(x) from (2.9) that

Bn(x) = 3βn + 3(αn + αn−1)βn − n

x
+ t

x2hn−1

∫ ∞

0

1

y
Pn(y)Pn−1(y)w(y)dy.

We summarize the above results in the following lemma.

Lemma 2.1 We have

An(x) = 3x + 3αn + Rn

x
+ R∗

n

x2
, (2.10)

Bn(x) = 3βn + rn
x

+ r∗
n

x2
, (2.11)

where Rn, rn and R∗
n , r∗

n are the auxiliary quantities defined by

Rn := 3
(
α2
n + βn + βn+1

)
, (2.12)

rn := 3(αn + αn−1)βn − n, (2.13)
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and

R∗
n := t

hn

∫ ∞

0

1

y
P2
n (y)w(y)dy, (2.14)

r∗
n := t

hn−1

∫ ∞

0

1

y
Pn(y)Pn−1(y)w(y)dy. (2.15)

Substituting the expressions of An(x) and Bn(x) in (2.10) and (2.11) into (S1) and
comparing the coefficients of 1

x2
and 1

x on both sides, we get

r∗
n + r∗

n+1 = t − αn R
∗
n (2.16)

and
rn + rn+1 = R∗

n − αn Rn + λ, (2.17)

respectively.
Similarly, substituting (2.10) and (2.11) into (S′

2) and comparing the coefficients of
1
x4

, 1
x3

, 1
x2

, 1
x and x0 on both sides, we obtain

r∗
n

(
r∗
n − t

) = βn R
∗
n R

∗
n−1, (2.18)

(2rn − λ) r∗
n − trn = βn

(
R∗
n Rn−1 + R∗

n−1Rn
)
, (2.19)

r2n − λrn − 3tβn + 6βnr
∗
n +

n−1∑
j=0

R∗
j

= βn
(
3αn R

∗
n−1 + 3αn−1R

∗
n + RnRn−1

)
, (2.20)

6βnrn − 3λβn +
n−1∑
j=0

R j = 3βn
(
R∗
n + R∗

n−1 + αn Rn−1 + αn−1Rn
)
,

r∗
n + 3β2

n +
n−1∑
j=0

α j = βn (3αnαn−1 + Rn + Rn−1) . (2.21)

Proposition 2.2 The auxiliary quantities R∗
n and r∗

n are expressed in terms of the
recurrence coefficients as follows:

R∗
n = rn + rn+1 + αn Rn − λ, (2.22)

r∗
n = (rn + rn+1 + αn Rn − λ) βn Rn−1 + (rn−1 + rn + αn−1Rn−1 − λ) βn Rn + trn

2rn − λ
,

(2.23)

where Rn and rn are given by (2.12) and (2.13), respectively.

Proof From (2.17), we get (2.22). Substituting (2.22) into (2.19), we obtain (2.23). �	
With these preparations, we are now ready to derive the discrete system for the

recurrence coefficients.
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Theorem 2.3 The recurrence coefficients αn and βn satisfy the following system of
nonlinear third-order difference equations:

[(
rn + rn+1 + αn Rn − λ

)
βn Rn−1 + (

rn−1 + rn + αn−1Rn−1 − λ
)
βn Rn + trn

]
× [(

rn + rn+1 + αn Rn − λ
)
βn Rn−1 + (

rn−1 + rn + αn−1Rn−1 − λ
)
βn Rn − trn + λt

]
= βn(2rn − λ)2

(
rn + rn+1 + αn Rn − λ

) (
rn−1 + rn + αn−1Rn−1 − λ

)
, (2.24)

2
(
rn + rn+1 + αn Rn − λ

)
βn Rn−1 + 2

(
rn−1 + rn + αn−1Rn−1 − λ

)
βn Rn + 2trn

+ (2rn − λ)
[
αn

(
rn + rn+1 + αn Rn − λ − 1

) + 3β2
n − 3β2

n+1 − t
]

= (2rn − λ)
[
βn

(
3αnαn−1 + Rn + Rn−1

) − βn+1
(
3αn+1αn + Rn+1 + Rn

)]
, (2.25)

where Rn and rn are given by (2.12) and (2.13), respectively.

Proof Substituting (2.22) and (2.23) into (2.18), we obtain (2.24). To proceed, replac-
ing n by n + 1 in (2.21) and making a difference with (2.21) give rise to

r∗
n+1 − r∗

n + 3β2
n+1 − 3β2

n + αn

= βn+1 (3αn+1αn + Rn+1 + Rn) − βn (3αnαn−1 + Rn + Rn−1) . (2.26)

Eliminating r∗
n+1 from the combination of (2.16) and (2.26), we have

2r∗
n + αn(R

∗
n − 1) + 3β2

n − 3β2
n+1 − t = βn (3αnαn−1 + Rn + Rn−1)

−βn+1 (3αn+1αn + Rn+1 + Rn) .

Plugging (2.22) and (2.23) into the above, we arrive at (2.25). �	
Remark 1 If one substitutes (2.22) and (2.23) into (2.16) directly, a fourth-order dif-
ference equation for the recurrence coefficients would be obtained.

Remark 2 Using (1.7), it is seen from (2.21) that the sub-leading coefficient p(n, t)
can be expressed in terms of the recurrence coefficients αn and βn .

At the end of this section,we show that our orthogonal polynomials satisfy a second-
order linear ordinary differential equation with the coefficients expressed in terms of
αn and βn .

Theorem 2.4 The monic orthogonal polynomials Pn(x), n = 0, 1, 2, . . . , satisfy the
following second-order differential equation:

P ′′
n (x) −

(
v′(x) + A′

n(x)

An(x)

)
P ′
n(x) +

(
B ′
n(x) − B2

n (x) − v′(x)Bn(x)

+ βn An(x)An−1(x) − A′
n(x)Bn(x)

An(x)

)
Pn(x) = 0, (2.27)
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where v′(x) is given by (2.6) and

An(x) = 3x + 3αn + Rn

x
+ rn + rn+1 + αn Rn − λ

x2
, (2.28)

Bn(x) = 3βn + rn
x

+ (rn + rn+1 + αn Rn − λ) βn Rn−1 + (rn−1 + rn + αn−1Rn−1 − λ) βn Rn + trn
(2rn − λ)x2

(2.29)

with Rn and rn given by (2.12) and (2.13).

Proof Eliminating Pn−1(x) from the ladder operator equations (2.1) and (2.2), we
obtain (2.27). The expressions in (2.28) and (2.29) come from Lemma 2.1 and Propo-
sition 2.2. �	

3 The t Evolution and Differential-Difference Equations

Recall that the recurrence coefficients, the sub-leading coefficient p(n, t) and the auxil-
iary quantities all depend on t . In this section, we study the evolution of these quantities
in t . We start from taking a derivative with respect to t in the orthogonality condition

∫ ∞

0
Pn(x; t)Pn−1(x; t)w(x; t)dx = 0.

It follows that

d

dt
p(n, t) = 1

hn−1(t)

∫ ∞

0

1

x
Pn(x; t)Pn−1(x; t)w(x; t)dx .

From (2.15) we have

t
d

dt
p(n, t) = r∗

n .

By making use of (1.6) and (2.26), we find

tα′
n(t) = r∗

n − r∗
n+1

= 3β2
n+1 − 3β2

n + αn + βn (3αnαn−1 + Rn + Rn−1)

− βn+1 (3αn+1αn + Rn+1 + Rn) .

Substituting (2.12) into the above and simplifying the result, we obtain the
differential-difference equation

tα′
n(t) = αn + 3βn(α

2
n + αnαn−1 + α2

n−1 + βn + βn−1)

−3βn+1(α
2
n+1 + αn+1αn + α2

n + βn+2 + βn+1).

123
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On the other hand, differentiating the equality

hn(t) =
∫ ∞

0
P2
n (x; t)w(x; t)dx

with respect to t gives rise to

h′
n(t) = −

∫ ∞

0

1

x
P2
n (x; t)w(x; t)dx .

Taking account of (2.14), we have

t
d

dt
ln hn(t) = −R∗

n . (3.1)

Using (1.5) and (2.22), it follows that

tβ ′
n(t) = βn(R

∗
n−1 − R∗

n)

= βn(rn−1 − rn+1 + αn−1Rn−1 − αn Rn).

Substituting (2.12) and (2.13) into the above produces another differential-difference
equation

tβ ′
n(t) = βn[2 + 3αn−2βn−1 − 3αn+1βn+1 + 3αn−1(α

2
n−1 + βn + 2βn−1)

−3αn(α
2
n + βn + 2βn+1)].

Hence, we obtain the following theorem.

Theorem 3.1 The recurrence coefficients αn and βn satisfy the coupled differential-
difference equations

tα′
n(t) = αn + 3βn(α

2
n + αnαn−1 + α2

n−1 + βn + βn−1)

−3βn+1(α
2
n+1 + αn+1αn + α2

n + βn+2 + βn+1),

tβ ′
n(t) = βn[2 + 3αn−2βn−1 − 3αn+1βn+1 + 3αn−1(α

2
n−1 + βn + 2βn−1)

−3αn(α
2
n + βn + 2βn+1)].

Finally, we discuss the relation between the logarithmic derivative of the Hankel
determinant and the recurrence coefficients. Let Hn(t) be a quantity related to the
logarithmic derivative of the Hankel determinant as follows,

Hn(t) := t
d

dt
ln Dn(t).
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Using (1.8) and (3.1), we have

Hn(t) =
n−1∑
j=0

t
d

dt
ln h j (t) = −

n−1∑
j=0

R∗
j .

In view of (2.20), we obtain

Hn(t) = r2n − λrn − 3tβn + 6βnr
∗
n − βn

(
3αn R

∗
n−1 + 3αn−1R

∗
n + RnRn−1

)
.

Hence, Hn(t) can be expressed in terms of the recurrence coefficients αn and βn by
using (2.22), (2.23), (2.12) and (2.13). Since the expression is somewhat long, we will
not write it down.

4 Large n Asymptotics of the Recurrence Coefficients

In this section, we would like to study the asymptotics of the recurrence coefficients
αn and βn as n → ∞ by using Dyson’s Coulomb fluid approach introduced in the
work of Chen and Ismail [9].

It is well known that Hankel determinants play an important role in random matrix
theory (RMT) [16, 19, 24]. This is because Hankel determinants compute the most
fundamental objects studied in RMT. For example, the determinants may represent
the partition function for a particular random matrix ensemble or they may be related
to the largest and smallest eigenvalue distribution of the ensemble. For our Hankel
determinant Dn(t), it can be viewed as the partition function for the unitary ensemble
with the singularly perturbed Airy weight

Dn(t) = 1

n!
∫

(0,∞)n

∏
1≤i< j≤n

(xi − x j )
2

n∏
k=1

xλ
k e

−x3k− t
xk dxk,

where x1, x2, . . . , xn , are the eigenvalues of n×n Hermitian matrices from the ensem-
ble with the joint probability density function

p(x1, x2, . . . , xn) = 1

n! Dn(t)

∏
1≤i< j≤n

(xi − x j )
2

n∏
k=1

xλ
k e

−x3k− t
xk .

Dyson’s Coulomb fluid approach [17] showed that the collection of eigenvalues can
be approximated by a continuous fluidwith an equilibriumdensityσ(x) for sufficiently
large n. It can be seen that our potential v(x) in (2.5) satisfies the condition that xv′(x)
increases on R

+ when λ > −1, t ≥ 0. In this case, the density σ(x) is supported on
a single interval, say (0, b); see [30, p. 199].
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Following [9], the equilibrium density σ(x) is determined by the constrained min-
imization problem:

min
σ

F[σ ] subject to
∫ b

0
σ(x)dx = n,

where F[σ ] is the free energy defined by

F[σ ] :=
∫ b

0
σ(x)v(x)dx −

∫ b

0

∫ b

0
σ(x) ln |x − y|σ(y)dxdy.

It is then found that the density σ(x) satisfies the integral equation

v(x) − 2
∫ b

0
ln |x − y|σ(y)dy = A, x ∈ (0, b),

where A is the Lagrange multiplier for the constraint. Taking a derivative with respect
to x for the above equation gives the singular integral equation

v′(x) − 2P
∫ b

0

σ(y)

x − y
dy = 0, x ∈ (0, b), (4.1)

where P denotes the Cauchy principal value. The solution of (4.1) is given by

σ(x) = 1

2π2

√
b − x

x
P

∫ b

0

v′(y)
y − x

√
y

b − y
dy.

Substituting (2.6) into the above, we obtain

σ(x) = 3(8x2 + 4bx + 3b2)

16π

√
b − x

x
.

It follows that the normalization condition
∫ b
0 σ(x)dx = n becomes

15b3

32
= n.

Furthermore, it was shown in [9] that as n → ∞,

αn ∼ b

2
, βn ∼ b2

16
,

where the symbol cn ∼ dn means that lim
n→∞

cn
dn

= 1. Hence, we obtain the following

results.
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Theorem 4.1 For fixed parameters λ > −1, t ≥ 0, the recurrence coefficients of the
monic orthogonal polynomials with the weight (1.2) have the large n asymptotics

αn ∼ 3

√
4n

15
, βn ∼ 3

√
n2

900
.

Remark 3 It is interesting to notice that the leading asymptotics of the recurrence
coefficients are independent of the parameters λ and t .

5 Conclusions

In this paper, we have studied orthogonal polynomials with respect to the singularly
perturbed Airy weight. We derived a pair of difference equations and differential-
difference equations satisfied by the recurrence coefficients. We proved that the
orthogonal polynomials satisfy a linear second-order ordinary differential equation.
The relations between the sub-leading coefficient of the monic orthogonal polynomi-
als, the associated Hankel determinant and the recurrence coefficients have also been
discussed. Furthermore, we investigated the large n asymptotics of the recurrence
coefficients when the parameters λ and t are fixed.
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