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Abstract
We describe the structure of those finite groups whose maximal subgroups are either
2-nilpotent or normal. Among other properties, we prove that if such a group G does
not have any non-trivial quotient that is a 2-group, then G is solvable. Also, if G is a
solvable group satisfying the above conditions, then the 2-length of G is less than or
equal to 2. If, on the contrary, G is not solvable, then G has exactly one non-abelian
principal factor and the unique simple group involved is one of the groups PSL2(p2

a
),

where p is an odd prime and a ≥ 1, or p is a prime satisfying p ≡ ±1 (mod 8) and
a = 0.

Keywords Maximal subgroups · p-Nilpotent groups · Schmidt groups · Solvability
criterion · Simple groups

Mathematics Subject Classification 20E28 · 20D15 · 20D06

1 Introduction

Throughout this paper, all groups are supposed to be finite and we follow standard
notation (e.g. [11] or [14]).

It is widely known that certain properties of either all or some maximal subgroups
of a finite group may have a significant impact on the structure of the group. A typical
result is, for instance, a Thompson’s classic theorem that establishes the solvability

Communicated by Peyman Niroomand.

B Antonio Beltrán
abeltran@uji.es

Changguo Shao
shaoguozi@163.com

1 College of Science, Nanjing University of Posts and Telecommunications, Yadong, Nanjing
210023, China

2 Departamento de Matemáticas, Universitat Jaume I, 12071 Castellón, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-024-01743-y&domain=pdf
http://orcid.org/0000-0002-3865-0573
http://orcid.org/0000-0001-6570-201X


142 Page 2 of 8 C. Shao, A. Beltrán

of the groups with an odd order nilpotent maximal subgroup [14, Theorem 10.4.2].
Likewise, the solvability and the structure of Schmidt groups [14, Theorem 9.1.9], i.e.,
minimal non-nilpotent groups, as well as the classification of minimal non-solvable
groups, which arose in a series of papers by Thompson, are renowned examples of
how the structure of a group can be affected or is determined by the properties of its
maximal subgroups.

Let p be a prime. Recall that a group is said to be p-nilpotent if it has a normal
Hall p′-subgroup. Clearly, p-nilpotency is a local version of nilpotency since a group
G is nilpotent if and only if it is p-nilpotent for all primes p. According to a result of
Itô, the minimal non-p-nilpotent groups are in fact Schmidt groups, and consequently,
are solvable too. This was also extended into the coprime action context in [13]. In
2011, Schmidt groups were also generalized in [12] by demonstrating that groups
whose maximal subgroups are either normal or nilpotent are solvable and p-nilpotent
for some prime p. The authors have recently extended this result in [1, Corollary
4.2], where they prove the p-solvability of those groups whose maximal subgroups
are either normal or p-nilpotent whenever p is odd, by an application of the well-
known Glauberman-Thompson normal p-complement theorem [6, Theorem 8.3.1].
However, as shown in [1], this result fails when p = 2, indicating that groups whose
maximal subgroups are either normal or 2-nilpotent do not have to be 2-solvable, or
equivalently, solvable. The main goal of this paper is to show that the non-solvable
structure of such groups is extremely limited, and is described as follows.

Theorem A Let G be a non-solvable finite group and suppose that every maximal
subgroup of G is either 2-nilpotent or normal in G. Let S(G) denote the solvable
radical of G. Then S(G) = O2′,2(G) and

O2(G)/O2′,2(G) ∼= S × . . . × S,

where S is isomorphic to the simple group PSL2(p2
a
), for some odd prime p and

a ≥ 1, or for some odd prime p ≡ ±1 (mod 8) and a = 0.

It is obvious that there do not exist non-abelian simple groups whose maximal
subgroups are either 2-nilpotent or normal. However, wewant tomention that a related
result has recently appeared in [5], where it is given a classification of non-abelian
simple groups having all subgroups nilpotent or pronormal.

For proving TheoremA,wemake use of several results relying on the Classification
of Finite SimpleGroups, more precisely on the structure of groupswhose non-solvable
maximal subgroups have prime power index [3, Theorem 1]. We will also need infor-
mation of the subgroup structure of some specific simple groups and certain families
of simple groups of Lie type by appealing to [2, 4, 8].

Typical examples of groups that satisfy the hypotheses of Theorem A correspond-
ing to the distinct possibilities for the parameter a are the almost simple groups
PGL2(52) ∼= PSL2(52).21 and PGL2(17) ∼= PSL2(17).2, respectively (we follow
the notation of [2]). This can be checked with the help of [2] or [15]. An example of a
group satisfying the hypotheses of Theorem A that has non-trivial solvable radical is
G = 3.M10, a central extension of the (non-simple) Mathieu group M10. This group
satisfies O2(G)/O2′,2(G) = PSL2(32). Examples in which the solvable radical is
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non-central can be easily constructed. It suffices to consider the direct product G×H ,
where G is any of the above groups and H is any non-abelian nilpotent group with
(odd) order being relatively prime to |G|.

However, when all maximal subgroups of a group are either 2-nilpotent or normal,
andwe assume, in addition, that it does not have non-trivial quotients that are 2-groups,
then we obtain more.

Corollary B Let G be a finite group such that every maximal subgroup of G is either
2-nilpotent or normal in G. If O2(G) = G, then G is solvable.

Solvable groups in which every maximal subgroup is 2-nilpotent or normal do
not need, of course, to satisfy the above equality O2(G) = G, and neither need
to satisfy O2′,2(G) = G, as it happens with the solvable radical in Theorem A.
The symmetric group S3 and the alternating group A4 are examples showing these
assertions respectively. However, we are able to bound the 2-length of such groups.

Theorem C Let G be a solvable finite group and suppose that every maximal subgroup
of G is either 2-nilpotent or normal in G. Then O2′,2,2′,2(G) = G.

We observe that groups satisfying the hypotheses of Theorem C actually include
Schmidt groups, nilpotent groups and odd order groups. Groups satisfying the condi-
tions of Theorem C that do not belong to any of the aforementioned classes are, for
instance, the symmetric group S4 and GL2(3).

2 Proofs

Before proving our results, we state the following classification theorem, pointed out
in the Introduction, which is crucial in the proof of Theorem A. This result extends
Guralnick’s work [7] concerning maximal subgroups of prime power index in simple
groups and about groups with all maximal subgroups having prime power index.

Theorem 2.1 [3, Theorem 1] Let G be a non-solvable group in which every non-
solvable maximal subgroup has prime power index. Then:

(i) the non-abelian composition factors of the group G are pairwise isomorphic and
are exhausted by groups from the following list:

(1) PSL2(2p), where p is a prime,
(2) PSL2(3p), where p is a prime,
(3) PSL2(p2

a
), where p is an odd prime and a ≥ 0,

(4) Sz(2p), where p is an odd prime,
(5) PSL3(3);

(ii) for any simple group S from the list in statement (i), there exists a group G
such that any of its non-solvable maximal subgroups has primary index and
Soc(G) ∼= S.

In the next lemma, we detail the structure of the Sylow normalizers of PSL2(q)
with q a prime power for the convenience of readers, as it will be repeatedly used.
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Lemma 2.2 Let G = PSL2(q), where q is a power of prime p and d = (2, q + 1).
Let r be a prime divisor of |G| and R ∈ Sylr (G).

(1) If r = p, then NG(R) = R � Cq−1
d
;

(2) If 2 �= r | q+1
d , then NG(R) = Cq+1

d
� C2;

(3) If 2 �= r | q−1
d , then NG(R) = Cq−1

d
� C2;

(4) Assume p �= r = 2.

(4.1) If q ≡ ±1 (mod 8), then NG(R) = R;
(4.2) If q ≡ ±3 (mod 8), then NG(R) = (C2 × C2) � C3.

Proof This follows from [8, Theorem 2.8.27]. �	
We are ready to prove our results.

Proof of TheoremA LetG := G/S(G) > 1.Assumefirst that everymaximal subgroup
of G is 2-nilpotent. Since G cannot be 2-nilpotent because it is non-solvable, then G
is a minimal non-2-nilpotent group. But then, by a theorem of Itô, mentioned in the
Introduction [8, Theorem IV.5.4], the minimal non-2-nilpotent groups are minimal
non-nilpotent groups, so G would be solvable, a contradiction. Therefore, we can
assume that G has a maximal subgroup M1 that is not 2-nilpotent, so M1 � G by
hypothesis. On the other hand, sinceG is non-solvable, we have that not everymaximal
subgroup of G can be normal in G, otherwise G would be nilpotent. If M2 is one of
such subgroups, then again by hypothesis, M2 must be 2-nilpotent. We conclude that
at least both, M1 and M2, a maximal subgroup that is normal in G and a 2-nilpotent
maximal subgroup exist, and both subgroups contain S(G). In particular, S(G) is
2-nilpotent, and hence S(G) is included in the 2-nilpotent radical of G, that is, in
O2′,2(G). The converse containment trivially follows by Feit-Thompson Theorem (on
the solvability of odd order groups). Thus, O2′,2(G) = S(G) (possibly trivial), and
from now on, without loss of generality, we will assume that S(G) = 1.

In the following,we prove thatG has a uniqueminimal normal subgroup N . Assume
on the contrary that there is anotherminimal normal subgroup K ofG. Since S(G) = 1,
we have that K is non-solvable. Now, we takeM to be a 2-nilpotent maximal subgroup
of G, which we know that does exist. Then G = NM . As K ∩ N = 1 then

K ∼= K N/N ≤ G/N ∼= M/(N ∩ M),

from which we deduce that K is 2-nilpotent, a contradiction. Therefore, the claim is
proved.

Write N = S1 × · · · × Sn , where Si are isomorphic non-abelian simple groups and
n ≥ 1. First we prove that G/N is nilpotent. Indeed, if D/N is a maximal subgroup
of G/N , then D cannot be 2-nilpotent, so D�G by hypothesis, and this is equivalent
to say that G/N is nilpotent, as wanted. We assert that G possesses non-solvable
maximal subgroups. Observe that the only case in which all maximal subgroups of G
are solvable is when G/N is trivial, n = 1 and G is a minimal simple group. But in
this case G certainly does not satisfy the hypotheses. Therefore, let M0 be any non-
solvable maximal subgroup of G. In particular, it is not 2-nilpotent, so again M0 �G.
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From the uniqueness of N it follows that N ≤ M0, and then, the nilpotency of G/N
implies that |G : M0| is prime. In particular, G satisfies the hypotheses of Theorem
2.1, and we conclude that Si are all isomorphic to one of the groups, from now on say
S, listed in the thesis of that theorem.

In the following, we do a case-by-case analysis of these groups to exclude them all
except those of case (3) of Theorem 2.1. We first prove that the normalizer of every
Sylow subgroup of S must be 2-nilpotent. Let P be a Sylow p-subgroup of N for an
arbitrary prime p dividing |N |. By the Frattini argument, we have G = NG(P)N , and
then we can take a maximal subgroup M of G such that NG(P) ≤ M . As M cannot
be normal in G, it is 2-nilpotent by hypothesis, so in particular, NN (P) = ∏

NS(P0)
is 2-nilpotent as well, where P0 = P ∩ S ∈ Sylp(S). Thus the assertion is proved.

We start our analysis by assuming that S ∼= PSL2(2q)with q prime, and take p = 2.
Lemma 2.2(1) asserts that if P0 ∈ Syl2(S), then NS(P0) ∼= P0 � C2q−1, which is not
2-nilpotent, contradicting the above paragraph, so this case can be discarded. A similar
argument with the prime 2 works to reject the Suzuki group, Sz(q), with q = 22n+1,
because the normalizer of a Sylow 2-subgroup P has the form P �Cq−1 [9, Chap XI,
Theorem 3.10].

For the case S ∼= PSL3(3), we observe that all Sylow normalizers are 2-nilpotent,
so we cannot apply the above argument to discard it. Instead, we check in [2] that it has
a unique conjugacy class of maximal subgroups of order 24, which are all isomorphic
to the symmetric group S4. Then the direct product of n such subgroups, each one in
a different factor Si , form a conjugacy class of subgroups in N . We stress that there
exist other subgroups in PSL3(3) that are isomorphic to S4 out of this single conjugacy
class, but they are not maximal. Take S4 ∼= H0 one of those maximal subgroups of S
and put H = H0 × · · · × H0 ≤ N . We show that the Frattini argument applies to get
G = NG(H)N . Indeed, if g ∈ G, since G (transitively) permutes the factors Si , then
we have Hg = ∏

Hg
0 where each factor belongs to a distinct Si , is maximal in such Si

and isomorphic to S4. Accordingly, Hg is the direct product of n maximal subgroups
isomorphic to S4, and lies in the above-mentioned conjugacy class of subgroups of
N . It follows that Hg = Hn for some n ∈ N , and hence G = NG(H)N , as wanted.
Now, let us take a maximal subgroup M of G that contains NG(H) because H is not
normal in G. Clearly N � M and thus, by minimality and uniqueness of N , it follows
that M cannot be normal in G, so M is 2-nilpotent by hypothesis. Hence NG(H) is
2-nilpotent too, contradicting the fact that H is not, so this case can be eliminated.

Suppose now that S ∼= PSL2(3q)with q prime, and take p = 2. If q is odd, then we
certainly have 3q ≡ 3 (mod 8). If P0 ∈ Syl2(S), then NS(P0) ∼= A4, the alternating
group, by Lemma 2.2(4.1). But A4 neither is 2-nilpotent, so these cases are excluded
too. Therefore, the only casewithin this family of simple groups thatwe cannot exclude
is when q = 2, that is, PSL2(32), which belongs to case (3) of Theorem 2.1. In fact,
we remark that all Sylow normalizers of this group are 2-nilpotent.

Finally, assume that S ∼= PSL2(q2
a
) with q an odd prime and a ≥ 0. The Sylow

normalizers of this group are 2-nilpotent for all primes (see again Lemma 2.2) except
for the prime 2 and q2

a ≡ ±3 (mod 8); in that case the normalizers of the Sylow
2-subgroups of S are isomorphic to A4, which is not 2-nilpotent. But note that the
above congruence only occurs when a = 0 and q ≡ ±3 (mod 8), because if a ≥ 1,
then q2

a ≡ 1 (mod 8) for every odd prime q. Thus, in this family of simple groups,
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only the case a = 0 and q ≡ ±3 (mod 8) can be discarded. We want to remark that,
according to the list of subgroups of PSL2(q2

a
) with a ≥ 0, given in Dickson’s book

[4] (see also [10, Theorem 2.1] for a specific list of conjugacy classes of subgroups),
we know that PSL2(q2

a
) for each a ≥ 1 does not have any single conjugacy class of

subgroups (for every isomorphic type) of non-2-nilpotent subgroups. Thus, a similar
argument to that of PSL3(3) cannot be applied here so as to rule out more groups
within this family of simple groups.

This completes our analysis on simple groups, so we have proved that S can only
be isomorphic to one of the groups appearing in the statement of the theorem. The rest
of the proof consists in proving that G/N is a 2-group.

The uniqueness of N implies that CG(N ) = 1, and then

N ≤ G ≤ Aut(N ) = Aut(S) � Sn,

where Sn denotes the symmetric group of degree n and Aut(S) �Sn denotes the wreath
product. Write A = Aut(S) and let A∗ be the base group of A � Sn . To see that G/N
is a 2-group we prove that (G ∩ A∗)/N and G/(G ∩ A∗) are both 2-groups. For the
first quotient group, we note

(G ∩ A∗)/N ≤ Out(S) × . . . × Out(S).

Aswe have proved above that S ∼= PSL2(q2
a
)with q odd, then it is known that Out(S)

has order (2, q2
a − 1)2a = 2a+1 [2], so our first assertion follows. It remains to show

that G/(G ∩ A∗) is a 2-group as well. Notice that

G/(G ∩ A∗) ∼= A∗G/A∗ = (A∗G ∩ Sn)A
∗/A∗ ∼= A∗G ∩ Sn .

Suppose that there is a prime p �= 2 such that p divides |A∗G ∩ Sn| and we seek
a contradiction. Note that this assumption implies that n ≥ 2 (in fact, n ≥ 3). Let
P2 ∈ Syl2(S), so P∗ = P2 × . . . × P2 is a Sylow 2-subgroup of N , and then there
exists P ∈ Syl2(G) such that P ∩ N = P∗. As we know that G/N is nilpotent, then
PN/N is normal in G/N , and this yields to G = NG(P)N . Now, since |G/(G∩ A∗)|
is divisible by p and N ≤ G ∩ A∗, then there exists a p-element x ∈ G \ G ∩ A∗
such that x ∈ NG(P) ≤ NG(P∗). Furthermore, we can write x = as, with a ∈ A∗
and 1 �= s ∈ Sn . It is straightforward that s normalizes P∗, and as a consequence
a ∈ NA∗(P∗) = NA(P2) × . . . × NA(P2). Since s permutes non-trivially the direct
factors of P∗, we obtain that x does not centralize P∗. On the other hand, P cannot
be normal in G, otherwise P∗ would be normal in N . Hence NG(P) lies in some
maximal subgroup M of G, which cannot be normal in G. By hypothesis, M and then
NG(P) too, are both 2-nilpotent. Consequently, x should centralize P , and then P∗ as
well. This contradiction proves that G/(G ∩ A∗) is a 2-group, so G/N is a 2-group,
as wanted. Moreover, we can conclude that N = O2(G), and the proof is finished. �	
Remark Even though there are multiple examples of groups sayisfying the hypotheses
of Theorem A, for distinct simple groups PSL2(p2

a
), we do not know whether the list

of simple groups in that theorem is exhaustive.
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Proof of Corollary B Let G be a finite group such that every maximal subgroup of G
is either 2-nilpotent or normal in G and suppose further that O2(G) = G. Assume
on the contrary that G is non-solvable. Then Theorem A claims that G/S(G) ∼=
S× . . .× S, where S(G) is the solvable radical of G and S is one of the simple groups
appearing in the statement of that theorem.However, it is clear (by [8, Theorem IV.5.4])
that every non-abelian simple group must possess at least one maximal subgroup
that is not 2-nilpotent. In particular, we choose such a subgroup H of S, and put
H × S × . . . × S, which is a maximal subgroup of G that is neither normal nor
2-nilpotent. This contradicts the hypotheses, so G must be solvable. �	
Proof of Theorem C Let K = O2′,2(G) and write G = G/K . If K = G, then the
theorem is already proved, so we will assume G �= 1 and choose N to be a minimal
normal subgroup of G, which, by solvability, has prime-power order. In addition,
N cannot be 2-nilpotent because it contains K properly (the 2-nilpotent radical of
G), so N must have odd order, and hence N ≤ O2′,2,2′(G). We distinguish two
possibilities for N . If N = G, then O2′,2,2′(G) = G and we are finished. Thus,
we assume that N < G. Now, if M is any maximal subgroup of G containing N ,
then M cannot be 2-nilpotent, otherwise N would be 2-nilpotent too, a contradiction.
Then, by hypothesis M � G, and this means that every maximal subgroup of G/N
is normal, or equivalently, that G/N is nilpotent. From this property, we deduce that
O2′,2,2′,2(G) = G, as required. �	
Remark We show that it is not possible to reduce more the conclusionO2′,2,2′,2(G) =
G in Theorem C. Let us consider the group G = C3.S4, that is, the non-split extension
by C3 of S4 acting via S4/A4 ∼= C2. In fact, G = SmallGroup(72, 15) taken from the
SmallGroups Library of GAP [15]. This group has the following upper 2′2-series:

1 < O2′(G)=C3 < O2′,2(G)=C2 × C6 < O2′,2,2′(G)=C3.A4 < O2′,2,2′,2(G)=G.

Moreover, the maximal subgroups of G are exactly: either C3.A4, which is normal in
G, or they are isomorphic to D9 or C3 � D4, which are 2-nilpotent.
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