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Abstract
The primary objective of this research article is to introduce and study an approxi-
mation operator involving the Tricomi function by using Korovkin’s theorem and a
conventional method based on the modulus of continuity. In Lipschitz-type spaces, we
demonstrate the rate of convergence, andwe are also able to determine the convergence
properties of our operators. In addition, we illustrate the convergence of our proposed
operators using various graphs and error-estimating tables for numerical instances.

Keywords Szász operators · Tricomi function · Order of convergence · Modulus of
continuity

Mathematics Subject Classification 33C47 · 33E20 · 41A25 · 41A30 · 41A36

1 Introduction

As a bridge between theoretical and applied mathematics, approximation theory has
been significant in the advancement of several computational approaches in recent
years. It focuses on approximating the functions in the most effective way possible by
employing much simpler or accessible functions and procedures that depend on the
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application of modern approximation techniques. In this theory, positive approxima-
tion techniques play a crucial role and appear naturally in various problems involving
the approximation of continuous functions, particularly when additional qualitative
properties are required, such as monotonicity, convexity, shape preservation, symme-
try, and so on.
In order to decide a number of practical and symphonic studies, measure hypothe-
ses, PDEs, and probability hypotheses, the positive estimate methods presented by
Korovkin [16] play out as an effective component. In 1953, Korovkin [16] found what
is likely the most effective and yet surprisingly straightforward criterion for determin-
ing whether or not a sequence of positive linear operators 〈κν〉ν∈N on the spaceC[0, 1]
is an approximation process, i.e., κν( f̃ )

uniformly−−−−−→ f̃ on [0, 1] for every f̃ ∈ C[0, 1].
This proof inspired other mathematicians to generalize Korovkin’s theorem to more
general settings, including all function spaces and general abstract spaces such as
Banach spaces, Banach lattices, Banach algebras, and so on. In actuality, Korovkin’s
work outlined a novel theory that may be referred to as Korovkin’s type approximation
theory. Numerous researchers have investigated the convergence rates and properties
of theKorovokin-type approximation; for example, see [16, 17, 21, 28, 29, 31]. Intrigu-
ing improvements to approximation theories can really be traced back to the work in
[1, 4, 11–14, 19–22, 25, 27, 30, 32].
The discipline of approximation theory greatly benefits from the use of Szász operators
[29], which are extended Bernstein operators to infinite intervals. Szász suggested the
following set of positive linear operators:

S̃η( f̂ , ν) = e−ην
∞∑

r=0

(ην)r

r ! f̂

(
r

η

)
, (1.1)

where ν ∈ [0,∞) and f̂ ∈ C[0,∞) the series in Eq. (1.1) converges. Current research
has extensively examined the generalizations of Szász operators by employing spe-
cialized polynomials. These generalizations expand the scope of approximation theory
by introducing a diverse set of new operator sequences.

Within this particular framework, it is advantageous to provide clear definitions for
certain terminology and emphasize particular outcomes.

Definition 1.1 The modulus of continuity, denoted as ω( f ; σ), is defined for any
uniformly continuous function f on the interval [0,∞) and for any positive value of
σ

ω( f ; σ) := sup
s,t∈[0,∞)
|s−t |≤σ

| f (s) − f (t)|. (1.2)

Note that for any σ > 0 and for each s, t ∈ [0,∞), we can write

| f (s) − f (t)| ≤ ω( f ; σ)

( |s − t |
σ

+ 1

)
. (1.3)

123



On Approximation Operators Involving Tricomi Function Page 3 of 23 154

Definition 1.2 Let f be any function in the space of real-valued bounded anduniformly
continuous functions CB[0,∞), the second modulus of continuity is given by

ω2( f ; σ) := sup
0<x≤σ

‖ f (. + 2x) − 2 f (. + x) + f (.)‖, (1.4)

with the associated norm

‖ f ‖CB = sup
x∈[0,∞)

| f (x)|. (1.5)

Let us recall Rasa’s result and the second-order Steklov function, which are used to
establish some results.

Lemma 1.1 ([10]) Let {Ln}n≥0 be a sequence of linear positive operators, with the
property Ln(1; x) = 1 and f̃ ∈ C2[0, a]. Then:

|Ln( f̃ ; x) − f̃ (x)| ≤ ‖ f̃ ′‖
√
Ln

(
(ξ − x)2; x) + 1

2
‖ f̃ ′′‖Ln

(
(ξ − x)2; x

)
. (1.6)

Definition 1.3 ([33]) For f ∈ C[a, b], the second-order Steklov function of f is
defined by

fh(x) := 1

h

∫ h

−h

(
1 − |t |

h

)
f (h; x + t)dt, x ∈ [a, b], (1.7)

where f (h; .) : [a − h, b + h] → R, h > 0 is given by

f (h; x) =

⎧
⎪⎨

⎪⎩

L−(x), a − h ≤ x ≤ a

f (x), a ≤ x ≤ b

L+(x), b ≤ x ≤ b + h

(1.8)

and L−, L+ are the linear best approximations to f on the mentioned intervals.

Lemma 1.2 [33] Let fh be the second-order Steklov function of f , where f ∈ C[a, b]
and h ∈ (

0, a−b
2

)
. Then the following inequalities hold true:

‖ fh − f ‖ ≤ 3

4
ω2( f ; h), (1.9)

‖ f ′′
h ‖ ≤ 3

2h2
ω2( f ; h). (1.10)

The Landau inequality given by

‖ f ′
h‖ ≤ 2

a
‖ fh‖ + a

2
‖ f ′′

h ‖. (1.11)
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In applied mathematics, the special functions are of paramount significance. Hyper-
geometric and confluent hypergeometric functions offer a convenient notational
framework for expressing a rich variety of special functions.When it comes to the insti-
tutionalization of mathematical physics, the theory of special functions is paramount.
In physics, engineering, and mathematical analysis, Bessel functions are among the
most useful special functions. Several scholars, both in purely mathematical and prac-
tical contexts (for example, see [6–8]), have introduced various generalizations of
Bessel functions. Much progress has been made in the analysis of radiation phe-
nomena related to charge motion in magnetic devices attributable to the theory of
generalized Bessel functions.

The following generating function comes in handy to define the nth-order Tricomi
functions Cn(x) [5]:

∞∑

n=−∞
Cn(x) = exp

(
t − x

t

)
, t �= 0. (1.12)

The series definition of the Tricomi functions Cn(x) is given by [26]:

Cn(x) =
∞∑

k=0

(−1)k xk

k!(n + k)! . (1.13)

The Bessel functions Jn(x) are defined by the following generating function [26]:

∞∑

n=−∞
Jn(x) = exp

(
x

2

(
t − 1

t

))
, t �= 0; |x | < ∞, (1.14)

and the series definition of the Bessel functions is given by [26]:

Jn(x) =
∞∑

k=0

(−1)k( x2 )n+2k

k!(n + 2k)! . (1.15)

Tricomi functions are also characterized by the connection that links them to Bessel
functions Jn(x) given by:

Cn(x) = x− n
2Jn(2

√
x). (1.16)

In particular, the 0th-order Tricomi function is defined by the following series:

C0(x) = J0(2
√
x) =

∞∑

k=0

(−1)k xk

(k!)2 , (1.17)
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where J0(x) denotes 0th-order Bessel function. Also, we note that

Cn(x) = 1

�(1 + n)
0F1[−; n + 1;−x]. (1.18)

In 2013, TheMittag-Leffler functionwas used byÖzerslan [23] to introduce an approx-
imation operator. Assume β > 0 is fixed and let (vη) be any positive real number
sequence. The Mittag-Leffler operators are thus defined for every η ∈ N as follows:

L(β)
η ( f̂ ; x) = 1

E1,β

(
ηx
vη

)
∞∑

k=0

(ηx)k

vkη�(k + β)
f̂

(
k

η
vη

)
, (1.19)

where Eα,β(x) be the well known 2-parameter Mittag-Leffler function [18].

In [2], Ansari et al. introduced a Stancu variant of λ-Schurer operators and studied
the pointwise and weighted approximation properties of these operators. Assume that
p and r are non-negative parameters with the condition 0 ≤ p ≤ r , and γ is a non-
negative integer. Then, authors construct λ-Schurer-Stancu operators Ŝ p,r

η,γ : C[0, γ +
1] → C[0, 1] as

Ŝ p,r
η,γ ( f̂ ; x; λ) =

η+γ∑

ν=0

s̃η,ν(λ; x) f̂
(

ν + p

η + r

)
, (1.20)

where s̃η,ν are defined in [24].

In this article, we construct positive linear approximation operators using the Tricomi
function of 0th-order on the interval R+ ∪ {0}. In Sect. 2, we give the definition of the
operators and find their central moments. In Sect. 3, we establish the transformation
properties and global Koronvich’s theorem for our operators. Next, we obtain the rate
of convergence by using the modulus of continuity and convergence in the different
Lipschitz-type spaces. In Sect. 4, we approximate two functions using our operators.
We also give a graphical depiction of the approximated functions and compare them
with the actual functions. Also, we compute the absolute error for the different values
of η on the interval [0, 1] and present the tables and graphical depiction of the error.
We run our programming codes in WOLFRAM MATHEMATICA v13.3.1 on the
processor MacOS X 13.2.1 x86(64-bit). In Sect. 5, we give some concluding remarks
and applications.

2 Construction of Operators

Motivated by the aforementioned applications, in this section, initially, we construct
positive linear operators then we establish some equalities. We use these equalities
further to determine the convergence characteristics of these operators. In order to
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construct positive linear operators, we modify C0(x) by replacing x by −x , we get:

T0(xt) := C0(−xt) =
∞∑

k=0

(xt)k

(k!)2 . (2.1)

Now, in view of the above equation, wemanifest the positive linear operators for η ∈ N

as follows:

Tη( f̂ ; x) = 1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2 f̂

(
k2

η

)
, (2.2)

where f̂ ∈ E :=
{
f̂ ∈ C[0,∞) : limx→∞ f̂ (x)

1+x2
is finite

}
and C[0,∞) denotes the

space of continuous functions defined on [0,∞). It is worth noting that the Banach
lattice E is endowed with the norm

‖ f̂ ‖∗ := sup
x∈[0,∞)

| f̂ (x)|
1 + x2

. (2.3)

We prove the following results, which are required to establish our main result:

Lemma 2.1 The sequence of operators defined by (2.2) are linear and positive.

Proof The lemma can be proved using some direct computations. ��
Lemma 2.2 The following properties are being satisfied by the sequence of operators
Tη( f̂ ; x), for x ∈ [0,∞) :

Tη(1; x) = 1, (2.4)

Tη(ν; x) = x, (2.5)

Tη(ν
2; x) = x2 + 2x2

T ′
0 (ηx)

T0(ηx)
+ x

η
, ∀η ∈ N. (2.6)

Proof Since, in view of Eq. (2.1), for f̂ (ν) = 1, Eq. (2.2) gives assertion (2.4).

Now, for f̂ (ν) = ν, Eq. (2.2) gives

Tη(ν; x) = 1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
k2

η
(2.7)

which is equivalent to

Tη(ν; x) = x

T0(ηx)

∞∑

k=1

(ηx)k−1

((k − 1)!)2 , (2.8)
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Using Eq. (2.1), we get Tη(ν; x) = x .

Finally, for f̂ (ν) = ν2

Tη(ν
2; x) = 1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
k4

η2
(2.9)

We consider,

C(xt) =
∞∑

k=0

(xt)k

(k!)2
k4

η2
= 1

η2

∞∑

k=0

(xt)k

((k − 1)!)2 k
2 = xt

η2

∞∑

k=1

(xt)k−1

((k − 1)!)2 k
2 (2.10)

which on simplification, gives

C(xt) = xt

η2

{ ∞∑

k=0

(xt)k

(k!)2 k
2 + 2

∞∑

k=0

(xt)k

(k!)2 k + T0(xt)
}

(2.11)

We assume

A(xt) =
∞∑

k=1

(xt)k

(k!)2 k
2, (2.12)

which on solving, gives

A(xt) = (xt)T0(xt). (2.13)

Now, we assume

B(xt) = 2
∞∑

k=0

(xt)k

(k!)2 k. (2.14)

Differentiating Eq. (2.1) with respect to t , we obtain

T ′
0 (xt) =

∞∑

k=1

k
(xt)k−1

(k!)2 , (2.15)

which in view of Eq. (2.14), gives

2(xt)T ′
0 (xt) = 2

∞∑

k=0

k
(xt)k

(k!)2 = B(xt). (2.16)
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Fig. 1
T ′
0 (ηx)

T0(ηx) when x ∈ [1, 10]

Fig. 2
T ′
0 (ηx)

T0(ηx) when x ∈ [100, 130]

Using equations (2.13), (2.16) in (2.11), we get

C(xt) = xt

η2

{
(xt)T0(xt) + 2(xt)T ′

0 (xt) + T0(xt)
}
. (2.17)

Taking t = 1 and replacing x by ηx in Eq. (2.17), we obtain

C(ηx) = ηx

η2

{
(ηx)T0(ηx) + 2(ηx)T ′

0 (ηx) + T0(ηx)
}
, (2.18)

which on using in Eq. (2.9), we get assertion (2.6). ��
Remark 2.1 From the following figures (Figs. 1, 2, 3, 4), we can observe that

lim
η→∞

T ′
0 (ηx)

T0(ηx)
= 0. (2.19)

We obtain the central moments of the Tricomi operators as:
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Fig. 3
T ′
0 (ηx)

T0(ηx) when x ∈ [200, 250]

Fig. 4
T ′
0 (ηx)

T0(ηx) when x ∈ [300, 350]

Lemma 2.3 If μ(m,x)(ν) = (ν − x)m denotes the central moments of the operators
(2.2), then for m = 2, we have

Tη(μ(2,x)(ν); x) = 2x2
T ′
0 (ηx)

T0(ηx)
+ x

η
, ∀η ∈ N. (2.20)

Proof The left-hand side of the Eq. (2.20) can be rewritten as follows by using the
linearity of the operators defined in equation (2.2),

Tη(μ(2,x)(ν); x) = Tη(ν
2; x) − 2xTη(ν; x) + x2Tη(1; x) (2.21)

on using Eqs. (2.4), (2.5) and (2.6) we get assertion (2.20). ��

In the next section, we establish the transformation properties and rate of conver-
gence of the operators Tη( f̂ ; x) by using the modulus of continuity. Additionally, we
compute the rate of convergence in the different Lipsticz-type spaces.
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3 Transformation Properties and Rate of Convergence

In this section, we establish the transformation properties of the operators Tη( f̂ ; x)
and establish the rate of convergence by using the modulus of continuity. Moreover,
we compute the rate of convergence in different Lipschitz-type spaces. We initiate
with the following lemma, which proves that Tη( f̂ ; x) maps E into itself.

Lemma 3.1 For ω(x) = 1
1+x2

, there exists a constant M such that

ω(x)Tη

(
1

ω
; x

)
≤ M (3.1)

holds for all x ∈ [0,∞) and η ∈ N. Moreover, for all f̂ ∈ E, we have

‖Tη( f̂ )‖∗ ≤ M‖ f̂ ‖∗. (3.2)

Proof Using Lemma 2.1, we can write that

ω(x)Tη

(
1

ω
; x

)
= 1

1 + x2

[
Tη(1; x) + Tη(ν

2; x)
]

(3.3)

on using equations (2.4) and (2.6) in equation (3.3), we obtain

ω(x)Tη

(
1

ω
; x

)
= 1

1 + x2

[
1 + x2 + 2x2

T ′
0 (ηx)

T0(ηx)
+ x

η

]
(3.4)

which implies

ω(x)Tη

(
1

ω
; x

)
≤ M. (3.5)

Moreover, by using the norm defined in Eq. (2.3), we have

ω(x)
∣∣∣Tη( f̂ ; x)

∣∣∣ = ω(x)

∣∣∣∣∣Tη

(
ω

f̂

ω
; x

)∣∣∣∣∣ ≤ ‖ f̂ ‖∗ω(x)Tη

(
1

ω
; x

)
≤ M‖ f̂ ‖∗,

(3.6)

taking supremum over x ∈ [0,∞) in the above inequality, gives the assertion (3.2). ��
Now, we obtain the uniform convergence by using universal Korovkin’s theorem as:

Theorem 3.1 Let f̂ ∈ E :=
{
f̂ ∈ C[0,∞) : limx→∞ f̂ (x)

1+x2
is finite

}
and C[0,∞)

denotes the space of continuous functions defined on [0,∞). Then the sequence of
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operators defined in (2.2) converges uniformly on the compact subsets of the interval
[0,∞), i.e.,

lim
η→∞Tη( f̂ ; x) = f̂ (x). (3.7)

Proof With the aid of Lemma 2.2 and Remark 2.1, we obtain

lim
n→∞Tη(ν

s; x) = xs, s = 0, 1, 2, (3.8)

uniformly on the compact subsets of the interval [0,∞). Hence by applying universal
Korovkin’s theorem [3], we get assertion (3.7). ��
From now onward, we present the approximation results.

Theorem 3.2 Suppose f̂ is uniformly continuous on the interval [0,∞). Then the
following inequality holds for the sequence of operators Tη( f̂ ; x)

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ ≤ 2ω

(
f̂ ;

√
Tη(μ(2,x)(ν); x)

)
(3.9)

where ω is the modulus of continuity of the function defined by (1.2).

Proof Consider

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ =

∣∣∣∣∣
1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
[
f̂

(
k2

η

)
− f̂ (x)

]∣∣∣∣∣ (3.10)

using the triangle inequality gives

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ ≤ 1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
∣∣∣∣ f̂

(
k2

η

)
− f̂ (x)

∣∣∣∣ (3.11)

using the definition of modulus of continuity and in view of inequality (1.3), we get

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ ≤ 1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
[
1 + 1

σ

∣∣∣∣
k2

η
− x

∣∣∣∣

]
ω( f̂ ; σ) (3.12)

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ ≤

[
1 + 1

σ

1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
∣∣∣∣
k2

η
− x

∣∣∣∣

]
ω( f̂ ; σ). (3.13)

Taking into account the Cauchy-Schwartz inequality, we find

∞∑

k=0

(ηx)k

(k!)2
∣∣∣∣
k2

η
− x

∣∣∣∣ =
∞∑

k=0

√
(ηx)k

(k!)2
√

(ηx)k

(k!)2
∣∣∣∣
k2

η
− x

∣∣∣∣ (3.14)
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∞∑

k=0

(ηx)k

(k!)2
∣∣∣∣
k2

η
− x

∣∣∣∣ ≤
{ ∞∑

k=0

(ηx)k

(k!)2
} 1

2
{ ∞∑

k=0

(ηx)k

(k!)2
(
k2

η
− x

)2
} 1

2

(3.15)

multiplying and dividing by
√
T0(ηx) in the right hand side of inequality (3.15) and

in the view of Eq. (2.1), we have

∞∑

k=0

(ηx)k

(k!)2
∣∣∣∣
k2

η
− x

∣∣∣∣ ≤ T0(ηx)
{
Tη((ν − x)2; x)

} 1
2

(3.16)

using above inequality in inequality (3.13), we find

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ ≤

[
1 + 1

σ

√
Tη(μ(2,x)(ν); x)

]
ω( f̂ ; σ) (3.17)

by choosing

σ =
√
Tη(μ(2,x)(ν); x)

we get assertion (3.9). ��
Now, for 0 < α ≤ 1 and ν1, ν2 ∈ [0,∞), let us introduce the following class of the
functions:

Lip(α)

M := {ψ : |ψ(ν1) − ψ(ν2)| ≤ M |ν1 − ν2|α}. (3.18)

Theorem 3.3 Assume that ψ ∈ Lip(α)

M . Then

∣∣Tη(ψ; x) − ψ(x)
∣∣ ≤ M

[
Tη(μ(2,x)(ν); x)] α

2 . (3.19)

Proof Since, Tη( f̂ ; x) is positive linear operator and ψ ∈ Lip(α)

M , therefore in view
of Eq. (3.18), we obtain

∣∣Tη(ψ; x) − ψ(x)
∣∣ = ∣∣Tη(ψ(ν) − ψ(x); x)∣∣ ≤ Tη(|ψ(ν) − ψ(x)|; x)
≤ MTη(|ν − x |α; x) (3.20)

which on using Hölder’s inequality on the right-hand side, gives

Tη(|ν − x |α; x) = 1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
∣∣∣∣
k2

η
− x

∣∣∣∣
α

(3.21)

Tη(|ν − x |α; x) = 1

T0(ηx)

∞∑

k=0

{
(ηx)k

(k!)2
} 2−α

2
{

(ηx)k

(k!)2
} α

2
∣∣∣∣
k2

η
− x

∣∣∣∣
α

(3.22)
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Tη(|ν − x |α; x) ≤ 1

T0(ηx)
× [T0(ηx)] 2−α

2

{
1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
} 2−α

2

× [T0(ηx)] α
2

{
1

T0(ηx)

∞∑

k=0

(ηx)k

(k!)2
(
k2

η
− x

)2
} α

2

. (3.23)

In view of equations (2.2) and (2.20), the above inequality gives

Tη(|ν − x |α; x) ≤ [Tη(1; x)] 2−α
2

[
Tη(μ(2,x)(ν); x)] α

2 , (3.24)

which on using inequalities (3.20) and (3.24), gives assertion (3.19). ��
Theorem 3.4 Suppose that χ is a continuous function on [0,∞). Then we have

∣∣Tη(χ; x) − χ(x)
∣∣ ≤ 3

2

(
1 + a

2
+ h2

2

)
ω2(χ, h) + 2h2

a
‖χ‖, (3.25)

where

h := �n(x) = {
Tη(μ(2,x)(ν); x)} 1

4

and ω2 is the second modulus of the continuity of the function χ defined in (1.4).

Proof Let fh be the second order Steklov function of the function χ , Then we have

∣∣Tη(χ; x) − χ(x)
∣∣ ≤ ∣∣Tη(|χ − fh |; x)

∣∣ + ∣∣Tη( fh; x) − fh(x)
∣∣ + | fh(x) − χ(x)|

(3.26)

using Eq. (2.4), we have

∣∣Tη(χ; x) − χ(x)
∣∣ ≤ 2‖χ − fh‖ + ∣∣Tη( fh; x) − fh(x)

∣∣ (3.27)

in view of inequality (1.9), above inequality becomes

∣∣Tη(χ; x) − χ(x)
∣∣ ≤ 3

2
ω2(χ, h) + ∣∣Tη( fh; x) − fh(x)

∣∣ . (3.28)

Keeping in view that fh ∈ C2[0, a], from inequality (1.6) it follows that

∣∣Tη( fh; x) − fh(x)
∣∣ ≤ ‖ f ′

h‖
√
Tη(μ(2,x)(ν); x) + 1

2
‖ f ′′

h ‖Tη(μ(2,x)(ν); x),
(3.29)

now using inequality (1.10) in above inequality, we find
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∣∣Tη( fh; x) − fh(x)
∣∣ ≤ ‖ f ′

h‖
√
Tη(μ(2,x)(ν); x) + 3

4h2
ω2( f , h)Tη(μ(2,x)(ν); x).

(3.30)

Further, in view of inequalities (1.10) and (1.11), it gives

∣∣Tη( fh; x) − fh(x)
∣∣ ≤

(
2

a
‖χ‖ + 3a

4 h2
ω2(χ, h)

)√
Tη(μ(2,x)(ν); x)

+ 3

4 h2
ω2(χ, h)Tη(μ(2,x)(ν); x). (3.31)

Therefore, in view of equations (3.28) and (3.31), we get assertion (3.25) by choosing

h := �n(x) = {
Tη(μ(2,x)(ν); x)} 1

4 . (3.32)

��
Remark 3.1 In Theorem 3.4, �n(x) → 0, as n → ∞.

In the next section, we observe the rate of convergence through numerical examples.
We give a graphical depiction of the approximated function and its absolute error and
provide tables for absolute error for the different values of x and η.

4 Numerical Examples

In this section, we explain the convergence of our operators through numerical exam-
ples. We give a graphical depiction of approximated expressions and actual functions.
Also, we give the graphical depiction of absolute error and tables for the different
values of x and η.

Example 4.1 For η = 10, 102, 103, 104, 105 the rate of convergence of the operators
Tη( f̂ ; x) to the function f̂ (x) = x2 + 1

1+x+x2
is illustrated in Fig. 5. Further, in

Table 1, we estimate the absolute error Eη =
∣∣∣Tη( f̂ ; x) − f̂ (x)

∣∣∣ for different values
of η and given the corresponding graph for the error depicting the convergence in
Fig. 6.
It can be clearly seen from Figs. 5, 6, and Table 1 that for larger values of η the
proposed operator (2.2) converges to f̂ (x).

Now, we consider another example:

Example 4.2 For η = 10, 102, 103, 104, 105 the rate of convergence of the operators
Tη( f̂ ; x) to the function f̂ (x) = x

2 + 1
10+x2+x3

+√
x is illustrated in Fig. 7. Further, in

Table 2, we estimate the absolute error Eη =
∣∣∣Tη( f̂ ; x) − f̂ (x)

∣∣∣ for different values
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Fig. 5 The Convergence of operators Tη( f̂ ; x) to f̂ (x) = x2 + 1
1+x+x2

Table 1 Error of approximation process for f̂ (x) = x2 + 1
1+x+x2

x E10 E102 E103 E104 E105
0.05 0.01152 0.00294664 0.000845209 0.0002581 0.0000806922

0.10 0.0318827 0.00876897 0.0025807 0.000795059 0.000249264

0.15 0.0581969 0.0166527 0.00499648 0.00154961 0.000486867

0.20 0.0888368 0.026128 0.00795773 0.00248145 0.000781033

0.25 0.122745 0.0368263 0.0113459 0.00355346 0.00112008

0.30 0.159184 0.0484544 0.015059 0.00473244 0.00149343

0.35 0.197628 0.0607836 0.0190126 0.0059903 0.00189205

0.40 0.237692 0.0736394 0.0231401 0.00730439 0.0023086

0.45 0.279102 0.0868926 0.027391 0.0086574 0.00273746

0.50 0.321658 0.10045 0.0317287 0.0100367 0.00317449

0.55 0.365222 0.114248 0.0361281 0.0114336 0.00361688

0.60 0.409696 0.128245 0.0405733 0.0128426 0.00406284

0.65 0.455016 0.142416 0.0450552 0.0142607 0.0045114

0.70 0.501143 0.156749 0.0495699 0.0156868 0.00496219

0.75 0.548053 0.171239 0.0541173 0.0171209 0.00541527

0.80 0.595733 0.185889 0.0586997 0.018564 0.00587097

0.85 0.644182 0.200707 0.0633211 0.0200176 0.00632982

0.90 0.693403 0.2157 0.0679865 0.0214837 0.00679245

0.95 0.743401 0.230881 0.072701 0.0229643 0.00725952

1.00 0.794185 0.246259 0.0774703 0.0244612 0.00773168
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Fig. 6 Graphical depiction of absolute error of operators Tη( f̂ ; x) to f̂ (x) = x2 + 1
1+x+x2

, for η =
10, 102, 103, 104, 105.

Fig. 7 The Convergence of operators Tη( f̂ ; x) to f̂ (x) = x
2 + 1

10+x2+x3
+ √

x

Fig. 8 Graphical depiction of absolute error of operators Tη( f̂ ; x) to f̂ (x) = x
2 + 1

10+x2+x3
+ √

x, for

η = 10, 102, 103, 104, 105.
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Table 2 Error of approximation process for f̂ (x) = x
2 + 1

10+x2+x3
+ √

x

x E10 E102 E103 E104 E105
0.05 0.0953406 0.0269737 0.00806523 0.00251692 0.000792794

0.10 0.0959458 0.026303 0.00803711 0.00251835 0.00079416

0.15 0.0938896 0.0261318 0.00804496 0.00252504 0.000796656

0.20 0.0921139 0.0261086 0.00807011 0.00253532 0.000800123

0.25 0.0908544 0.0261606 0.00810767 0.00254874 0.000804503

0.30 0.0900103 0.0262594 0.00815519 0.00256494 0.000809732

0.35 0.0894598 0.0263891 0.00821073 0.00258357 0.000815718

0.40 0.0891061 0.0265381 0.00827236 0.00260418 0.000822336

0.45 0.0888775 0.0266966 0.00833802 0.00262623 0.000829427

0.50 0.0887218 0.0268561 0.00840544 0.00264909 0.000836799

0.55 0.0886004 0.0270087 0.00847224 0.00267204 0.000844232

0.60 0.0884849 0.0271472 0.00853595 0.0026943 0.000851485

0.65 0.0883541 0.0272653 0.00859412 0.00271509 0.000858302

0.70 0.0881924 0.0273574 0.00864438 0.00273358 0.000864424

0.75 0.0879888 0.027419 0.00868455 0.002749 0.000869596

0.80 0.0877356 0.0274465 0.00871271 0.00276063 0.00087358

0.85 0.0874279 0.0274373 0.00872726 0.00276785 0.000876165

0.90 0.0870634 0.0273898 0.00872699 0.00277014 0.000877173

0.95 0.0866417 0.0273035 0.00871108 0.00276712 0.000876467

1.00 0.0861639 0.0271786 0.00867915 0.00275855 0.000873958

of η and given the corresponding graph for the error depicting the convergence in
Fig. 8.
It can be clearly seen from Figs. 7, 8, and Table 2 that for larger values of η the
proposed operator (2.2) converges to f̂ (x).

4.1 Comparative Study

This section illustrates the efficacy and efficiency of the 0th-order Tricomi function
operators through instructive examples. Our work employs distinct test functions to
assess the efficacy of the Schurer-Stancu operators with shape parameter λ, Mittag-
Leffler operators, and the recently introduced 0th-order Tricomi function operators.
Our results indicate that the newly introduced operators, when applied to the selected
test functions and parameters, perform better than the Schurer-Stancu operators with
shape parameter λ and Mittag-Leffler operator within the specified range. We need
to acknowledge that we do not assert absolute superiority of the newly constructed
operator over the Schurer-Stancu operators, which have a shape parameter λ, and the
Mittag-Leffler operators. Instead, we propose it as a feasible alternative. Furthermore,
the illustrations shown in this section were calculated using Wolfram Mathematica
13.3.1.0 on the MAC OS X (64-bit) operating system.
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Fig. 9 Comparison between operatorsTη( f̂ ; x) and Lβ
η ( f̂ ; x)with exact function f̂ (x) = 1

4 (x−2) (x − 3)

Fig. 10 Absolute error ETη and ELη of operators Tη( f̂ ; x) and Lβ
η ( f̂ ; x) to the function f̂ (x) = 1

4 (x −
2) (x − 3)

Example 4.3 In this example, we examine a test function f̂ (x) = 1
4 (x − 2)(x − 3)

with parameter β = 3, and (vη) = η
4
5 , where η = 50, 100.

Using the same interval, Figure 9 compares the performance of the newly defined
0th-order Tricomi function operators in (2.2) with that of the Mittag-Leffler operators
presented in (1.19). This graphic clearly shows that the approximation with the new
operator fits the test function more smoothly.
Furthermore, we present the error of approximation of both theMittag-Leffler operator
and the newly defined 0th-order Tricomi function operators in Figure 10. Here, ELη =∣∣∣L(β)

η ( f̂ ; x) − f̂ (x)
∣∣∣ and E

T
η =

∣∣∣Tη( f̂ ; x) − f̂ (x)
∣∣∣ denote the error functions of

approximations by the Mittag-Leffler operators and newly defined 0th-order Tricomi
function operators, respectively.
Table 3 provides a numerical comparison of the approximation error of these operators.
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Fig. 11 Comparison between operators Tη( f̂ ; x) and Ŝ p,r
η,γ ( f̂ ; x; λ) with exact function f̂ (x) = (πx)2

3x+2 +
sin

(
x2
3 + 3

)

Example 4.4 In this example, we examine a test function f̂ (x) = (πx)2

3x+2 +sin
(
x2
3 + 3

)

with parameters p = 2, r = 2, γ = 3 and λ = 1, where η = 50, 100.
Using the same interval, Fig. 11 compares the performance of the newly defined 0th-
order Tricomi function operators in (2.2) with that of the Schurer-Stancu operators
with shape parameter λ presented in (1.20). This graphic clearly shows that the approx-
imation with the new operator fits the test function more smoothly.
Furthermore, we present the error of approximation of both the Schurer-Stancu opera-
torswith shape parameterλ and the newly defined 0th-orderTricomi function operators

in Fig. 12. Here, ESη =
∣∣∣Ŝ p,r

η,γ ( f̂ ; x; λ) − f̂ (x)
∣∣∣ and ET

η =
∣∣∣Tη( f̂ ; x) − f̂ (x)

∣∣∣ denote
the error functions of approximations by the Schurer-Stancu operators with shape
parameter λ operators and newly defined 0th-order Tricomi function operators, respec-
tively.
For a numerical comparison of the error of approximation between these operators,
refer to Table 4. Similar to the previous example, it’s evident that the newly introduced
operator performs comparably well.

5 Conclusions and Applications

With the help of the Tricomi function, we present a sequence of new operators in this
paper. The approximation properties and convergence qualities of the sequence of a
positive linear operator in (2.2) are obtained. The numerical examples are done in
Wolfram Mathematica. Also, we analyze the error of the approximation and give the
graphical depictions of the approximated function f̂ and the error.
In further studies, researchers can look at a new sequence of operators that generalizes
the operators in (2.2). For instance, modification or generalization of this operator can
be considered for better approximation. Furthermore, the derived results are useful and
can be applied in mathematical analysis, mathematical physics, and quantum calcu-
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Fig. 12 Absolute error ETη and ESη of operators Tη( f̂ ; x) and Ŝ p,r
η,γ ( f̂ ; x; λ) to the function f̂ (x) =

(πx)2
3x+2 + sin

(
x2
3 + 3

)

Table 3 Error of approximation
process for
f̂ (x) = 1

4 (x − 2) (x − 3)

Error E
T
50 EL50 E

T
100 EL100

at x =
0.1 0.00247 0.08369 0.00170 0.08296

0.2 0.00680 0.16049 0.00471 0.15858

0.3 0.01234 0.23046 0.00858 0.22689

0.4 0.01886 0.29369 0.01314 0.28801

0.5 0.02621 0.35029 0.01829 0.34205

0.6 0.03433 0.40040 0.02397 0.38920

0.7 0.04312 0.44419 0.03014 0.42966

0.8 0.05255 0.48184 0.03676 0.46367

0.9 0.06258 0.51358 0.04380 0.49153

1.0 0.07316 0.53964 0.05123 0.51355

1.1 0.08428 0.56029 0.05904 0.53005

1.2 0.09590 0.57579 0.06721 0.54141

1.3 0.10801 0.58644 0.07572 0.54798

1.4 0.12058 0.59254 0.08456 0.55015

1.5 0.13360 0.59440 0.09371 0.54829

1.6 0.14705 0.59231 0.10317 0.54278

1.7 0.16092 0.58660 0.11293 0.53399

1.8 0.17520 0.57756 0.12298 0.52225

1.9 0.18987 0.56549 0.13330 0.50791

2.0 0.20493 0.55067 0.14390 0.49127

123



On Approximation Operators Involving Tricomi Function Page 21 of 23 154

Table 4 Error of approximation
process for

f̂ (x) = (πx)2
3x+2 + sin

(
x2
3 + 3

)
Error E

T
50 ES50 E

T
100 ES100

at x =
0.05 0.01104 0.02466 0.00885 0.01442

0.10 0.02359 0.03876 0.01906 0.02367

0.15 0.03413 0.05029 0.02768 0.03116

0.20 0.04222 0.05981 0.03432 0.03732

0.25 0.04801 0.06779 0.03905 0.04248

0.30 0.05177 0.07459 0.04209 0.04688

0.35 0.05383 0.08046 0.04370 0.05067

0.40 0.05450 0.08559 0.04413 0.05398

0.45 0.05411 0.09013 0.04360 0.05692

0.50 0.05294 0.09418 0.04236 0.05954

0.55 0.05127 0.09783 0.04062 0.06190

0.60 0.04940 0.10116 0.03859 0.06405

0.65 0.04758 0.10421 0.03648 0.06603

0.70 0.04607 0.10703 0.03451 0.06785

0.75 0.04513 0.10966 0.03286 0.06956

0.80 0.04499 0.11214 0.03176 0.07116

0.85 0.04588 0.11449 0.03140 0.07268

0.90 0.04801 0.11685 0.03199 0.07414

0.95 0.05160 0.12123 0.03371 0.07584

1.00 0.05680 0.13231 0.03674 0.07698

lus, particularly with q and (p, q) analogues of the proposed operators. Regarding the
applications of the proposed operators, they can be utilized to solve fractional Volterra
integral equations of the first and second kinds, providing numerical approximate
solutions [9]. Additionally, the proposed operator can be employed to examine and
regulate a real-life issue associated with the daily average global surface air tempera-
ture [15]. This sequence of operators has the capacity to exert impact over numerous
domains of scientific inquiry.
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