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Abstract

This paper focuses on the stability and decay rates of solutions to the three dimensional
anisotropic magnetohydrodynamic equations with horizontal velocity dissipation and
magnetic damping phenomenon. By fully exploiting the structure of the system, the
energy methods and the method of bootstrapping argument, we prove the global sta-
bility of solutions to this system with initial data small in H>(R?). Furthermore, we
make use of the integral representation approach to obtain the optimal decay rates
of these global solutions and their derivatives. This result along with its proof offers
an effective approach to the large-time behavior on partially dissipated systems and
reveals the stabilizing phenomenon exhibited by electrically conducting fluids.
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1 Introduction

The MHD equations govern the motion of electrically conducting fluids in the presence
of a magnetic field such as plasmas, liquid metals and electrolytes (see e.g., [1-5]).
In this paper, we consider the stability and large-time behavior of solutions to the
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following 3D incompressible MHD equations with anisotropic dissipation

du—+u-Vu+VP =vAu+B-VB, x eR3 >0,
#B+u-VB+nB =B -Vu,

V.-u=V-B=0,

u(x,0) = uo(x), B(x, 0) = By(x),

(1.1)

where u = (uy, u2, u3)T, B = (B}, Bz, B3)T and P represent the velocity field of
the fluid, the magnetic field and the scalar pressure, respectively. v > 0 represents
the kinematic viscosity and n > O the magnetic diffusivity. Here A, = 8)%1 + 8)%2
is the Laplace operator involving the horizontal direction and we shall also write
Vi, = (91, 92). The partial dissipative MHD equations arise in the modeling of recon-
necting plasmas (see e.g., [6, 7]). In fact, in certain cases and under suitable scaling,
certain components of the dissipation can become small and be ignored, such as the
vertical dissipation is negligible as compared to the horizontal dissipation (see e.g.,
(8, 9D.

There are considerable number of scholars devoted their efforts to the global well-
posedness problems of 3D MHD equations, and significant progress has been made
(see e.g., [10-21]). The pioneering work of Lin and Zhang [15] devoted to the small
data global well-posedness and stability problems on partially dissipated MHD sys-
tems. Chen et al. [14] established the global stability with only velocity dissipation
or only magnetic diffusion in the periodic domain, when the initial magnetic field is
close to a background magnetic field satisfiying the Diophantine condition. In addi-
tion, Wu and Zhu [11] solved the global stability for the 3D MHD equations with
only horizontal velocity dissipation and vertical magnetic diffusion. Lin et al. [10]
established the global well-posedness of a special 3D MHD system near a back-
ground magnetic field. Yang et al. [18] proved global regularity for the 3D MHD
equations with fractional partial dissipation. Jiu et al. [21] focused on the unique
weak solutions of the non-resisitive magnetohydrodynamic equations with fractional
dissipation. The stability and large-time behavior problems on the MHD equations
have recently attracted considerable interests at the same time. It should be mentioned
that Schonbek et al. [22] proved the optimal decay rates of the full dissipative sys-
tems. Shang and Zhai [23] focused on the stability problem and large time behavior
of solutions with horizontal dissipation. More recently, Zheng and Li [24] focused
a global solution when the initial data is small in H3(R?), and obtained optimal
decay rates. Lin et al. [25] proved the stability and large-time behavior with velocity
dissipation in only one direction and horizontal magnetic diffusion. Lai et al. [20]
established the stability and sharp decay estimates for 3D MHD equations with only
vertical dissipation near a background magnetic field. This list is by no means exhaus-
tive.

The goal here is to establish the stability and large-time behavior near a background
magnetic field. We investigate small perturbations of the system (1.1) around the
equilibrium state (0, e3). Thus, We can set b = B — e3, yields
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u—+u-Vu+VP =vAu+b-Vb+db, x eR3 1t >0,
otb4+u-Vb+nb=>b-Vu+ dsu,

V.u=V-b=0,

u(x,0) = ug(x), b(x,0) = bo(x).

(1.2)

For notational convenience, we write 01, d2 and 93 for the partial derivatives 9y, , dy,
and 9, respectively. Our motivation for this study comes from two sources. The first is
to reveal and rigorously establish the stabilizing phenomenon exhibited by electrically
conducting fluids. The second is to gain a better understanding of the stability and
large-time behavior of anisotropic models, and to develop an efficient approach for
obtaining optimal decay rates. More precisely, we have the following theorems.

Theorem 1.1 Considering (1.2) with the initial data (ug, by) € H3 (R3) andV -ug =
V - by = 0. There exists a constant ¢ = ¢(v, n) > 0, if

luoll gz + llboll g3 < &, (1.3)

then (1.2) has a unique global solution (u, b) satisfying, for any t > 0,

t
w13 + 1613 +/0 (||vhu||i,3 + ||b||§13)dr < Cé. (1.4)

To separate this linear parts in (1.2) from the nonlinear parts, we apply the Helmholtz-
Leray projection P := I — VA~ V- to the velocity equation in (1.2). Thus, (1.2) can
be written as

o = vApu + 93b + Ny, (1.5)
0tb = —nb + 03u + N3, ’
where
Ni=P(—u-Vu+b-Vb), Ny=—u-Vb+b-Vu.
Differentiating (1.5) in time and making several substitutions, we find
ot — (VAR — n)oiu — 832u —vnApu = N3, (1.6)
dub — (WA, — b — 33b — vnApb = Ny, '

where N3 and N4 are given by
N3 = (0 + n)N1 + 03Nz,  Na = 33N + (8; — vA)Na.

Clearly, u and b satisfy the same linear wave equation with different nonlinear parts,
(1.6) exhibits much more regularization than its original counterpart in (1.2). In partic-
ular, the two terms 832u and 832b in (1.6), emerged from the interaction of the velocity
and the magnetic field, generates the dissipation in the x3-direction. The stabilizing
and damping properties of (1.6) is a consequence of the background magnetic field
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and interactions within the MHD system. By exploiting these properties, we establish
the following theorem assessing the large-time behavior of the solutions of (1.2).

Theorem 1.2 Assume (uo, bo) € H>(R*) N L' (R®) with V - ug = V - by = 0, then
there exists a sufficiently small constant ¢ > 0 such that, if

(o, bo)ll g3nrr < &,
then the corresponding solution (u, b) of (1.2) obtained in Theorem 1.1 obeys

(@), BO) 23y < ce(l+072, 1(Vu), VB©O)ll 2@ < ce(l+177,
1(VVRu(), VVRB®) 2@y < ce(l+07", 1(82u(®), 336(1) | 2, < ce(1+1)75.

The proof of Theorem 1.2 is not trivial. The proof employs many other helpful strate-
gies such as dividing the time integral involving the nonlinear terms into two parts
such as

13

r__ — 7 —
/ IKi(t —7)u - Vu||L2(R3)d‘L' = / IKi(t —7)u - Vu||L2(R3)dT
0 0

l —_—
—|—ﬁ I1Ki(t — T)u - Vull2@rsdt.
2

The decay of the first piece relies on the kernel function while the decay of the second
piece comes from the nonlinear term.

The rest of this paper is divided into two sections. Section?2 details how we use
the energy methods and bootstrapping arguments to prove the stability of (1.2) global
solutions in proving Theorem 1.1. Section 3 shows how we adopt an effective approach
to obtain the optimal decay rates in proving Theorem 1.2. Throughout the article, to
simplify the notation, we will write || f||L» for || /g3 ”f”th for ”f”L)[lez and

I f 1l zzs for | f Il s w3y

2 Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. We give several anisotropic upper
bounds for products and triple products in the following lemma. It is a powerful tool
for dealing with anisotropic equations. The proof of this lemma can be found in (see

e.g., [11]).
Lemma 2.1 Assume that f, 3 f, 3 f, 0103 f, g, 028, h, 33h € L>(R3). Then

1

1 1 1 1 1 1
/ | fghldx < CULEIZ 101112, gl 2 1928175 A1 193k112,

1 1 1 1 1 1
/ | fghldx < CIAIE 191 £ 1921 1910217 gl 2y 1858112, 1Al 2
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Proof of Theorem 1.1 Taking the L? inner product of Egs. (1.2); and (1.2), with « and
b, respectively, and integrate by parts to obtain

t t
@), )12, + 21 fo IBII2, dt + 2v /0 IVhul2odT = [0, bo) 12, . 2.1)

Applying the differential operator 81.3 to the equations in (1.2), then dotting by

(@Pu, 33b),
3
1d 2
2dt ; ( L2> Y

=h+hLh+L+14+ 15,

,t

07b|

2
L2+n

1079

07|

2
L

’8?14

2
L2 2.2)

where

3 3
I = 2/313331; - 03u + 87 03u - 9 bdx, L=— Zf 33 (u - Vu) - 3Pudx,
i=1 i=1
3 3
I = Z/ 107 (b Vb) —b - VoFb] - Budx, Iy =— 2/8?@ - Vb) - 9 bdx,
i=1 i=1
3
Is = Z/ [07(b - Vu) — b - Vd}ul- 9?bdx.
i=1
By integration by parts, /1 = 0. Now we bound I, we decompose it into three parts,

2
b = —Z/af(u-vm -8} udx _/agm - Vyu) - d3udx —/ag(u3a3u> - d3udx
i=1
= Iy + I + 3. 2.3)
By Leibniz Formula and Hélder’s inequality, we derive

2 3
==Y 3 ch [ abu- vortu udx

i=1 k=1

IA

2 3
1 1 1 1 1 1
k. 12 k. 12 3—k 12 3—k, 2 3112 3112
CY Y 0full 2 1010f ull 2,170 ™ ul 2, 192V ull 2, 1107wl 2, 1930w 2,
i=1 k=1
2
< Cllull 3 Vaulls- 2.4)

Similarly, we have

Iy < Cllull 3| Vaul 3. (2.5)
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By V- u = 0 and Lemma 2.1, we have

3
L = —Zc§]a§u3 - 93 *u - d3udx
k=1

1 1 1 | | |
k—1 2 k 2 4=k 2 4—k 2 312 312
ClIoy™ Vi - unll ;2105 Vi - unll ;2195 ull ;5110195 "ull 5 195 ull 10295 ull ;5
2
< Cllull g3 1 Vaullyys- (2.6)

IA

Combining (2.4), (2.5) and (2.6), we obtain
I < Cllull g3 [ Vaul3s -

By Holder’s inequality and Gagliardo—Nirenberg inequality, we have

3 2 3
ZZCQ‘/;}{%-va}—"b-a,3udx+2/a§b-Vb-a,3udx
= i=1

=1 k=1

3 2 3
< CZZ 195 bl 41V} bll o 87ull 2 + C > N87b1 2 1Vbl oo |93l 2
=1 k=1

i=1
< CII 7%, ||b||H3
The estimation process for I4 and 5 are similarly to that for I3, we obtain

Ii+ Is < Cllull g2 1161135

Inserting the above estimates in (2.2), integrating in time over [0, 7] and adding to
(2.1),yields

1 t
lu @155 + 161155 + 2v /O IVhull3,dT + 21 /0 IB1I%,5dT

t
< lluoll%s + lboll3,s + Cf lull g (IVaull s + 1613,)dT. (2.7)
0

Let
E(t) = sup {Ilu(t)lli,a +b(f))|| +C/ (IIthIIHs + IIbIIHs)dt
0<t<t
Then (2.7) implies

E(t) < EQ0) + CLE3 (¢). 2.8)
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According to the bootstrapping argument, we assume that the initial data || (xo, bo) || ;3

1
& < —, namely
4cy’

IA

E(0) < :
()_16C12

In fact, if we make the ansatz that,

1
E@) < —.
()—4c12

Then (2.8) implies
1 1
E@)=CE2(1)- EQ) + E0) = EE(I) + E(0).
Consequently,

E(t) < —.
()—8c12

The bootstrapping argument then implies that 7 = oo and asserts that for any time
t >0,

1
E(t) < —.
® = 4ci
which, in particular, implies the desire global bound on the solution (u, b). As a
consequence, we obtain the global existence of solutions. The uniqueness is obvious

due to the high regularity of the solution. O
3 Proof of Theorem 1.2

This section completes the proof of Theorem 1.2. It will be divided into four subsec-
tions after we present several lemmas and a proposition. The first one provides the

exact L? — L7 decay rate for the heat operator associated with a fractional Laplacian
(see e.g., [26]).

Lemma 3.1 Assume o > 0 and B > 0 are real numbers. Let 1 < p < q < o0o. Then
there exists a constant C > 0 such that, for any t > 0,

e _B_d(1_1
1A% fllpaguay < €575 F L -

The second one provides an upper bound on a convolution integral, which can be
proved similarly to Lemma 2.4 in (see e.g., [27]).
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Lemma3.2 Let 0 < s < 5. then, for a constant C > 0,

, C(l+n~", ifsy>1,
/ A+t—0) A4+ 2dr < { CA+0)n(+1), ifsa=1,

0
C(+1)l=5179%2, ifs) < 1.

The last lemma offers upper bounds with optimal decay rates for a convolution type
integral. Its proof can be found in many references (see e.g., [28, 29]).

Lemma3.3 Foranyc > 0ands > 0,
t
/ eI A+ ) Sdr < C(1+1)~".
0

We have separated the linear parts from the the nonlinear ones in (1.2) and obtained
(1.5). Taking the Fourier transform of (1.5), we find

@\ (7). (M
n(5) =)+ (%)

where A represents the multiplier matrix of the linear operators,

_(—vE; i§3>
A= < i& —n

with |£,]% = 512 + 522. To diagonalize A, we compute the eigenvalues of A,

_ o+ vED VT -t + VT

A :
! 2 2 2

L T =+ v — 4G + vngi).
By Duhamel’s principle,
u(t) At (ﬁo) fl Alt—T) (]/V\l(f))
~ =e ~ + e - dr. 3.1
<b(r)> 5o) Ty Na(o) G-
Thus, we obtain the integral representation

t
1) = Kiit + Kabo + [ (Rie = 0Fi(0) + Kalt = V(o) dr,
0 (3.2)
t
B(1) = Koo + Kabo + / (Kot — M (1) + K3l — DN3(0))d,
0

where
Ki =nG1+ Gy, K2 =i&G,, K3 =G|+ G3 (3.3)
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with
e}»]t _ e)»zt )\.18)”[ _ )\.26)\21 )\‘16)»2[ _ )\’ze)xll

Gl=—— G=—7—"—", G3=
Al — A2 Al — A2 Al — A2

We remark that when A; = A, or F = 0, the re £resentat10n in (3.2) remains valid,
the formulas of the kernel functions K| through K3 are replaced by the corresponding
limiting formulas

Ki=n hm Gi+ lim Gy =nte™ + (1 4+ r0)et,

A=Al A=Al

K2 = i§3te , K3 = —ntekl[ + (1 — Alt)eklt.

The next proposition provides upper bounds for the kernel function K through ﬁ ,
which plays a crucial role to prove Theorem 1.2. The kernel functions depend on the
Fourier frequency and are anisotropic. Consequently we need to divide the frequency
space into subsets and classify the behavior of the kernel function in each subsets.

Proposition 3.1 We split R3 into two subsets, R> = A; U A, with

N+ vEl 3
Al = [s e R, VT < Th i.e., vnéf—i—éf > E(n—i—véﬁ)z},

+ vE? 3
Ay = {é e R VI > % i.e., vnf,%—i-f; < B(n—i—véhz)z}.

(1) For any & € Ay, thereis co > 0, C > 0, we have
1 2 1 2
Rel < —5(7) +vé;), Rekiy < —Z(U + v&j)),
G1()] < 1e™ 30 K| < Cem0UHED =123,
(2) For any & € Ay, thereis cy > 0, C > 0, we have

vnEl + &7
n+ vE?

vné,%+$32 [

3
bM<=+ VED), Ay < —

_3 2 - £2
1G1(0)] < 2 |¢ A0S 4o
V
h
vngd+£3
_3 2 el .
|Ki| < C e 30Hvadt o s | i =12 3.

If we further divide A> into two subsets Ay, A2,
Ay = {& € Ag, vEP <), Axm = (£ € Ay, vE} > 1),
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then, forco > 0,C > 0,andi =1, 2, 3.

IKi(t)| < C (efc"(lﬁ}%)’ +e*"0|5|2’> , Ee€ Ay,

52
— 2 —co(1+3)t
1K ()] < C | e 00+ 4o G|, £eAn.

Proof of Proposition 3.1 (1) For & € Ay,

3 1
T = (n+vEH)? —4(EF +vngd) < (n +vEDH* — Jo+ vER)? = Z0n+ vER)2.

Through the direct estimates and the mean-value theorem, we have
l 2 1 2 71( +V§2)l
Rehy = —5(n+ V&), Redy < —7(n+vE), |Gl =te™s TR,

To bound the kernel functions I/(\1 (¢) and KAg(t), there are two aspects to consider:
When A is a real number, for some pure constants ¢y dependent of v and , then

IK1()] < 1lG1] + A1 G| + €] < Cem0HED!

where we have use the simple fact xe €1¥ < (C, for any x > O and C; > 0 and
suitable C> > 0. When A is an imaginary number, then

PP =vn&; +&, —T=—0+vE)> +4n
Now we bound |1; G|, we further divide it into two subsets: if |1;] < |+/T’|, we have

AL ghir) 4 et < cemhrrvedn,

VT

[AM1Gil <

If |A1] > |+/T], we obtain

N+ vE;

1 1
MGyl < 1G1] < C(p + vED)te™ aHVEDT < Co s (IHVEDT,

Consequently, we derive
K1(0)] < 0lGil + 121 G| +1e¥'| < Ce 046",
In summary, for £ € Ay, we have
IK1(0)] < Ceme0lI+6r,
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Similarly, we obtain
K3()] < Ceme0+601,
Next we will estimate @(r). we divide the consideration into two cases:
&1 < IWT| and |&| = IVTI.

When |&3] < |+/T], we have

%5 1831\ e Aot —co(1+&P)t
|K2()] < —= ("] +[e™]) < Cem VT,
VT
When |3 > [T, yields
K> 1 2y ,— g 1HvEDE ,—§ (n+vED —co(1+&2)1
IKz(l)lf—S(n-FUEh)te gUITVSi =g IV < Cem 0TIl

(2) For & € Az, we have §(n + v£2) < VT <+ vEZ. Then

3
—(+VED) <M < —30+ VED),

jp= COHVEDFNT _ AOnE E) _ wisitE
2 —2+ v +VT) T n+vE;
Therefore,
5 _vnéﬁ-%—s_%[
|G| < (M 4+ ) < e_%(”"'ugi)t te "™ (3.5)
T — A 0+ v&; | |
h

It follows that

Vel +£3
—_ ot _3( +v§'2)t - nfus;t
IKi(O)] < nlGil + M G| + ™| < C [ e 3T e 750

Similarly,

7vns,f+s32l
IK3()| < C | ematrtvedr o o]
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Due to & € Ay, we find

&3] _ V3

3
£ < —(n+vEh)? or <
3 n h 77+V€;% 4

— 16
Therefore,

vns,§+s§t
o~ 3 2 -
1K2| < |&11Gy| < C | e 30D o m0s

The fl/l{ther division of A into A1 and Ajj is to make the upper bound for |I/(\1 [, |I/(\2 [,
and |K3| more definite. For § € A, v&',% < n, we obtain

mg 48w+ g 8

> = > col€)%.
0+ vé7 21 2 2y

Therefore,
1K ()] < Ce 0D 4 pmeoléPty j — 1 23,

For £ € Ay, vE} > 1, we derive

l)’75’%—‘_532>Uns’%jL%z:E—i— 532 > <o 1+§ .
n+vEF T 2vE} 2 2vEr T £7

Thus,

EZ
—_— —Co(l-‘ri)t
1K (1)) < Cle 0+ 4o )y, i=1,2.3

This completes the Proof of Proposition 3.1. We are ready to prove Theorem 1.2. O

Proof of Theorem 1.2 The proof of the desired decay estimate is obtained via the boot-
strapping argument applied to the integral representation of # and b. We make the
ansatz, for1 <r < T,

(), b))l 2 < ée(1+1)72, 1(Vu(e), Vh@)|l 2 < ée(1 +1)73,

1(VVau(t), VVRb(©)ll 2 < Ge(1+07",  [1(02ut), 92b()) |12 < Ge(1+1)7F,
(3.6)

where ¢ is a constant to be specified later in the following proof. We then show by
using the ansatz in (3.6) and the integral representation of # and b that

(). bO) 2 = S+, 1(Vu(@). Vo0)l2 < Set 4071,
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1V, Vb)) 12 < Se(t+07" 1(@3u(), 83612 = Sl +0)75.
(3.7)

The bootstrapping argument then implies that (3.7) indeed holds for all time 1 < <
00.

For the sake of clarity, the rest of this section is divided into four subsections with
each subsection devoted to one of the inequalities in (3.7). O

3.1 Estimates of || (u(t), b(t)) |2

The goal of this subsection is to prove the first inequality in (3.7), namely
¢ _1
(@), b))l < Fe+n2.
According to (3.2), we obtain
—_ —_ —~ t —_ —_
w2 =IK1(Duoll g2 + [IK2(t)boll 2 +/0 K1t — D)N1(T)ll2dT
t
+/ |K2(t — T)N2(7)|lz2dT := D1 + Dy 4+ D3 + Dy. (3.8)
0

We first bound Dj. To do this, applying Lemma 3.1 and Proposition 3.1, we derive

52
Dy = Clle=o 0 2 4+ Clle 12+ Clle "8 @l
< Ce™lugll 2 + Clle M T ug)l 2 (3.9)
< C(+ 0 Flugll 2 + €1~ lugll
< C(+ D72 luoll 2ng1s (3.10)

where we have used the simple fact that e~ (1 + )" < C(cg, m), fort > 0,m = %
Similarly,

Dy < C(1 402 |Iboll 2y 1- 3.11)

Recalling that Ny = P(—u - Vu + b - Vb) with P being the Leray projection onto
divergence-free vector fields and using the fact that PP is bounded on L?, we have

t S t P
Ds < cf e 0HED DTy | 2d T + C/ e 00HED D5 Vb || 2d
0 0

t e t P
+c/ e~k 1TV u) | 2 dT +c/ e 0=0 5 h||| 2 dt
0 0
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¢ —Co(1+§)(l—f) — ! —CO(1+§)(1—7) —
+C/ |le i |u-Vu|||L2dr+C/ lle i |b- Vbl 2dT
0 0
:=D31 + D3 + D33 + D34 + D35 + Dsge.

D3 is further divided into two parts,
% t
2 —_— 2 —
D3 < c/ l|e= 0= 7 V)| 2dT +c/ lle= D=, V| 2dT
0 5
= D311 + D312

By Gagliardo—Nirenberg inequality and Holder’s inequality, we have

t t

Eap——r— B
D31 <C e 0 lu - Vullj2dt < Ce™ 2 llullyadt
0 0

cot 1
< Ce—%zsz <C2( 4172,

where we have used the fact that ||u] g3 < ce and e’qz)*t(l + 1) < C(m) fort >
0,m= % By Lemma 3.1 and Holder’s inequality, yield

t ——
D3y < c/ 0T || =05 =D || 2 d e
t
2

dt

2
LX3

u-Vul
e Val g,

t

< c/ eV (¢ 7)1
t
2

A

t
i _1
¢ [0 — oy hulg, w1 Vul2de
. Xp X3

2

t . )
< C/ e=0t=0) (4 _ 7)7%H””zz||33u||22||Vu||L2d-,; < CR2(1 + t)f%,
L

2

t

! 1 ) |
Where we have used/ e~ — )"2dr = f e “s72ds < C for C > 0.
t
L 0
2
D33 is naturally divided into two parts,
17 2 ! 2
Dy < C/ le= OB =Dy V||| 2dT +Cf lle= <D . V|| 2 d e
0 5
= D331 + D332.

By Lemma 3.1 and Holder’s inequality, we have

t t

2 E2 — 2 5
D31 < c/ l1Ele Dy U] 2dT < c/ (t—1) 4 u@ullide
0 0
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%
< Ct—%/ @e(l + 1) 1)2dt < CEe2~3n(1 +1/2) < C&e4—i+0,
0

where we have used r~?In(1 + %) < C(o) foro > 0 and for all + > 1. By Holder’s
inequality,

t t
Dip < C/ (t— )i lu- Vuldr < C/ (t — ) lul 2| Vull 2d T
t t

<C&lA 41~ 4/@—1) Tdt < C32(1+ 07 1(t/2)% < C&3e2(1 + 13

By Lemma 3.3 and Gagliardo—Nirenberg inequality, we obtain

—co(1+ 2>(t ) _— 1)
D35 < C/ le i u-Vul2dt < C/ 0 lu - Vul 2dT
0

1 1 t 7
<C f e~ ull 12 I Vull ;| VPull 2dT < CE%2 / e O + 1) 4de
0 0

< CP(1+171.

By the same technique, D33, D34, D3¢ share similar estimates as D3y, D33, D3s,
respectively.
Combining all estimates above for D31 through D36, we conclude

Dy < Ce2(1+ 1% + C32(1 +1)2 (3.12)
Dy obeys the same upper bound as D3, namely
Dy < Ce(1 4+ + CRE2(1 +1) 2. (3.13)
Inserting the uppers (3.9), (3.11), (3.12) and (3.13) in (3.8) leads to
Je@lz2 = 1+ 072w, bo)l g2 + Cog®(1+ 072 + C38%2(1 + )77

Therefore, if we choose ¢ and ¢ satisfying

then we obtain
1
lu@ll2 < 4_18(1 +1) 2.
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The same upper bound hold for ||b|| ;2. Therefore,

¢ _1
@), b)) 2 < 58(1 +1)7 2.
This completes the proof of the first inequality in (3.7).

3.2 Estimates of || (Vu(t), Vb(t))||,2

The goal of this subsection is to prove the second inequality in (3.7), namely

1(Vao), Vo)l < (1 +0)7E.

Applying V to (3.2), yields

! —_— _— —_—
(Ki(t = D)VNI(x) + Ka(t — 1)V N2(1))dr,
0 (3.14)

Vu(r) = K1Vug + K2Vbo + /
t

Vb(t) = K2Vug + K3Vby + / (K2(t = ©)VN( (1) 4+ K3(1 — T)V N2 (7))dT.
0

According to (3.14), we obtain

—_— —_— —_— t —_— —_—
IVu@®llp2 < 1K1 (@) VuollL2 + [ K2(0) Vol 12 +/ K1(t — ) VN1 (D)l 2dT
0

t —_—
+/ |K2(t — )V N2 (T)||f2dT := E1 4+ E2 + E3 + E4. (3.15)
0
By Lemma 3.1 and Proposition 3.1, we derive

52
Ey < Cle T + Clem v Tl + Cle "5 Faoll o
< Ce™ || Vugll 2 + CllIgle 0 i 2
< Ce™|[Vupll 2 + Cr™ ¥ lugll
< CO+1F ugl g,

where we have used e~ (1 + 1) < C(cg, m), fort > 0,m = %. Similarly, we
obtain

_5
Ey <C(L4+1t)"2|boll grnp-

@ Springer



Stability and Optimal Decay for the 3D Anisotropic... Page 17 0f29 152

For E3, we still reformulate it into several parts,

t S t S
E3 < c/ le= 00Dy V)|l 2dT +c[ le=00+EDE=DY (B V)| 2dT
0 0

t . t .
+c/ e~ PV V)| 2 d +c/ le= PV G Vb)) 2dT
0 0

—co(1+ 2)(1 — L —co(14 2)( —
+ C/ lle V(u -Vu)|l2dt + C/ lle i V(b - Vb) || 2dT
0

= E31 + E32 + E33 + E34 + E35 + E36.

E3 is further divided into two parts:

t
2 . — ! . —
Ey = c/ le=0UHD=DY (0 V)| 2dT +C/ le= 00D V)| 2dT
0 3
= E311 + E312.

By Gagliardo—Nirenberg inequality and e’%(l +1)" < C(cog,m) fort > 0,m = %,

we have

t

2 cot t
E3 < C/ e DV (- V)| 2dT < Ce*%isz <Ce?(1 4177
0
By Lemma 3.1 and Holder’s inequality, we obtain

t N P
E3ip < c/ e =D =08 I=D Yy . Vi) || 2dT
1

2

t

< C/ e =G — )2
1
2

o 1 1 1 1 1
scﬁ e (¢ — )72 (|Vull 2, 103 Vall 25 | Vaell g2 + el 25 1 0sul) 25 1V 20l 2)d T

2

LVl )| de
0 02,

<CcPe 2/ eV (1 4 1) idr < CE2(1 4+ 01

2

t
where we have used / e~ _ t)*%dr < C for C > 0. Next we proceed to

t

2
estimate E33. In order to get better large-time behavior, it is further divided into two
parts,

t

2 — 4 —
Ex; < c/ e~ PV G V)|l 2dT + c/ le= P0G V|| 2dt
0 5
‘= E331 + E33.
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By Lemma 3.2, Holder’s inequality, we have

t 13

2 — 2
Exyi < c/ 116 [2e= 0P [ G ade < cf t -0 Hlu @ ullde
0 0
< CE2Hn(1 +1)2) < C&e2~ 1% < €621 +1)71,

where we have used t ~?/n(1+1/2) < C(o) foro > Oand all > 1. By Lemma 3.2,
and Holder’s inequality, we obtain

t - t
Ba = C [ gl ONEm I <€ [ (o - o ivasn) s

L t L3
2 2
t 7 t 7 1 3

< [ - o bivululedr < € [ @ =0 IVul a1V fade
2 2

<@+,

Now we turn to estimate E3s. By Lemma 3.3 and Gagliardo—Nirenberg inequality,

t
E3s < C/ eIV (u - Vu) || 2dT
0
ro o) 1 » 1 ) ) 1 3 1
< C/ eI (IVul 2, IVl 2, 1V ul 2 + [ Vull 21Vl 2,V ul) 2))dT
0

~3

t
<C@+ 5%)82/ e (1 4 1) 3dr < C(@ +81)e2(1 +1) 3.
0
Similarly, E33, E34, E36 obey the same bounds as E31, E33, E3s, respectively. Then,

2 _35 ) _5 ~3 9 _5
E;<Ce(14+t)y " 44+Cce“(1+1t) 4+ Cc2e“(1+1) 4.

Similarly, E4 obeys the same upper bound.

5 3

Ey < CE21 400 +CRL2(1+1) 3 +Care2(1+1) 1.

Combining all estimate above for E| through E4, we conclude

5 5 3 _5
IVu@)ll;2 < Cr(1+ 073 (uo, bo) || gingt + Cog®(1 +1)"F 4+ C3é262(1+1)7 1
22 (14173

Therefore, if we choose ¢ and § satisfying

Ci <<, Cec=

¢
16° 32’ 32’

oo | ™
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then we obtain
¢ _s
Vu@)ll 2 < 4_18(1 +1)7 5.
Similarly, | Vb|| ;2 obeys the same bound. Therefore,
¢ _s
[(Vu(t), VO@)l 2 = 58(1 +1)7 4.
This completes the proof of the second inequality in (3.7).
3.3 Estimates of || (VVu(t), VV,b(1)) |2
The goal of this subsection is to prove the third inequality in (3.7), namely
¢ _
IV Vhu(®), Vb2 < Se(l+ 07"
Applying VV}, to (3.2), yields
—_— _— _— [ _— —
VVhu(t) = K1 VVyuo + K2 VVybo + / (K1t = )VViNi (1)
0

Ko (1 — 1)VV,N2(1))dr,

—_— _— _— t — —_—

VVub(t) = K2VViug + K3V Vb +/ (Ka2(t — 1)VViNi (1)
0

+K3(t — T)VV,Na(1))dx.
According to (3.16), we obtain
IVVau@®ll 2 < 1K1 ()Y Vauoll 2 + 1K2 () VVAboll 2

t —_—
+/ IKi(t —T)VVpNi ()| 2dT
0

'
+ / |K2(t — T)VVpNa(7)||;2dT := H1 + Hy + H3z + Hy.
0

(3.16)

(3.17)

By Lemma 3.1 and Proposition 3.1, we have

52
co(l+3) _—

Hy < Clle M5 Tu0 ) 12 + Clle @ " TVupll 2 + Clle % VViuol 2

— N 24
< Ce™ |V Vjupll 2 + CllIEPe 75 12
. _7
< Ce |V Vhuoll 12 + Ct™ ¥ |Juoll 11

< C(1+ 0" uoll g2npts
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where we have used e =" (1 4 1)™ < C(co, m) fort > 0, m = 1. By similar estimate
as Hip,

—1
Hy < C(1+ 1) |lboll g2npt-
The bound for H3 is more complicated, we first decompose it as follows
t e t —
Hs < c/ lle= 00D TV, - Vu) || 2d +Cf le= 0D DTV, (b Vb) | 2dT
0 0
t N P t 2 —
+Cf e~ BV, (u - Vi)l 2dT +c/ e~ EFE=DvY, (b - Vb)| 2dT
0 0

t — t —_— —
+ C/ IK1(t = )V Va( - Vi)l 2400, AT + c/ 1K1 (t = ©)VVi(b - VD) 12y dT
0 0
‘= H31 + H3 + H33 + H3a + H3s + Hse. (3.18)

We divide H3; into two parts:

t

7 —
Hy = c/ ||e—'~“0<1+¥:?>(’—f>vvh(u.W)||dez
0

t —_—
+c[ e~ HEN =Dy, Vu)| 2dt
2

= H311 + Hz12,

By Holder’s inequality and Proposition 3.1, we derive

3

2 cot 1
H3j < c/ e DV (1 - Vu) || j2dT < Ce_%zsz <Ccef(1+0n71,
0

where we have used e~ (1 4+ ¢)" < C(cy, m) fort > 0, m = 2. By Lemma 3.1 and
Holder’s inequality,

, dt
L;3

t —

Hia =€ [ e [jigle G IVE Tl
t “h
2

b o= 1 1 1 1 1 1 1
scﬁ =0T (¢ — o) E (Va2 |V Va2, 1Vl 103Vl 5 195 Vil 2 10V V|
2

1 1 1 1 1 1
L , IR
el 03l Nl 5 195 Vel 1V 2ull 2, 195 V2ull ) d

t
< C@E + 5%)82/ e (¢ )T 3 (14 1) T < C@EF 4+ )21+ 1)
2

Next we proceed to estimate H33. By Lemma 3.2 and Holder’s inequality, we have
! 2 — ! 9
Hys < C/ &P e =0 @ ul| 2d T < cf (I+1—1) 4 |u®ulde
0 0

t
< 05282/ (+1—10) 11 +1) ldr < c&32(1 + 07"
0
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The bounds in Proposition 3.1 are not sufficient for estimating H3s, so we derive some
alternative upper bounds. Recall that

3
Ap = (§ € R vng + &5 <~ 01+ vED’ v} > 1),
G; and G3 can be written as

et — ) et Aperlt — ) et
Gy = AL MG+ M Gy = .- rMGr.
Ay — A A2 — A

By (3.4) and (3.5), we obtain the new upper bounds for K| and K>,

—_ 2
IK1| < €M + (o + )Gy | < e 0T +C( né; ;3 77) |Gl

h
2, g2 _ it
< e—CU(l+§}%)z 4 2C VT]%_h +§3 +7n e—co(l+&‘}%)t +e n+u5;% !
n+vE \ n4vg;
(3.19)
s
Bl < 601G < —BL ottt ) g (3.20)
+vg;

To bound H3s, we use new bounds in (3.19),

[ —_—
His < C / eI+ TV, G V)| ad

/ “ n$h+§3 l)e—c0(1+$,§)(t—r)vvm.\Vu)HdeT

e
vnER+£3
! 1 vnER + &2 e N S
c / | 5 §3 +n)e T YV Vi) | adt
n+ l)Eh n+ Véh

= H3s51 + H3so + H3s3.

H3s1 obeys the same bounds as H3zj. Due to £ € A»», VHS;% + 532 < %(n + vé}%)z,
H3s, can be bounded similarly as H3q,

H352<C/ ||e*‘0<‘+5h><f RAAVATIR V)| .dr < C(1+E2 + (1 4+~
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We rewrite H3s3 into two parts,

HE .‘i'g —
His3 <C || Tk VVi(u - Vu)|,,dt
h

HE l‘igﬂ 0 —
+ C_/ I | +§2€ Vi(u - Vu)| 2dT := H3s31 + Hasn.
0 h

Due to e ' (1 + )™ < C(cg, m) forany m > 0, > 0, we have

|%—|4 ) |§\2(t7 |
His3p < c/ [ S2)2@ — 1)t — 1) % g u-Vu|,,dt
h

< C/ (A +1—1)2u- Vu|2dt < CE*(141)72
0

Now we turn to estimate H3s3p. By Lemma 3.3 and Gagliardo—Nirenberg inequality,

€17 1, e _— 2.2 1
H3532<C/ I 2(:-1)(:-1) 1+, u-Vu|,dr < C&e*(1+1)~

Consequently,

Hys < C2(+1) "'+ C2(1 + 1)~ + Cete2(1+ 0~ + 220 + 1)\,

By the same technique, Hzp, H34, H3e share similar estimates as H3p, H33, H3s,
respectively.
Inserting the bounds of H3; — H3g in (3.18), yields

Hy < C(1+&1 +8 + 36U+~

The estimation of many terms of Hjy is similar to that of H3, which we first expand as
follows

t e t .
Hy < cf lle= 00+ E—DG Y, 4 Vb) | 2dT + C/ le= 0+ EDTY, (b V)| 2d
0 0

t P t S
+c/ ||e—00‘5'2<’—f>vv,,(u.Vb)||der+c/ ek PTGV, (b Vi)l 2dT
0 0

t S t o S
+ C/ 1K (t = T)VVh(u - Vb) || 124y dT + C/ 12t — DV (b - Vi)l 12 ayy)dT
0 0

:=Hy + Hyp + Hy3 + Hyg + Hys + Hye.
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Hy1, Hyp, Hy3 and Hyq can be estimated with a nearly same argument as H3j, H3p,

H33 and H3q, respectively. We use new bounds to estimate Hys,

Hiys < C |} il DD Y, (4 Vb) | d
14+&; g

vné,%%%

81, ng TV yv :
+C || ——e " VVi(u - Vb)| ,2dt := Hysi + Has).

1—|—§h

Since £ € Ay, |E]> < C(1 + 55)2. By the same process as H3p,

t —_—
Hysy < c/ |~ 0D DTG, VD) | pdT < CA+E +EDs2 1+
0

By Lemma 3.2 and Gagliardo—Nirenberg inequality, we obtain

2 A
Hiso < C /|| 5] (t—r)(t—r)_le 144 Vi - Vb)| .dt

< C/ (1+r—r>—1||vh(u-Vb>||der
0

t 1 3 1 3
< C/O A+t =) AVl LIV Vaull L IVBIE V2B, + [Vl 2

1 1
< IV VD2, VA VDI 2,)dT

< P2+ a1+ 07"
Consequently,
32T 22 -1
Hy<C(+cz+c*4+c)e“(1+1) .

Substituting the bounds of H| — Hy into (3.17), yields

IVVRu@)l2 < C1(L+ 07 o, bo)ll L 1ng2 + C262(1+1)7!

+E + AU+

Therefore, if we choose ¢ and § satisfying

;lﬁz

7 3 )
C3(c3 +¢c2 +¢%)e <

:
Coe < <.
2 =16

oolm

C <
then we deduce

V()2 < gea 1)

+ C3(E%
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A similar bound holds for || VV},b| ;2. Therefore,
¢
IV Vuu(®), VIR < S+ 07"
This completes the proof of the third inequality in (3.7).

3.4 Estimates of || (2u(t), 83b(D)) |2

The goal of this subsection is to prove the last inequality in (3.7), namely
2 2 ¢ _1
(@5u(t), 95b(@)ll 2 = 58(1 +1)78.
Applying 832 to (3.2), yields

— e t_ — o —
Bu(t) = K133uo + K293bo +/ (K1(t — 1IN (1) + Kot — 1) N2 (1) )d,
0 (3.21)

—

—_— e r_ — P
32b(t) = K293uo + K303bo + / (K2(t — )N (1) + K3(t — 1) N2 (1) )d T
0
According to (3.21), we obtain
2 o —_— o —_— t o —_—
03u(®)ll2 < IK1(1)03uoll 12 + I1K2(1)05boll 2 + f 1K1\ (t — T)03 N1 ()l 2d T
0
t —
+ [ 1Rt = BN T = S1 4 S24 51+ 5
0

By Lemma 3.1 and Proposition 3.1, we have

&
e 2 5 ey —co(l+5)t——
S1 < Clle™ 0 HED82u01 12 + Clle™ B 82u0 )12 + Cle S 02uoll 2

— 2 2 _ 20
< Ce | 33uoll 2 + CllIEPe B ) 2

—cot 1192 -7
= Ce " |05uoll2 + Cr™ 4 |luoll 11
7

< C(L+" uoll g2t (3.22)

where we have used e 0" (1 4+ )™ < C(co, m) fort > 0,m = %. S5 can be bounded
similarly,

7
S < C(L+078boll oy - (3.23)

The bound for S3 is more complicated, we first decompose it as follows

t — t —
S3 < Cf le=0UHEDD 52 V|| 2d T + C/ lle= 00+ 32(), . Vb) || ;2d
0 0
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t — t —
+c/ ||e*€0‘5‘2(’*f>a32(u . Vu)||der+C/ ||e’cﬂ|€|2(””832(b-Vb)||der
0 0
t o — t o —
+ cfo 1K1 (t — 133 - Vi)l 12(ay)dT + C/O IK1(t = 1)33(b - VD) 12(ay)dT

=831 + 532 4 S33 + S34 + S35 + S36. (3.24)

We further write

t
3 — t —
S31 = c/ le= 0+ 32 . Vi) | 2d +cf lle= 00+ 32, . )| 2d.
0 5

= 8311 + S312.

By Holder’s inequality and e =" (1 +¢)™ < C(co, m),fort > 0,m = %, we deduce

% N cot 1
S311 < C/ e U192 (u - Vu)|| 2dT < Ce*%zsz < Ce2(1+1)7F.
0

By Holder’s inequality and Lemma 2.1,

s dt
L3,

t

S312 < C/ emc0(=T)
1
5

e 0503 - Vol

t
< c/ eV _7)d
t

2

t
1
C U= — )~2 ()93 \Y 9 v
ﬁe (0 =072 [ (U03ul 2 Va2, + Nosull 2 Vasull 2 + lull 2,

2

(103 - Vullpy, + o - Vosulyy + - Vodully )|, de
A3

IA

2
X ||V33u||sz)||L2 dt
“h X3
¢ | 1 1 1 1
—co(t— —1 (1122 3 2
5C/f e — 1) 2 (5wl 185wl 5 1 Vall 2 + 183ull 2 193 Vuell 1, 1 VOFull
2

1 1
+ llull 2 1950l 2 1V ull 2)dT

t
<c@ +5)52/ e (¢ — )" (14 1) RdT < C@E7 +&)el(1+1)7F.

L
2

Next we proceed to estimate S33. By Lemma 3.2 and Holder’s inequality, we have

t t
53 < c/ &P 0P DTG d < c/ (41— @ ulde
0 0
t
< 05282/ (U+1—10) 11 +1) ldr < C&32(1 + 07"
0
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To bound S35, we use new bounds in (3.19),
t —
Sas < c/ e~ 0+ 20 . Vi) | 2d e

/ ”( 775;, + 53 l)e—co(l—l-éﬁ)(t—r)a%ﬁu) ”del'

2)2
g2 +£3
t 1 Un%— +§2 _Umsp e t—1) ——
+ C/ I e (- Vu)|,»dr
o n+vé n+v§;

= 8351 + S350 + 5353.

S351 obeys the same bounds as S31. Since £ € Ay, we have vné,%—i—é% < %(n—i—vé}%)z.
By the same process as S31, we deduce

S350 < C/ e~ co(1+£7) (1= f>a2(u Vu)| 2dt < C(1+é+¢ F)e2(1 +1)"F.

We rewrite S353 into two parts,

2

> —afihe-n ——

S353<C/ ”<1+s)z HE 03w Vi |
h

€| B2l
+ C/ |—— : — ¢ P 33(M - Vu)|,2dT = S3531 + S3532-
1 —i—%‘h

Due to e ' (1 + )™ < C(cg, m) for any m > 0, > 0, we have
$3531 < C/ |——5= £ t—0*t—1) "% “iZ( >u-VuHL2dT < C&P(1+n"2
(1+&H?

Now we turn to estimate S3532. By Lemma 3.2 and Gagliardo—Nirenberg inequality,
we obtain

ISIZ . 0 \5\2( ) .
S3530 < [ I t—1)t—1)"te w-Vu|,dt < c*e?+0~

g2
Consequently,
2 -1 ~ 2 -1 ~3 2 -1 2.2 -1
S35 < Ce“(14+1)"8+Cce“(1+1t)y 8 +Cc2e“(1+1)" 8 +Cc“e“(1+1) 8
By the same technique, S32, S34, S36 share similar estimates as S31, 533, S35, respec-
tively.
Substituting the bounds of S31 — S3¢6 into (3.24), yields

S3<CU4e+8 +)21 +1)°F. (3.25)
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The estimation of many terms of Sy is similar to that of S3, which we first expand as
follows

t — t —
Sy < c/ ||e—”0<1+fh2)<’—”a32(u.Vb)||der+C/ le= 00D 32 . V)| 2d e
0 0
t — t —
+C[ ||e—°'0‘5‘2<’—f>a32(u . Vb)||der+C/ ||e—"0|5'2<’—”a32(b.Vu)||der
0 0

t — t —
+ c[ K2t — ©)33(u - VB) || 24, dT + c/ K2t — )33 (b - V)|l 2, dT
0 0

= S41 + Sa2 + S43 + Saq + Sa5 + Sus.

Sa1, Sa2, S43 and Sa4 can be estimated with a nearly same argument as S31, S32, S33
and S34, respectively. We use new bounds to estimate Hys,

Sus < C / | LBl mat+eDe—ng2(, V)| d

1+&;
vngf+e3
(t-7) ——
/” izl e T 93(u - Vb)||,2dT := Sas1 + Saso.
1+&

Since & € Ay, |§|2 <C(l+ S}%)z. By the same process as S31,
! 1 2 P ~ 3 2 7
Sys1 < c/ |em 002 - Vb) | ndT < C(1+ G4 ED)e*(1+1)75.
0

By Lemma 3.2 and using the simple fact that e~ (1 + )™ < C(cg, m) for any
m>0,1t>0,

2 el iy
S452<C/ |2 2(t—r><r—r>1 T b0 V)| ade

scf (41— o) 133G - Vb | 2dT
0
t 1 1 3 1 3
<€ [ — o (ol Va9 12591
0

1 1
+ IVl 2193 Vb1 2, 195 V25112, )d
<P+ 0+

Consequently,

S < CU4e+8 +)0 +1)°F. (3.26)
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Combining (3.22), (3.23), (3.25) and (3.26), we obtain

7

7
183u(®)l 2 < Cr(1 + )78 || (uo, bo)ll 11n g2
O (1 41)7F + C3(E+ &2 + &)1 +1)7F.

Therefore, if we choose ¢ and § satisfying

(98]
~~~
(9}
+
[}
[IS1[o8)
+
™
(3%}
N
™
IA

Ci<g, Cec< C

¢
16°

oo | o

then we deduce
2 ¢ _1
lo5u(@)ll2 < 4_18(1 +1)78.
The same upper bound holds for || 332b|| 2. Thus,

||(332u(t), a%b(t))||Lz < %g(] + l‘)_%.

This completes the proof of the last inequality in (3.7).
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