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Abstract

The primary objective of this research article is to introduce and study an approxi-
mation operator involving the Tricomi function by using Korovkin’s theorem and a
conventional method based on the modulus of continuity. In Lipschitz-type spaces, we
demonstrate the rate of convergence, and we are also able to determine the convergence
properties of our operators. In addition, we illustrate the convergence of our proposed
operators using various graphs and error-estimating tables for numerical instances.

Keywords Szész operators - Tricomi function - Order of convergence - Modulus of
continuity

Mathematics Subject Classification 33C47 - 33E20 - 41A25 - 41A30 - 41A36

1 Introduction

As a bridge between theoretical and applied mathematics, approximation theory has
been significant in the advancement of several computational approaches in recent
years. It focuses on approximating the functions in the most effective way possible by
employing much simpler or accessible functions and procedures that depend on the
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application of modern approximation techniques. In this theory, positive approxima-
tion techniques play a crucial role and appear naturally in various problems involving
the approximation of continuous functions, particularly when additional qualitative
properties are required, such as monotonicity, convexity, shape preservation, symme-
try, and so on.

In order to decide a number of practical and symphonic studies, measure hypothe-
ses, PDEs, and probability hypotheses, the positive estimate methods presented by
Korovkin [16] play out as an effective component. In 1953, Korovkin [16] found what
is likely the most effective and yet surprisingly straightforward criterion for determin-

ing whether or not a sequence of positive linear operators (k)N on the space C[0, 1]

iforml ~ ~
is an approximation process, i.e., ky, (f) o, f on [0, 1] for every f € C[O, 1].

This proof inspired other mathematicians to generalize Korovkin’s theorem to more
general settings, including all function spaces and general abstract spaces such as
Banach spaces, Banach lattices, Banach algebras, and so on. In actuality, Korovkin’s
work outlined a novel theory that may be referred to as Korovkin’s type approximation
theory. Numerous researchers have investigated the convergence rates and properties
of the Korovokin-type approximation; for example, see [16, 17,21, 28, 29, 31]. Intrigu-
ing improvements to approximation theories can really be traced back to the work in
[1,4, 11-14, 19-22, 25, 27, 30, 32].

The discipline of approximation theory greatly benefits from the use of Szasz operators
[29], which are extended Bernstein operators to infinite intervals. Szdsz suggested the
following set of positive linear operators:

Sifm=em S (L), (L
r=0 '

where v € [0, 00) and f € C[0, oo) the series in Eq. (1.1) converges. Current research
has extensively examined the generalizations of Szdsz operators by employing spe-
cialized polynomials. These generalizations expand the scope of approximation theory
by introducing a diverse set of new operator sequences.

Within this particular framework, it is advantageous to provide clear definitions for
certain terminology and emphasize particular outcomes.

Definition 1.1 The modulus of continuity, denoted as w(f; o), is defined for any
uniformly continuous function f on the interval [0, co) and for any positive value of
o

o(f;o) = sup |f(s)— [ (1.2)
i

Note that for any ¢ > 0 and for each s, € [0, 00), we can write

If(s) = fOI = o(f; 0)<| L ) (1.3)
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Definition 1.2 Let f be any function in the space of real-valued bounded and uniformly
continuous functions Cg[0, 00), the second modulus of continuity is given by

w2(fi0) = sup [[f(+2x)=2f(+x)+ fOI, (1.4)

O<x<o

with the associated norm

I fllcy = sup [f(x)I. (1.5

x€[0,00)

Let us recall Rasa’s result and the second-order Steklov function, which are used to
establish some results.

Lemma 1.1 ([10]) Let {£,},>0 be a sequence of linear positive operators, with the
property £,(1; x) = 1 and f € C*[0, a]. Then:

~ ~ ~ 1 -
€500 = FOL = 1710 (6 =002 ) + 517718 (€ = 0% x) . (16)

Definition 1.3 ([33]) For f € Cla, b], the second-order Steklov function of f is
defined by

h
fn(x) = %/ <1 — ﬂ) f(h; x +1t)dt, x € la,b], (1.7)
—h
where f(h;.):[a —h,b+ h] — R, h > 0is given by

L_(x), a—h<x<a
fhix)y=3f(x), a<x=<b (1.8)
Li(x), b<x<b+h

and L_, L are the linear best approximations to f on the mentioned intervals.

Lemma 1.2 [33 ] Let fj, be the second-order Steklov function of f, where f € Cla, b]
and h € (O, a ) Then the following inequalities hold true:

3
1fn = fll = g2 (f5 ), (1.9)
4 3
1wl = 5, 702(f; h). (1.10)

The Landau inequality given by

2 a
Il < ;”fh” + Ellf;:/ll- (L.11)
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In applied mathematics, the special functions are of paramount significance. Hyper-
geometric and confluent hypergeometric functions offer a convenient notational
framework for expressing arich variety of special functions. When it comes to the insti-
tutionalization of mathematical physics, the theory of special functions is paramount.
In physics, engineering, and mathematical analysis, Bessel functions are among the
most useful special functions. Several scholars, both in purely mathematical and prac-
tical contexts (for example, see [6—8]), have introduced various generalizations of
Bessel functions. Much progress has been made in the analysis of radiation phe-
nomena related to charge motion in magnetic devices attributable to the theory of
generalized Bessel functions.

The following generating function comes in handy to define the nM-order Tricomi
functions C, (x) [5]:

e X

3 Culo) =exp (r—?), t#0. (1.12)

n=—oo

The series definition of the Tricomi functions C, (x) is given by [26]:

o (=Dt
Cp(x) = ];)m (1.13)

The Bessel functions 7, (x) are defined by the following generating function [26]:

3 Juo) = exp (% (r—%)) t£0; x| <00,  (L14)

n=—o0
and the series definition of the Bessel functions is given by [26]:

o0} (_1)k(%)n+2k

Tn(x) :;W (1.15)

Tricomi functions are also characterized by the connection that links them to Bessel
functions J,(x) given by:

Cu(x) = X2 7,(2V/%). (1.16)

In particular, the 0-order Tricomi function is defined by the following series:

o0 (—l)kxk
Cotx) = Jo@vVD) =)~ (1.17)
k=0 ’
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where Jp(x) denotes 0t_order Bessel function. Also, we note that

1
Cn(x)=moF1[—,n+l,—x]. (118)

In 2013, The Mittag-Leffler function was used by Ozerslan [23] to introduce an approx-
imation operator. Assume 8 > 0 is fixed and let (v,) be any positive real number
sequence. The Mittag-Leffler operators are thus defined for every n € N as follows:

A 1 > (nx)k ~(k
L(ﬂ)(f;x) f( v ), (1.19)
! Elﬁ( )szr(k"'ﬂ) !

where E, g(x) be the well known 2-parameter Mittag-Leffler function [18].

In [2], Ansari et al. introduced a Stancu variant of A-Schurer operators and studied
the pointwise and weighted approximation properties of these operators. Assume that
p and r are non-negative parameters with the condition 0 < p < r, and y is a non-
negative integer. Then, authors construct A-Schurer-Stancu operators 5‘5 ; :C[0,y +
1] — C[0, 1] as

n+y +p
8P (frxin) = ;)snu(,\ x)f< +r>, (1.20)

where 5, ,, are defined in [24].

In this article, we construct positive linear approximation operators using the Tricomi
function of 0"-order on the interval R U {0}. In Sect. 2, we give the definition of the
operators and find their central moments. In Sect. 3, we establish the transformation
properties and global Koronvich’s theorem for our operators. Next, we obtain the rate
of convergence by using the modulus of continuity and convergence in the different
Lipschitz-type spaces. In Sect. 4, we approximate two functions using our operators.
We also give a graphical depiction of the approximated functions and compare them
with the actual functions. Also, we compute the absolute error for the different values
of n on the interval [0, 1] and present the tables and graphical depiction of the error.
We run our programming codes in WOLFRAM MATHEMATICA v13.3.1 on the
processor MacOS X 13.2.1 x86(64-bit). In Sect. 5, we give some concluding remarks
and applications.

2 Construction of Operators
Motivated by the aforementioned applications, in this section, initially, we construct

positive linear operators then we establish some equalities. We use these equalities
further to determine the convergence characteristics of these operators. In order to
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construct positive linear operators, we modify Co(x) by replacing x by —x, we get:

L (xr)k

To(xt) := Co(—xt) = .
1; (k)2

2.1

Now, in view of the above equation, we manifest the positive linear operators forn € N
as follows:

Aoy 1 )k~ (k2
Hfi0) = To(nx)z e ( ) @2

where f e E = {f € C[0,00) : limy_, iﬁi)zis ﬁnite] and C[0, oo) denotes the

space of continuous functions defined on [0, co). It is worth noting that the Banach
lattice E is endowed with the norm

1l = sup L 23)

xef0.00) 1 +x2
We prove the following results, which are required to establish our main result:
Lemma 2.1 The sequence of operators defined by (2.2) are linear and positive.
Proof The lemma can be proved using some direct computations. O

Lemrpa 2.2 The following properties are being satisfied by the sequence of operators
Ty (f; x), for x € [0,00) :

Tyl x) = 1, 2.4)
T(v;x) = x, (2.5)
Ty (% x) = 2% + 2x ZTEE;’Q Vi e N. (2.6)

Proof Since, in view of Eq. (2.1), for f(v) =1, Eq. (2.2) gives assertion (2.4).

Now, for f(v) =, Eq. (2.2) gives

1 S (o) k2
Tpix) = — Y 2.7
V) = oo 2 @7
which is equivalent to
X e (ot
Th(v; x) = , 2.8
"= ) ,; (k= D12 @9
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Using Eq. (2.1), we get 7, (v; x) = x.

Finally, for f (v) =12

1 (nx)k k4
T, x) = Tyt Z o (2.9)

We consider,

k=0 k:O k=1
which on simplification, gives
Clxt) = n_ Z ((g))z + 22 ((’;;))jk + To(xt) @.11)
We assume
Alxt) = i ((if))f K2, 2.12)
k=1
which on solving, gives
A(xt) = (xt)To(xt). (2.13)
Now, we assume
B(xt) =2 Z (’”)j . (2.14)
(k)
Differentiating Eq. (2.1) with respect to ¢, we obtain
T (xt) = Zk(i?‘;l, (2.15)
which in view of Eq. (2.14), gives
20 T (xt) = 2 Zk (”)j — B(x1). (2.16)
(k)
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Fig. 2 Z}ggzg when x € [100, 130]
Using equations (2.13), (2.16) in (2.11), we get
xt
C(xt) = 7 {en)To(xt) +2(xt) Ty (x1) + To(x1)} . (2.17)
Taking r = 1 and replacing x by nx in Eq. (2.17), we obtain
nx 7
C(nx) = p> {x)To(nx) +2(x) Ty (nx) + To(nx) } (2.18)
which on using in Eq. (2.9), we get assertion (2.6). O

Remark 2.1 From the following figures (Figs. 1, 2, 3, 4), we can observe that

T, (nx)
=0
00 To(nx)

(2.19)

We obtain the central moments of the Tricomi operators as:
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Lemma 2.3 If i) (V) = (v — x)™ denotes the central moments of the operators
(2.2), then for m = 2, we have

Ty(nx) x

T x ;X) =2 2 —
(2,0 (V); x) = 2x T

Vi e N. (2.20)

Proof The left-hand side of the Eq. (2.20) can be rewritten as follows by using the
linearity of the operators defined in equation (2.2),

Ty (@ W) x) = Zy (0% x) — 20 Ty (v x) + x° Z(1; x) (2.:21)

on using Egs. (2.4), (2.5) and (2.6) we get assertion (2.20). O

In the next section, we establish the transformation properties and rate of conver-
gence of the operators .7, (f; x) by using the modulus of continuity. Additionally, we
compute the rate of convergence in the different Lipsticz-type spaces.
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3 Transformation Properties and Rate of Convergence
In this section, we establish the transformation properties of the operators .7, ( f 3 X)
and establish the rate of convergence by using the modulus of continuity. Moreover,

we compute the rate of convergence in different Lipschitz-type spaces. We initiate
with the following lemma, which proves that .7, (f; x) maps E into itself.

Lemma 3.1 For w(x) = ﬁ, there exists a constant M such that

w(x)T, (l;x> <M 3.1
w

holds for all x € [0, 00) and n € N. Moreover, for all f € E, we have

1.7, (Dlls < M| £l (3.2)

Proof Using Lemma 2.1, we can write that

1 1
0(x) 7, (;; x) = 72 [ A + F0% )] (3.3)

on using equations (2.4) and (2.6) in equation (3.3), we obtain

1 1 T/(nx) x
—x) = ——= (14222 D 4
wx)T, (w,X> 1+x2|: +x7 4+ 2x T()(WX)+U:| 3.4
which implies
1
wx)T, (—;x) <M. 3.5
1)
Moreover, by using the norm defined in Eq. (2.3), we have
. f . 1 .
0 |Z(fi0| = 0@ |7 (02ix )| < 1o T, (ix ) < MIFL.
(3.6)

taking supremum over x € [0, co) in the above inequality, gives the assertion (3.2). O
Now, we obtain the uniform convergence by using universal Korovkin’s theorem as:

Theorem3.1 Let f € E = { f € CI0, 00) : Tim, o0 L8 is ﬁnite] and Cl0, 00)

denotes the space of continuous functions defined on [0, 0o). Then the sequence of
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operators defined in (2.2) converges uniformly on the compact subsets of the interval
[0, 00), i.e.,

lim 7,(f:x) = f(x). 3.7
n— 00
Proof With the aid of Lemma 2.2 and Remark 2.1, we obtain
lim 7,(v*; x) = x°, s=0,1,2, (3.8)
n— 00

uniformly on the compact subsets of the interval [0, c0). Hence by applying universal
Korovkin’s theorem [3], we get assertion (3.7). O

From now onward, we present the approximation results.

Theorem 3.2 Suppose f is uniformly continuous on the interval [0, 00). Then the
following inequality holds for the sequence of operators 7 (f; x)

Ty(fi0 = F| = 20 (5 Zen 03 0) (3.9)

where w is the modulus of continuity of the function defined by (1.2).

Proof Consider
S )k [ o (K »
| Z(fs 0 = foo| = mz e [f (;) —f(x)} (3.10)

using the triangle inequality gives

3.11)

~ (k2 R
f( )—f(X)

using the definition of modulus of continuity and in view of inequality (1.3), we get

— (nx)k
| Z(fs 0 = foo| = TO W) Z (',7:;)2

— (1x)* 1|k2 .
|Z(fi 0 - f)| = %(nx)z((’g))z [1+; ;—xi|a)(f;o) (3.12)
1 o (o) &2

——x

~ ~ 1 ~
’%(f;x) - f(x)‘ < [1 + ;T()(HX) (k')2 i|a)(f; o). (3.13)

Taking into account the Cauchy-Schwartz inequality, we find

kz_ '_i ok [k [k
IR A RO RG]

o ()
Z T (3.14)
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1 1
X or | [ @of (2 VP
: {Z (k!)Z} {Z (kD2 (7”) (12

k=0 k=0

multiplying and dividing by /7p(nx) in the right hand side of inequality (3.15) and
in the view of Eq. (2.1), we have

o0 k| k2 1
> o | =] < To) [ (-0} (3.16)
k=0 ’

using above inequality in inequality (3.13), we find

A " 1 A
|7(fs 0 = f| = [1 + Tk ); x)} o(fie) (17

by choosing

o =,/ T2 W); x)

we get assertion (3.9). m]

Now, for 0 < @ < 1 and vy, vy € [0, 00), let us introduce the following class of the
functions:

Lipk(;[) =Y YD) — Y| = Alvi — |} (3.18)

Theorem 3.3 Assume that € Lip(/a//). Then

IR

|\ Ty (s x) =Y ()| < A [Ty (1 (0); 0)]7 . (3.19)

Proof Since, 7 ( f ; X) is positive linear operator and € Li p(/‘;/), therefore in view
of Eq. (3.18), we obtain

| Ty W5 %) =¥ ()| = [T () = ¥ (x); 0)| < Ty (1Y () = P ()] %)
< M T(lv —x|% x) (3.20)

which on using Holder’s inequality on the right-hand side, gives

v, oL S aor
%(h} —x|%x) = %(nx) kEZO (k')2 ; —X 3.21)
2—a o
o 1 < (nx)k}2 {(nx)"}2 Ko
Ty(lv —x|%x) = E —— 3.22
(v — x| x) To) k=0{ (k)2 (k1)2 , X (3.22)
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2—a
y(lv_xla.x)<; X[%(T’}X)]FTO‘ ;i(nx)k 2
! T To(nx) To(nx) = (k?
: = a0t (2 V)
x [To(nx)]3 {To(nx),; e (;—x) . (323)

In view of equations (2.2) and (2.20), the above inequality gives

2—a a
Ty(v = x| x) < [0 [F(ren();0]?, (3.24)
which on using inequalities (3.20) and (3.24), gives assertion (3.19). m]

Theorem 3.4 Suppose that x is a continuous function on [0, 00). Then we have

3 a h? 2h?
| 7 (x5 x) — x(0)| < > (1 +5+ ?) @200 M + =il (3.25)

where
1
hi= Q00 = { Ty (e 0): 0
and wy is the second modulus of the continuity of the function x defined in (1.4).

Proof Let f;, be the second order Steklov function of the function yx, Then we have

|70 () — x| < | F(Ux = fals |+ | Z5 (fns %) — fn @) + 1) — x ()]

(3.26)
using Eq. (2.4), we have
| Ty (ks 0) = x 0] = 201x = full + [Ty (fa: ) = fu(0)]| (3.27)
in view of inequality (1.9), above inequality becomes
3
|\ Ty (x: %) — x(0)| < sz(x, h) + | Ty (fus x) = fu ()] (3.28)
Keeping in view that f; € C2[0, a], from inequality (1.6) it follows that
1
| Ty (fis ¥) = fu@)] < I Ty(en (0); X) + Ellf;i’llﬁ;(u(z,x)(v); x),
(3.29)

now using inequality (1.10) in above inequality, we find
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| T (fns %) = o] < Il oo (0); x) + 4h2w2(f h) 7y (@0 (v); X).

(3.30)

Further, in view of inequalities (1.10) and (1.11), it gives

2 3a
| Ty (fi: ©) — fux)| < (EHXII + 4h2w2(x h)) V I (@ (); x)

3
+ 222 )Ty (kexn();x). (331

Therefore, in view of equations (3.28) and (3.31), we get assertion (3.25) by choosing

1
hi= Q) = { Ty (e ()05 (3.32)
O
Remark 3.1 In Theorem 3.4, Q,,(x) — 0, as n — oo.

In the next section, we observe the rate of convergence through numerical examples.
We give a graphical depiction of the approximated function and its absolute error and
provide tables for absolute error for the different values of x and 7.

4 Numerical Examples

In this section, we explain the convergence of our operators through numerical exam-
ples. We give a graphical depiction of approximated expressions and actual functions.
Also, we give the graphical depiction of absolute error and tables for the different
values of x and 7.

Example 4.1 For n = 10, 1()2, 103, 104, 10° the rate of convergence of the operators
Iy (f; x) to the function f(x) = X2+ H—x—l-i-xz is illustrated in Fig.5. Further, in

Table 1, we estimate the absolute error E,, = |.7,( f 1 X) — f (x)| for different values

of n and given the corresponding graph for the error depicting the convergence in
Fig. 6.

It can be clearly seen from Figs. 5, 6, and Table 1 that for larger values of 7 the
proposed operator (2.2) converges to f(x).

Now, we consider another example:

Example 4.2 Forn = 10’}02’ 103, 10%, 103 the rate of convergence of the operators
y(f x) to the function f(x) = 5+ m +4/x is illustrated in Fig. 7. Further, in

Table 2, we estimate the absolute error E,, = |7, ( f T X) — f (x)| for different values
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22—
[ — Tulfx

20F = ]
i T102(F3x)
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L — f
1'2f

0.8
E)io T 0‘.2 T oi4 T 0.‘6 T 0‘.8 T 11(5

Fig.5 The Convergence of operators .7, ( f ;X) to f (x) = x2+ m
Table 1 Error of approximation process for fx)=x2+ m
x €10 102 €103 Eio4 €105
0.05 0.01152 0.00294664 0.000845209 0.0002581 0.0000806922
0.10 0.0318827 0.00876897 0.0025807 0.000795059 0.000249264
0.15 0.0581969 0.0166527 0.00499648 0.00154961 0.000486867
0.20 0.0888368 0.026128 0.00795773 0.00248145 0.000781033
0.25 0.122745 0.0368263 0.0113459 0.00355346 0.00112008
0.30 0.159184 0.0484544 0.015059 0.00473244 0.00149343
0.35 0.197628 0.0607836 0.0190126 0.0059903 0.00189205
0.40 0.237692 0.0736394 0.0231401 0.00730439 0.0023086
0.45 0.279102 0.0868926 0.027391 0.0086574 0.00273746
0.50 0.321658 0.10045 0.0317287 0.0100367 0.00317449
0.55 0.365222 0.114248 0.0361281 0.0114336 0.00361688
0.60 0.409696 0.128245 0.0405733 0.0128426 0.00406284
0.65 0.455016 0.142416 0.0450552 0.0142607 0.0045114
0.70 0.501143 0.156749 0.0495699 0.0156868 0.00496219
0.75 0.548053 0.171239 0.0541173 0.0171209 0.00541527
0.80 0.595733 0.185889 0.0586997 0.018564 0.00587097
0.85 0.644182 0.200707 0.0633211 0.0200176 0.00632982
0.90 0.693403 0.2157 0.0679865 0.0214837 0.00679245
0.95 0.743401 0.230881 0.072701 0.0229643 0.00725952
1.00 0.794185 0.246259 0.0774703 0.0244612 0.00773168
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Fig. 6 Graphical depiction of absolute error of operators .7, ( f ;x) to f (x) = x2 + 1+x1+x2, forn =
10, 102, 103, 10%, 10°.
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Fig. 8 Graphical depiction of absolute error of operators .7 ( f ;X) to f (x) =
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Table 2 Error of approximation process for f(x) = 5+ m +/x

x €10 102 €103 Eyoh €105

0.05 0.0953406 0.0269737 0.00806523 0.00251692 0.000792794
0.10 0.0959458 0.026303 0.00803711 0.00251835 0.00079416
0.15 0.0938896 0.0261318 0.00804496 0.00252504 0.000796656
0.20 0.0921139 0.0261086 0.00807011 0.00253532 0.000800123
0.25 0.0908544 0.0261606 0.00810767 0.00254874 0.000804503
0.30 0.0900103 0.0262594 0.00815519 0.00256494 0.000809732
0.35 0.0894598 0.0263891 0.00821073 0.00258357 0.000815718
0.40 0.0891061 0.0265381 0.00827236 0.00260418 0.000822336
0.45 0.0888775 0.0266966 0.00833802 0.00262623 0.000829427
0.50 0.0887218 0.0268561 0.00840544 0.00264909 0.000836799
0.55 0.0886004 0.0270087 0.00847224 0.00267204 0.000844232
0.60 0.0884849 0.0271472 0.00853595 0.0026943 0.000851485
0.65 0.0883541 0.0272653 0.00859412 0.00271509 0.000858302
0.70 0.0881924 0.0273574 0.00864438 0.00273358 0.000864424
0.75 0.0879888 0.027419 0.00868455 0.002749 0.000869596
0.80 0.0877356 0.0274465 0.00871271 0.00276063 0.00087358
0.85 0.0874279 0.0274373 0.00872726 0.00276785 0.000876165
0.90 0.0870634 0.0273898 0.00872699 0.00277014 0.000877173
0.95 0.0866417 0.0273035 0.00871108 0.00276712 0.000876467
1.00 0.0861639 0.0271786 0.00867915 0.00275855 0.000873958

of n and given the corresponding graph for the error depicting the convergence in
Fig. 8.

It can be clearly seen from Figs. 7, §, and Table 2 that for larger values of n the
proposed operator (2.2) converges to f(x).

4.1 Comparative Study

This section illustrates the efficacy and efficiency of the 0/-order Tricomi function
operators through instructive examples. Our work employs distinct test functions to
assess the efficacy of the Schurer-Stancu operators with shape parameter A, Mittag-
Leffler operators, and the recently introduced 0""-order Tricomi function operators.
Our results indicate that the newly introduced operators, when applied to the selected
test functions and parameters, perform better than the Schurer-Stancu operators with
shape parameter A and Mittag-Leffler operator within the specified range. We need
to acknowledge that we do not assert absolute superiority of the newly constructed
operator over the Schurer-Stancu operators, which have a shape parameter A, and the
Mittag-Leffler operators. Instead, we propose it as a feasible alternative. Furthermore,
the illustrations shown in this section were calculated using Wolfram Mathematica
13.3.1.0 on the MAC OS X (64-bit) operating system.
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Fig.9 Comparison between operators .7, (f; x) and L’g (f; x) with exact function f(x) = %(x -2)(x —3)
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Fig. 10 Absolute error ]Eng and 8,75 of operators %(f; x) and Lg (f; x) to the function f(x) = %(x —
2)(x—3)

Example 4.3 In this example, we examine a test function f (x) = }t(x —2)(x — 3)

with parameter 8 = 3, and (v;) = 17.%, where n = 50, 100.

Using the same interval, Figure 9 compares the performance of the newly defined
0'"-order Tricomi function operators in (2.2) with that of the Mittag-Leffler operators
presented in (1.19). This graphic clearly shows that the approximation with the new
operator fits the test function more smoothly.

Furthermore, we present the error of approximation of both the Mittag-Leffler operator
and the newly defined 0""-order Tricomi function operators in Figure 10. Here, 55 =

Lg,ﬂ)(f; x) — f(x) and Eny = %(f; x) — f(x) denote the error functions of

approximations by the Mittag-Leffler operators and newly defined 0/-order Tricomi
function operators, respectively.
Table 3 provides a numerical comparison of the approximation error of these operators.
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Fig. 11 Comparison between operators .7, (f; x) and S,ﬁ’;(f; x; 1) with exact function f(x) = (37;’:_)2 +

sin (? + 3)

~ 2
Example 4.4 1n this example, we examine a test function f(x) = (371 ’22 +sin (2—2 + 3)

with parameters p = 2,r =2,y = 3 and A = 1, where n = 50, 100.

Using the same interval, Fig. 11 compares the performance of the newly defined 0%"-
order Tricomi function operators in (2.2) with that of the Schurer-Stancu operators
with shape parameter A presented in (1.20). This graphic clearly shows that the approx-
imation with the new operator fits the test function more smoothly.

Furthermore, we present the error of approximation of both the Schurer-Stancu opera-
tors with shape parameter A and the newly defined 0" -order Tricomi function operators
in Fig. 12. Here, 8,‘73 = |SP(fyx;h) — f(x)‘ andIE;? = ‘9,7(]5; x) — f(x)| denote
the error functions of approximations by the Schurer-Stancu operators with shape
parameter A operators and newly defined 0" -order Tricomi function operators, respec-
tively.

For a numerical comparison of the error of approximation between these operators,
refer to Table 4. Similar to the previous example, it’s evident that the newly introduced
operator performs comparably well.

5 Conclusions and Applications

With the help of the Tricomi function, we present a sequence of new operators in this
paper. The approximation properties and convergence qualities of the sequence of a
positive linear operator in (2.2) are obtained. The numerical examples are done in
Wolfram Mathematica. Also, we analyze the error of the approximation and give the
graphical depictions of the approximated function f and the error.

In further studies, researchers can look at a new sequence of operators that generalizes
the operators in (2.2). For instance, modification or generalization of this operator can
be considered for better approximation. Furthermore, the derived results are useful and
can be applied in mathematical analysis, mathematical physics, and quantum calcu-
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Fig. 12 Absolute error IE,77 and 8,‘79 of operators %(f; x) and 3,’,7; (f; x; A) to the function f(x) =
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Table 3 Error of approximation

process for

foy=ta-2u-3)

@ Springer

Error E5 5 Ei% £f5o
atx =

0.1 0.00247 0.08369 0.00170 0.08296
0.2 0.00680 0.16049 0.00471 0.15858
0.3 0.01234 0.23046 0.00858 0.22689
0.4 0.01886 0.29369 0.01314 0.28801
0.5 0.02621 0.35029 0.01829 0.34205
0.6 0.03433 0.40040 0.02397 0.38920
0.7 0.04312 0.44419 0.03014 0.42966
0.8 0.05255 0.48184 0.03676 0.46367
0.9 0.06258 0.51358 0.04380 0.49153
1.0 0.07316 0.53964 0.05123 0.51355
1.1 0.08428 0.56029 0.05904 0.53005
1.2 0.09590 0.57579 0.06721 0.54141
1.3 0.10801 0.58644 0.07572 0.54798
1.4 0.12058 0.59254 0.08456 0.55015
1.5 0.13360 0.59440 0.09371 0.54829
1.6 0.14705 0.59231 0.10317 0.54278
1.7 0.16092 0.58660 0.11293 0.53399
1.8 0.17520 0.57756 0.12298 0.52225
1.9 0.18987 0.56549 0.13330 0.50791
2.0 0.20493 0.55067 0.14390 0.49127
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Table 4 Error of approximation

process for Etrror_ ES% 55% E%O ‘5}5(‘)0
for = G20 4 sin (? +3) =
0.05 0.01104 0.02466 0.00885 0.01442
0.10 0.02359 0.03876 0.01906 0.02367
0.15 0.03413 0.05029 0.02768 0.03116
0.20 0.04222 0.05981 0.03432 0.03732
0.25 0.04801 0.06779 0.03905 0.04248
0.30 0.05177 0.07459 0.04209 0.04688
0.35 0.05383 0.08046 0.04370 0.05067
0.40 0.05450 0.08559 0.04413 0.05398
0.45 0.05411 0.09013 0.04360 0.05692
0.50 0.05294 0.09418 0.04236 0.05954
0.55 0.05127 0.09783 0.04062 0.06190
0.60 0.04940 0.10116 0.03859 0.06405
0.65 0.04758 0.10421 0.03648 0.06603
0.70 0.04607 0.10703 0.03451 0.06785
0.75 0.04513 0.10966 0.03286 0.06956
0.80 0.04499 0.11214 0.03176 0.07116
0.85 0.04588 0.11449 0.03140 0.07268
0.90 0.04801 0.11685 0.03199 0.07414
0.95 0.05160 0.12123 0.03371 0.07584
1.00 0.05680 0.13231 0.03674 0.07698

lus, particularly with g and (p, ¢) analogues of the proposed operators. Regarding the
applications of the proposed operators, they can be utilized to solve fractional Volterra
integral equations of the first and second kinds, providing numerical approximate
solutions [9]. Additionally, the proposed operator can be employed to examine and
regulate a real-life issue associated with the daily average global surface air tempera-
ture [15]. This sequence of operators has the capacity to exert impact over numerous

domains of scientific inquiry.
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