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Abstract
This paper is motivated by the problem of determining the related chromatic num-
bers of some hypergraphs. A hypergraph �q(n, k) is defined from a projective
space PG(n − 1, q), where the vertices are points and the hyperedges are (k − 1)-
dimensional subspaces. For the perfect balanced rainbow-free colorings, we show
that χ p(�q(n, k)) = qn−1

l(q−1) , where k ≥ � n+1
2 � and l is the smallest nontrivial factor

of qn−1
q−1 . For the complete colorings, we prove that there is no complete coloring for

�q(n, k) with 2 ≤ k < n. We also provide some results on the related chromatic
numbers of subhypergraphs of �q(n, k).

Keywords Hypergraph · Projective space · Coloring · Perfect balanced rainbow-free
coloring · Complete coloring

Mathematics Subject Classification 05C15 · 05B25 · 51E20

1 Introduction

The coloring of a hypergraph is an important content in graph theory, which is related
to general graphs, designs, optimization problems and so on [10, 15, 22]. In recent
years, hypergraphs from projective spaces have been attracted much attentions [2–
5, 13]. In this paper, we study the problems of balanced rainbow-free colorings and
complete colorings of hypergraphs arising from projective spaces.

A hypergraph H is a pair (V , E), where V is the vertex set, E is the set of subsets
(called hyperedges) of V . A hypergraph H is k-uniform if each hyperedge of H
contains k vertices. A degree of a vertex p, denoted by dp, is the number of hyperedges
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containing p. A hypergraph H is called r -regular if the degree of each vertex of V
is r . For an integer c, a c-coloring of H is a surjective mapping from V to a set of c
colors, that is τ : V → [c], where [c] = {0, 1, . . . , c − 1}. The inverse images of the
colors are called the color classes, that is Ci = {p ∈ V : τ(p) = i} for i ∈ [c].

Given a c-coloring ofH, a hyperedge ofH is called rainbow if there are no vertices
with the same color. A c-coloring ofH is called rainbow-free if it contains no rainbow
hyperedge, and it is called rainbow if its hyperedges are all rainbow. A balanced
coloring ofH is a coloring in which the cardinality of all color classes differs at most
in one, and the balanced upper chromatic number of H, denoted by χb(H), is the
largest integer c for which there is a balanced rainbow-free c-coloring of H. A c-
coloring of a k-uniform hypergraphH is said to be complete if each hyperedge ofH is
rainbow and each k-element subset of [c] appears as the color set of some hyperedges.
The maximum possible number of colors in a complete coloring of H is denoted by
χc(H).

The rainbow-free coloring of a hypergraph was proposed by Voloshin [20] in 1995,
and has been extensively studied in several papers, such as [8, 11, 12, 16, 21]. On the
other hand, the complete coloring of a k-uniform hypergraph was first introduced by
Dȩski, Lonc and Rza̧ażwski [6] in 2017, and has been carried out further research by
Edwards and Rzazewski [7] in 2020.

A projective space can be considered as a hypergraph, where the vertices are points
and the hyperedges are subspaces. In particular, PG(n−1, q) is an (n−1)-dimensional
projective space, whose (k − 1)-dimensional subspaces for 1 ≤ k ≤ n are the k-
dimensional subspaces of the n-dimensional vector space Vn over a finite field of q
elements. It is well known that the (n − 1)-dimensional projective space of order q
exists if q is a prime power and it is isomorphism to PG(n − 1, q) when n ≥ 4.
For convenience, we call the hypergraph arising from a projective space projective
hypergraph and use �q(n, k) to denote the projective hypergraph from PG(n − 1, q),
i.e., using the dimension of the corresponding vector space. Specially, we use �q to
denote the projective hypergraph from projective plane PG(2, q).

In 2015, Araujo-Pardo et al. [1] initially considered the balanced rainbow-free c-
colorings of projective spaces. And the balanced upper chromatic number of projective
planes is further refined by Blázsik et al. [4] in 2021. The following are some results
related to projective spaces.

Result 1.1 [1] For projective hypergraph �q , there is

χb(�q) = �q
2 + q + 1

3
	.

Result 1.2 [1] For projective hypergraphs �q(n, k) with n ≥ 4, there is

χb(�q(n, n − 1)) ≥ qn − 1

q − 1
− q

n
2 − 1.

In particular, when n = 4, there is

χb(�q(4, 3)) = q3 + q;
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If q ≡ 1 (mod 3), there is

q2 + q + 1

3
≤ χb(�q(4, 2)) ≤ q2 + 1

2
.

In this paper, we investigate the balanced rainbow-free colorings and the complete
colorings of projective hypergraphs. In Sect. 2, we recall some notations of projective
spaces and define the cyclic projective hypergraphs.

In Sect. 3, we consider the balanced rainbow-free colorings of projective hyper-
graphswith the same size of color classes, whichwe call perfect balanced rainbow-free
colorings, and the perfect balanced upper chromatic number is denoted by χ p(H). We
first show that

χ p(�q(n, k)) = qn − 1

l(q − 1)

where k ≥ � n+1
2 � and l is the smallest nontrivial factor of qn−1

q−1 . Then we define a
subhypergraph of �q(n, k), denoted by �q(n, k), and give a range of χ p(�q(n, k))

for odd prime n and k = n+1
2 . Furthermore, we determine the exact value

χ p(�q(3, 2)) = q2 + q

3

for q ≡ 0, 2 (mod 3).
In Sect. 4, we consider the complete colorings of projective hypergraphs. We first

prove that there is no complete coloring for �q(n, k) with 2 ≤ k < n. Besides, We
define another subhypergraph of �q(n, k), denoted by �q(n, k), and provide some
results of χc(�q(n, k)) and χc(�q(n, k)).

2 Preliminaries

In this section, we recall some notations in finite projective spaces and introduce the
definition of cyclic projective hypergraph. For a set A, define A∗ = A\{0}.

Let Fq be a finite field of order q, where q is a prime power. Let Vn be an n-
dimensional vector space over Fq . The number of k-dimensional subspaces in Vn is
given by Gaussian coefficient

[
n
k

]
q

=
k∏

i=1

qn−k+i − 1

qi − 1
,

see e.g. [9]. In particular,
[a
b
]
q = 0 unless 0 ≤ b ≤ a. So, the number of k-dimensional

subspaces of Vn containing a given t-dimensional subspace in Vn is

[
n − t
k − t

]
q
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where 0 ≤ t ≤ k ≤ n. In what follows, we will also use the notation

θn =
[
n
1

]
q

= qn − 1

q − 1
= qn−1 + qn−2 + · · · + q + 1

to denote the number of vertices in the projective hypergraph �q(n, k) defined from
PG(n − 1, q). Furthermore, we can obtain the regularity and uniformity of �q(n, k).

Theorem 2.1 �q(n, k) has the following basic parameters:

(1) There are θn vertices and
[n
k
]
q hyperedges.

(2) It is regular and uniform with parameters
[
n−1
k−1

]
q and θk respectively.

For the needof later research,wegive a specificdescriptionof�q (n, k). Throughout
the paper, we always let K = Fq and F = Fqn , an n degree extension field of Fq ,
then F is an n-dimensional vector space over K . Let α be a primitive element of F ,
then K ∗ = {1, αθn , α2θn , . . . , α(q−2)θn }. Further, we have �q(n, k) = (V , E) where

V = {〈αi 〉 = {aαi : a ∈ K } : i = 0, 1, . . . , θn − 1};
E = {〈αi1 , αi2 , . . . , αik 〉 = {a1αi1 + a2α

i2 + · · · + akα
ik : a j ∈ K , j = 1, 2, . . . , k,

αi1 , αi2 , . . . , αik are linear independence over K }.

In 2015, Araujo-Pardo et al. [1] introduced the concept of cyclic projective plane. The-
oretically, the class of cyclic projective planes is wider than the class of Desarguesian
planes, but each known finite cyclic plane is isomorphic to PG(2, q) for a suitable q.
We generalize it to projective hypergraph.

Let G be a finite additive group with v elements. A subset D = {d0, d1, . . . , dk−1}
of G is called a (v, k, λ)-difference set [17] if for every g ∈ G, g �= 0, there exist
exactly λ pairs of distinct elements di , d j ∈ D such that g = di − d j .

Let q be a prime power, v = q2 + q + 1. If the group Zv = Z/vZ contains
a difference set D = {d0, d1, . . . , dq}, then there exists a cyclic projective plane of
order q, the points are the elements of Zv and the hyperedges are D + i = {d0 +
i, d1 + i, . . . , dq + i}, i = 0, 1, . . . , v − 1.

Now, we define a cyclic hypergraph H. If the set of vertices in a hyperedge of H
forms a difference set, and other hyperedges can be obtained by the modulo addition
of the hyperedge, then we call any hypergraph isomorphic to H a cyclic hypergraph.
Further, a projective hypergraph is called a cyclic projective hypergraph if it is cyclic.

Lemma 2.2 (Singer’s Theorem [18]) Suppose q is a prime power, n ≥ 3 an integer.
Then there exists a (v, k, λ)-difference set with the parameters

v = θn, k = θn−1, λ = θn−2.

Corollary 2.3 �q(n, n − 1) is a cyclic projective hypergraph with n ≥ 3.
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3 Perfect Balanced Rainbow-Free Colorings of Projective
Hypergraphs

In [1], Araujo-Pardo, Kiss and Montejano studied the balanced upper chromatic num-
ber of cyclic projective planes and projective spaces. We spread their ideas and further
restrict the balanced condition. When the color classes of a rainbow-free coloring
have the same size, we call the coloring perfect balanced, and use χ p(H) to denote
the perfect balanced upper chromatic number of a hypergraph H. In this section, we
will discuss the perfect balanced rainbow-free colorings of the projective hypergraph
�q(n, k) and a subhypergraph of �q(n, k).

According to the method given in the proof of Theorem 2.3 in [1], we can have the
following theorem.

Theorem 3.1 SupposeH is a cyclic hypergraph with v vertices, and l is the minimum
nontrivial factor of v, then χ p(H) = v

l .

Proof For the cyclic hypergraph H, we define the color classes as follows:

Ci = {i, i + v

l
, . . . , i + (l − 1)v

l
}, 0 ≤ i ≤ v

l
− 1.

From the definition of a cyclic hypergraph, each hyperedge of H contains a pair of
vertices with the difference v

l , i.e., each hyperedge ofH contains a pair of vertices of
the form {i, i + v

l }. So the coloring is rainbow-free. ��
From Corollary 2.3, we have the following result.

Corollary 3.2 Suppose q is a prime power and n ≥ 3. Then χ p(�q(n, n − 1)) = θn
l ,

where l is the minimum nontrivial factor of θn.

For projective planes, the result of perfect balanced rainbow-free coloring is
obvious. Next, we consider higher dimensional projective hypergraphs. Take N =
{xq − x : x ∈ F}, then N is an additive subgroup of F , |N | = qn−1, and N is an
(n − 1)-dimensional subspace of F from [14].

Lemma 3.3 [14] For any a, b ∈ F∗, aN is an (n − 1)-dimensional subspace of F,
aN = bN if and only if ab−1 ∈ K ∗, where F∗, K ∗ are the multiplicative groups of
F, K respectively, and {aN : a ∈ F∗} is the set of all (n − 1)-dimensional subspaces
of F. Moreover, for any (n − t)-dimensional subspace T of F, there are t linearly
independent elements a−1

1 , a−1
2 , . . . , a−1

t over K such that T = a1N∩a2N∩· · ·∩at N .

Theorem 3.4 Suppose q is a prime power, n ≥ 3, l is the smallest nontrivial factor of
θn. Then χ p(�q(n, k)) = θn

l , where k ≥ � n+1
2 �.

Proof For �q(n, k), we define the color classes as follows:

Ci = {〈αi 〉, 〈αi+ θn
l 〉, . . . , 〈αi+(l−1) θn

l 〉}, 0 ≤ i ≤ θn

l
− 1,

where α is a primitive element of F . Then the coloring is a perfect balanced coloring,
and it is shown below that it is also a rainbow-free coloring.
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For t ≤ � n−1
2 	 and any (n − t)-dimensional subspace T of F , there are t linearly

independent elements a−1
1 , a−1

2 , . . . , a−1
t ∈ K such that T = a1N ∩ a2N ∩ · · · ∩ at N

byLemma 3.3. Let a = α
θn
l , there is dim(aT ∩T ) = dim(aT )+dim(T )−dim(aT+

T ) ≥ n − 2t ≥ 1. So aT ∗ ∩ T ∗ �= ∅, i.e., there exist u, v ∈ T ∗ such that au = v.
Further, u, v are linearly independent over K . Otherwise, there exists c ∈ K ∗ such

that u = cv, then a = v(cv)−1 = c−1 ∈ K , this contradicts with a = α
θn
l /∈ K . At

this time, T is a hyperedge of �q(n, n − t), the vertices 〈u〉, 〈v〉 are different in T ,
but they are belong to the same color class. Thus, this coloring is rainbow-free. So for
any t ≤ � n−1

2 	, there is

χ p(�q(n, n − t)) = θn

l
.

That is χ p(�q(n, k)) = θn
l , where k ≥ � n+1

2 �. ��
In addition, any k-dimensional subspace is contained in some (k + 1)-dimensional

subspaces, we have χ p(�q(n, k)) ≤ χ p(�q(n, k + 1)).
In 2018, Thakkar and Dave [19] constructed a subhypergraph by removing a vertex

from a projective plane and considered the edge independence number of the sub-
hypergraph. In a similar way, we want to define a subhypergraph of �q(n, k) and
consider the coloring problem of the subhypergraph.

Given a vertex of�q (n, k), let�q(n, k)be the subhypergraph obtained by removing
the vertex and all the hyperedges through the vertex of�q (n, k).Obviously,�q(n, k) is
unique in the sense of isomorphism.According to the relevant combinatorial properties
of vector spaces, we have the following results.

Theorem 3.5 �q(n, k) has the following basic parameters:

(1) There are θn − 1 vertices and qk
[
n−1
k

]
q hyperedges.

(2) It is regular and uniform with parameters qk−1
[
n−2
k−1

]
q and θk respectively.

Take the vertex 〈1〉 ∈ �q(n, k), we consider the corresponding subhypergraph
�q(n, k). Note that 〈1〉 = K , we can set

V (�q(n, k)) = {〈αi 〉 = {aαi : a ∈ K } : i = 1, 2, . . . , θn − 1};
E(�q(n, k)) = {〈αi1 , αi2 , . . . , αik 〉 = {a1αi1 + a2α

i2 + · · · + akα
ik : a j ∈ K ,

j = 1, 2, . . . , k, and 1, αi1 , αi2 , . . . , αik are linearly independent over K }.

When n = 3, k = 2, denote it by �q for short.

Lemma 3.6 Suppose q is a prime power and n is an odd prime. If (n, q −1) = 1, then
〈x〉 = 〈xq〉 if and only if x ∈ K.

Proof Because 〈x〉 = 〈xq〉 if and only if there exists k ∈ K such that xq = kx .
Both sides at the same time action q power, q2 power, . . . , qn−1 power, then we
have xq

2 = kxq , xq
3 = kxq

2
, . . . , xq

n = kxq
n−1

, so x = knx , that is kn = 1. Since
(n, q − 1) = 1, we have kn = 1 if and only if k = 1. So 〈x〉 = 〈xq〉 if and only if
xq = x , that is x ∈ K . ��

123



On Perfect Balanced Rainbow-Free Colorings and Complete… Page 7 of 16 147

Theorem 3.7 Suppose q is a prime power. If q ≡ 0, 2 (mod 3), then χ p(�q) = q2+q
3 .

Proof Construct an automorphism of F :

σ : F → F

x �→ xq , x ∈ F .

Then 〈σ 〉 is a cyclic group of order 3. The group 〈σ 〉 acts on the vertex set V (�q),

then 〈x〉 = {〈x〉, 〈xq〉, 〈xq2〉}, x ∈ F\K are all orbits with length 3 from Lemma 3.6.

By taking vertices in the same orbit as a color class, we can get q2+q
3 color classes.

The following shows that the coloring is rainbow-free.
Take any 〈x, y〉 ∈ E(�q), if z ∈ 〈x, y〉, then 〈z〉 ⊆ 〈x, y〉. So we only need to

verify that there exists an element z ∈ 〈x, y〉 with zq ∈ 〈x, y〉. From 〈x, y〉 ∈ E(�q),
we have x �= y, x �= xq , y �= yq , and x, y, xq , yq must be linear dependence over K
because x, y, xq , yq ∈ F . So there exist a, b, c, d ∈ K such that axq+byq = cx+dy,
where a and b are not all 0. Let z = ax + by ∈ 〈x, y〉, then the vertices 〈z〉 and 〈zq〉
in 〈x, y〉 have the same color. Therefore,

χ p(�q) ≥ q2 + q

3
.

On the other hand, when q ≡ 0, 2 (mod 3), the smallest nontrivial factor of q2 + q
is 2. Suppose there is a perfect balanced rainbow-free coloring with the color class

of size 2, then there are q2+q
2 color classes. Each color class contains a 2-subset of

vertices, so there are at most q
2+q
2 hyperedges which are rainbow.We have q2+q

2 ≥ q2

because �q has q2 hyperedges and the coloring is rainbow-free. It yields q ≤ 1, this
contradicts that q is a prime power. Hence, there is no perfect balanced rainbow-free
coloring with the color class of size 2. Therefore

χ p(�q) ≤ q2 + q

3
.

To sum up, the conclusion holds. ��
Below, let n be an odd prime. We will consider the perfect balanced rainbow-free

coloring of �q(n, n+1
2 ), and give the upper and lower bounds of χ p(�q(n, n+1

2 )).

Theorem 3.8 Suppose q is prime power, n is an odd prime. If (n, q − 1) = 1, then

χ p(�q(n,
n + 1

2
)) ≥ qn − q

n(q − 1)
.

Proof Construct an automorphism of F = Fqn :

σ : F → F

x �→ xq , x ∈ F .
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Then 〈σ 〉 is a cyclic group of order n. The group 〈σ 〉 acts on the vertex set
V (�q(n, n+1

2 )), then 〈x〉 = {〈x〉, 〈xq〉, . . . , 〈xqn−1〉}, x ∈ F\K are all orbits with
length n by Lemma 3.6. By taking vertices in the same orbit as a color class, we can
get qn−q

n(q−1) color classes. The following shows that the coloring is rainbow-free.

Take a hyperedge 〈x1, x2, . . . , x n+1
2

〉 ∈ E(�q(n, n+1
2 )), if z ∈ 〈x1, x2, . . . , x n+1

2
〉,

then 〈z〉 ⊆ 〈x1, x2, . . . , x n+1
2

〉. So we only need to verify that there exists an ele-

ment z ∈ 〈x1, x2, . . . , x n+1
2

〉 with zq
i ∈ 〈x1, x2, . . . , x n+1

2
〉, i = 1, . . . , n − 2 or

n − 1. From 〈x1, x2, . . . , x n+1
2

〉 ∈ E(�q(n, n+1
2 )), we have xi �= x j , xi �= xqi , i, j =

1, 2, . . . , n+1
2 , i �= j , and xi , x

q
i , i = 1, 2, . . . , n+1

2 must be linear dependence over
K because xi , x

q
i ∈ F = Fqn . So there exist a1, a2, . . . , a n+1

2
, b1, b2, . . . , bn+1

2
∈ K

such that
∑(n+1)/2

i=1 ai x
q
i = ∑(n+1)/2

i=1 bi xi , where ai and bi are not all 0. Let

z = ∑(n+1)/2
i=1 ai xi , then zq ∈ 〈x1, x2, . . . , x n+1

2
〉. The vertices 〈z〉 and 〈zq〉 in

〈x1, x2, . . . , x n+1
2

〉 have the same color. Therefore

χ p(�q(n,
n + 1

2
)) ≥ qn − q

n(q − 1)
.

��
Theorem 3.9 Suppose q is a prime power. All perfect balanced rainbow-free colorings
of �q(n, n+1

2 ) satisfy that the size of the color classes is at least three, and

χ p(�q(n,
n + 1

2
)) ≤ qn − q

3(q − 1)
.

Proof There are qn−q
q−1 vertices and q

n+1
2

[n−1
n+1
2

]
q hyperedges in �q(n, n+1

2 ) from The-

orem 3.5. Suppose that the perfect balanced rainbow-free coloring of �q(n, n+1
2 ) has

h color classes of size t , then t ≥ 2. If t = 2, we have h = qn−q
2(q−1) .

Because any two vertices of�q(n, n+1
2 ) are contained in exacly

[n−2
n−3
2

]
q −[n−3

n−5
2

]
q =

q
n−3
2 · [n−3

n−3
2

]
q hyperedges, the h 2-subsets with the same colors cover up to hq

n−3
2 ·[n−3

n−3
2

]
q hyperedges, which is less than the number of hyperedges. So t ≥ 3 and

χ p(�q(n, n+1
2 )) ≤ qn−q

3(q−1) . ��

4 Complete Colorings of Projective Hypergraphs

In [7], the complete c-colorings of k-uniform hypergraphs are studied. �q(n, k) and
�q(n, k) are uniform hypergraphs, we will consider their complete colorings in this
section. In addition, we will define another subhypergraph of �q(n, k) and discuss its
complete colorings.
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Theorem 4.1 Suppose q is a prime power. For any positive integer c, there is no
complete c-coloring for the projective hypergraph �q(n, k) with 2 ≤ k < n.

Proof First, we discuss the rainbow coloring of �q(n, k). When 2 ≤ k < n, any
two vertices in �q(n, k) are contained in some hyperedges, so any two vertices have
different colors in a rainbow coloring of �q(n, k). That is, there are θn color classes.
Furthermore, if there exists a complete c-coloring of �q(n, k), then

( c
θk

) ≤ [n
k
]
q , i.e.,(

θn
θk

) ≤ [n
k
]
q . This will result in q = 1 or n = k, it is inconsistent with the conditions of

the theorem. Therefore, there is no complete c-coloring for the projective hypergraph
�q(n, k) with 2 ≤ k < n. ��

Although �q(n, k) does not have complete colorings with 2 ≤ k < n, its subhy-
pergraphs maybe have complete colorings. Next, we consider two subhypergraphs of
�q(n, k).

4.1 3q(n, k)

The subhypergraph �q(n, k) is defined in Sect. 3. We know that there are[
n−1
2−1

]
q = θn−1 hyperedges through a fixed vertex p0 in PG(n − 1, q). Let L p0 =

{l0p0 , l1p0 , . . . , lθn−1−1
p0 } be the set of hyperedges by removing p0 from the θn−1 hyper-

edges, then |lip0 | = q, i = 0, 1, . . . , θn−1−1, and L p0 forms apartition ofV (�q(n, k)).

Lemma 4.2 Suppose q is a prime power. Then χc(�q) = q + 1.

Proof Given a vertex p0, there are q + 1 hyperedges through p0 in �q and L p0 forms
a partition of V (�q). Now, we give a coloring of �q by defining the color classes

Ci = lip0 , i = 0, 1, . . . , q.

From the definition of �q and the combinatorial properties of projective planes, we
know that the vertices in any hyperedge of �q have q + 1 different colors and come
from the q + 1 different color classes. So �q has a complete (q + 1)-coloring.

On the other hand, suppose �q has a complete c-coloring τ with c ≥ q + 2. For
any hyperedge of �q , it intersects each hyperedge of L p0 at a unique vertex. Choose
a hyperedge l of �q , the relationship between l and lip0 , i = 0, 1, . . . , q can be shown
below (Fig. 1).

Let’s color the intersection p1i of l and lip0 with color i , i = 0, 1, . . . , q. Because
c ≥ q + 2, there is a vertex px /∈ l with color q + 1. Without loss of generality,
let px ∈ l0p0 . Because any two vertices from different hyperedges of L p0 appear in a
unique hyperedge in�q , then there is no y ∈ lip0 with color 0 or q+1, i = 1, 2, . . . , q.
At this time, there is no hyperedge in E(�q) with two vertices coloring 0, q + 1
respectively, which contradicts the definition of complete coloring. So �q has no
complete c-coloring when c ≥ q + 2.

To sum up, �q has and only complete (q + 1)-coloring. ��
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Fig. 1 The relationship between
l and lip0 in �q

Theorem 4.3 Suppose q is a prime power. Then there exists a complete coloring for
�q(n, 2) if and only if n = 3.

Proof By Lemma 4.2, there exists a complete (q + 1)-coloring of �q(n, 2) for n = 3.
Now we consider the case of n ≥ 4. If there exists a complete c-coloring of

�q(n, 2), then c ≥ θn−1 because any two vertices from different hyperedges of L p0
have a hyperedge connecting them in �q(n, 2). From the definition of the complete
c-coloring, we have

(
θn−1

q + 1

)
≤

(
c

q + 1

)
≤ q2

[
n − 1
2

]
q
.

This simplifies to

(qn−1 − 2q + 1)(qn−1 − 3q + 2) · · · (qn−1 − q2 + q − 1) ≤ q(q − 1)q−1q!. (1)

When q = 2, we have 2n−1 − 3 ≤ 4. So n ≤ 3.
When q ≥ 3, on the one hand,

(qn−1 − 2q + 1)(qn−1 − 3q + 2) · · · (qn−1 − q2 + q − 1)

> (qn−1 − 2q)(qn−1 − 3q) · · · (qn−1 − q2)

= qq−1(qn−2 − 2)(qn−2 − 3) · · · (qn−2 − q)

> qq(qn−2 − q)q−2(qn−3 − 1)

= q2q−2(qn−3 − 1)q−1.

On the other hand,

q(q − 1)q−1q! < qqq! = 2qqq(q − 1) · · · 3 < 2q2q−2.

When n ≥ 4, there is (qn−3 − 1)q−1 > 2. So, the inequality (1) is true if and only if
n ≤ 3.

Therefore, there is a complete coloring for �q(n, 2) if and only if n = 3. ��
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Theorem 4.4 Suppose q is a prime power. If there exists a complete coloring for
�q(n, k), then χc(�q(n, k)) = θn−1.

Proof We know that L p0 = {l0p0 , l1p0 , . . . , lθn−1−1
p0 } forms a partition of V (�q(n, k)).

Similar to �q , if there exists a complete coloring of �q(n, k), then the vertices from
different lip0 must have different colors because there are some hyperedges containing
two vertices from different lip0 in �q(n, k). On the other hand, the vertices from the
same lip0 must have the same color. Otherwise, if there are two vertices from the same
lip0 coloring different colors, we denote the colors by i and θn−1. Since the hyperedges
containing these two vertices in�q(n, k) correspond to the hyperedges containing the
vertex p0 in �q(n, k), and the vertices from different lip0 have different colors, there
is no hyperedge in �q(n, k) with two vertices coloring i and θn−1. This contradicts
the definition of complete coloring. Therefore, if there exists a complete coloring for
�q(n, k), it is complete θn−1-coloring. ��

From the above discussion, if there exists a complete coloring of�q(n, k), then the
number of θk-subsets of the colors is less than or equal to the number of hyperedges.
So we have

(
θn−1

θk

)
≤ qk

[
n − 1
k

]
q
.

By plugging in the values of n, k, q, we can preliminarily determine whether�q(n, k)
has a complete coloring. Obviously, χc(�q(n, n − 1)) = θn−1.

4.2 Äq(n, k)

In this subsection, we define another subhypergraph of�q (n, k) and study the problem
of the complete colorings.

Let S be a hyperplane of �q(n, k), then |S| = θn−1. Let p0 be a fixed vertex in S.
We define a subhypergraph of �q(n, k), denoted by �q(n, k) = (V ′, E ′), where

V ′ = V (�q(n, k))\S;
E ′ = {l\S : l ∈ E(�q(n, k)), p0 /∈ l}.

When n = 3, k = 2, it is denoted by�q for short.�q(n, k) is unique in the isomorphic
sense, because the subspaces of �q(n, k) are transitive under the action of the general
linear group GL(n, q) when n ≥ 3.

Similar to Theorem 3.5, the basic properties of �q(n, k) can be given.

Theorem 4.5 �q(n, k) has the following basic parameters:

(1) There are qn−1 vertices and qn−1
[
n−2
k−1

]
q hyperedges.

(2) It is regular and uniform with parameters qn−1−qk−1

qk−1−1

[
n−2
k−2

]
q and q

k−1 respectively.
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Fig. 2 The relationship between
L p0 and L p1 in �q

We first consider the case of k = 2. For �q , the hyperedges are the hyperplanes.
Take a hyperedge l of �q , and denote by l = {p0, p1, . . . , pq}. For the vertex pi ∈ l,
define a set L pi = {m\{pi } : m is a hyperedge of �q , pi ∈ m and m �= l}, i =
0, 1, . . . , q. Since there are q + 1 hyperedges through pi in �q , thus |L pi | = q. We

set L pi = {l jpi : j = 1, 2, . . . , q}, i = 0, 1, . . . , q. From the properties of �q , �q

can be expressed as (V ′, E ′), where V ′ = V (�q)\l and E ′ = {l jpi : l jpi ∈ L pi , i, j =
1, 2, . . . , q}.
Lemma 4.6 Suppose q is a prime power. Then χc(�q) = q.

Proof By the definition of �q , L pi forms exactly a partition of V ′, i = 0, 1, . . . , q.
We give the color classes as

C j−1 = l jp0 , l jp0 ∈ L p0 , j = 1, 2, . . . , q.

Then the vertices in any hyperedge of �q have q different colors and come from the
q different color classes. So �q has a complete q-coloring.

When c ≥ q + 1, suppose �q has a complete c-coloring τ . Since L pi forms a
partition of V ′ in�q , 1 ≤ i ≤ q, then each hyperedge in L pi intersects any hyperedge
in L p0 at a unique vertex. The relationship between L p0 and L p1 can be shown below
(Fig. 2).

Let’s color the intersection p1 j of l1p1 and l jp0 with color j − 1, j = 1, 2, . . . , q.
Because c ≥ q+1, there is a vertex px in l2p1 ∪ l3p1 ∪· · ·∪ lqp1 with τ(px ) = q. Without
loss of generality, let px ∈ l1p0 ∩ l2p1 .

Because any two vertices fromdifferent hyperedges in L p0 have a unique hyperedge

of�q containing them, there is τ(y) �= 0 or q for any y ∈ l jp0 , j = 2, 3, . . . , q. At this
time, there is no hyperedge in E ′ with two vertices coloring 0 and q, which contradicts
the definition of complete coloring. So�q has no complete c-coloringwhen c ≥ q+1.

To sum up, χc(�q) = q. ��
Lemma 4.7 χc(�2(n, 2)) = 2n−2.

Proof There are 2n−1 − 1 hyperedges through a fixed vertex p0 in �2(n, 2). Let S be
a hyperplane of �2(n, 2). Delete the hyperedges in hyperplane S, then the remaining
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2n−2 hyperedges through the vertex p0 could form a partition of V ′ by removing p0,
i.e., L p0 is the partition. Define the color classes

C j−1 = l jp0 , l jp0 ∈ L p0 , j = 1, 2, . . . , 2n−2.

Then two vertices in any hyperedge of �2(n, 2) have different colors. We know that
�2(n, 2) is a 2-uniform hypergraph, any two vertices in V ′ determine a unique hyper-
edge. That is, each 2-subset of the colors appears as a color set of a certain hyperedge.
Thus, �2(n, 2) has a complete 2n−2-coloring.

On the other hand, suppose there exists a complete c-coloring with c > 2n−2.
Because two vertices from different l jp0 determine a unique hyperedge in�2(n, 2), the

vertices in different l jp0 have different colors. Suppose there is a vertex p1 j coloring

j − 1 in l jp0 , j = 1, 2, . . . , 2n−2. Because c > 2n−2, there exists a l jp0 such that the

other vertex of l jp0 coloring 2n−2. Without loss of generality, let it be l1p0 . Similar to
�q , because any two vertices from different hyperedges of L p0 determine a unique

hyperedge in �2(n, 2), there is τ(y) �= 0 or 2n−2 for any y ∈ l jp0 , j = 2, 3, . . . , 2n−2.
The 2-subset {0, 2n−2} of colors can not appear as a color set of a hyperedge in
�2(n, 2). It conflicts the definition of complete c-coloring. So c ≤ 2n−2. That is
χc(�2(n, 2)) = 2n−2. ��

Lemma 4.8 For any positive integer c, there is no complete c-coloring for �3(4, 2).

Proof There are 13 hyperedges through a fixed vertex p0 in �3(4, 2). Let S be a
hyperplane of�3(4, 2). We delete the hyperedges in hyperplane S, then the remaining
9 hyperedges through the vertex p0 could form a partition of V ′ by removing p0, i.e.,
L p0 is the partition. Similar to Lemma 4.6, if �3(4, 2) has a complete c-coloring,
the vertices from different hyperedges of L p0 must be have different colors and the
vertices in the same hyperedge have the same color. So if �3(4, 2) has a complete
c-coloring, there is a unique way to color, i.e. a hyperedge of L p0 as a color class, and
c = 9. Now we consider whether this coloring satisfies the conditions of a complete
coloring.

Let x4 + x3 + 2 be a primitive polynomial of F34 , and let α be a primitive element
of F34 . Without loss of generality, we suppose the hyperplane S = 〈1, α, α2〉 and the
vertex p0 = 〈1〉, then

S = {〈1〉, 〈α〉, 〈α2〉, 〈α8〉, 〈α16〉, 〈α18〉, 〈α23〉, 〈α25〉, 〈α28〉, 〈α29〉, 〈α34〉, 〈α37〉, 〈α38〉}.

L p0 forms a partition of �3(4, 2). For convenience, we use the index i to denote 〈αi 〉,
and define the sets of color classes as follows:

C0 = {3, 4, 31}, C1 = {5, 11, 19}, C2 = {6, 14, 35},
C3 = {7, 22, 24}, C4 = {9, 12, 13}, C5 = {10, 20, 30},
C6 = {15, 17, 33}, C7 = {21, 26, 32}, C8 = {27, 36, 39}.
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The hyperedges are listed below:
{3, 19, 26}, {4, 5, 32}, {6, 12, 20}, {7, 15, 36}, {9, 30, 35},
{10, 13, 14}, {11, 21, 31}, {17, 24, 39}, {22, 27, 33};
{3, 30, 39}, {4, 20, 27}, {5, 6, 33}, {7, 13, 21}, {9, 24, 26},
{10, 31, 36}, {11, 14, 15}, {12, 22, 32}, {17, 19, 35};
{3, 14, 22}, {4, 7, 35}, {5, 9, 36}, {6, 24, 31}, {10, 26, 33},
{11, 12, 39}, {13, 19, 27}, {15, 30, 32}, {17, 20, 21};
{3, 12, 15}, {4, 13, 17}, {5, 10, 24}, {6, 26, 36}, {7, 19, 20},
{9, 31, 33}, {11, 22, 30}, {14, 32, 39}, {21, 27, 35};
{3, 20, 36}, {4, 10, 39}, {5, 14, 17}, {6, 15, 19}, {7, 12, 26},
{9, 21, 22}, {11, 33, 35}, {13, 24, 32}, {27, 30, 31};
{3, 13, 33}, {4, 9, 15}, {5, 7, 30}, {6, 21, 39}, {10, 19, 22},
{11, 20, 24}, {12, 17, 31}, {14, 26, 27}, {32, 35, 36};
{3, 10, 27}, {4, 30, 36}, {5, 15, 35}, {6, 11, 17}, {7, 9, 32},
{12, 21, 24}, {13, 22, 26}, {14, 19, 33}, {20, 31, 39};
{3, 5, 21}, {4, 11, 26}, {6, 13, 30}, {7, 33, 39}, {9, 14, 20},
{10, 12, 35}, {15, 24, 27}, {17, 22, 36}, {19, 31, 32};
{3, 24, 35}, {4, 6, 22}, {5, 12, 27}, {7, 14, 31}, {9, 19, 39},
{10, 15, 21}, {11, 13, 36}, {17, 26, 30}, {20, 32, 33};
{3, 6, 7}, {4, 14, 24}, {5, 13, 39}, {9, 11, 27}, {10, 17, 32},
{12, 19, 36}, {15, 20, 26}, {21, 30, 33}, {22, 31, 35};
{3, 11, 32}, {4, 19, 21}, {5, 26, 31}, {6, 9, 10}, {7, 17, 27},
{12, 14, 30}, {13, 20, 35}, {15, 22, 39}, {24, 33, 36};
{3, 9, 17}, {4, 12, 33}, {5, 20, 22}, {6, 27, 32}, {7, 10, 11},
{13, 15, 31}, {14, 21, 36}, {19, 24, 30}, {26, 35, 39}.

In this case, many 3-subsets of the colors, such as {0, 1, 2}, cannot appear as the
color sets of the hyperedges. So there is no complete 9-coloring. And since �3(4, 2)
is unique in the isomorphism sense, there is no complete coloring for �3(4, 2). ��
Lemma 4.9 Suppose q ≥ 3 is a prime power. There is no complete c-coloring for
�q(n, 2) with n ≥ 4 and positive integer c.

Proof Given a vertex p0 and define the set L p0 as above. If �q(n, 2) has a complete

c-coloring, the two vertices from different l jp0 have different colors, so c ≥ qn−2 and

(
c

q

)
≤ qn−1θn−2.

Due to
(
qn−2

q

)
= qn−2(qn−2 − 1) · · · (qn−2 − q + 1)

q! ≤ qn−1(qn−2 − 1)

q − 1
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if and only if n = 3 or q = 2 or (n, q) = (4, 3). �3(4, 2) has no complete c-coloring
by Lemma 4.8. So there is no complete c-coloring of�q(n, 2)when n ≥ 4 and q ≥ 3.
��

In summary, we have completely solved the problem of the complete colorings of
�q(n, 2) and get the following theorem.

Theorem 4.10 There exists a complete coloring for �q(n, 2) if and only if n = 3 or
q = 2.

Finally, for the case of k > 2, similar to Lemma 4.6 and Theorem 4.4, we have the
following theorem.

Theorem 4.11 Suppose q is a prime power. If there exists a complete coloring for
�q(n, k) with k > 2, then χc(�q(n, k)) = qn−2.

Furthermore, if there exists a complete coloring for �q(n, k), the number of qk−1-
subsets from the colors is less than or equal to the number of hyperedges, then we
have

(
qn−2

qk−1

)
≤ qn−1

[
n − 2
k − 1

]
q
.

By plugging in the values of n, k, q, we can also preliminarily determine whether
�q(n, k) has complete coloring. Obviously, χc(�q(n, n − 1)) = qn−2.

5 Conclusions

In this paper, we mainly study the perfect balanced rainbow-free colorings and the
complete colorings of projective hypergraphs. We present the perfect balanced upper
chromatic number of �q(n, k) with k ≥ � n+1

2 � and prove that �q(n, k) has no
complete coloring with 2 ≤ k < n. We define two subhypergraphs with strong
properties of �q(n, k), �q(n, k) and �q(n, k). As a consequence, we show that

χ p(�q(3, 2)) = q2+q
3 for q ≡ 0, 2 (mod 3) and provide some results of χc(�q(n, k))

and χc(�q(n, k)). In particular, we solve the problem of the complete colorings of
�q(n, 2) and �q(n, 2). For the higher dimensions, further research on the colorings
of the projective hypergraphs �q(n, k), �q(n, k) and �q(n, k) is needed.
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