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Abstract

In a recent study, Kim established a general identity which implies a generalization of
the modular equations of degrees 3, 5, 11 and 23, and derived some identities for par-
titions. In this paper we provide proofs for some new modular equations of composite
degrees and degree of 7 by methods of elementary algebra and Kim’s generalization
of theta-function identities. In addition, we derive many partition identities, which are
proved depending upon these modular equations and reciprocation.
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1 Introduction

Ramanujan, a gifted mathematician, has done a lot of research in his life, one of which
is the research on modular equation of degrees 3, 5 and 7. For each particular degree,
Ramanujan derived a series of interesting identities concerned with theta-function of
appropriate arguments. Professor Berndt sorted out a lot of work of Ramanujan, and
found many modular equations of higher and composite degrees which are proved
by employing the theory of theta-function identities, elementary algebra, geometrical
construction and the theory of modular forms in [7] and [2]. By using the theory
of vertex operator algebra, Milas [16] gave a new proof of the famous Ramanujan’s
modulus 5 modular equation from his “Lost Notebook™.

Farkas and Kra [13] began an original study of partition identities arising from theta-
function identities and established elegant theorem about colored partitions. These
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partition identities can also be proved by modular equations. Berndt realized that
many of Ramanujan’s modular equations yielded further interesting partition identi-
ties in [9]. Later, Baruah and Berndt continued to study the partition identity by using
the modular equation in [4, 5]. Warnaar [20] generalized Farkas and Kra partition the-
orem, and Kim [14] gave a combinatorial proof with beautiful arguments. Sandon and
Zanello conducted a series of studies on partitions, provided a unified combinatorial
framework, and proposed 30 conjectures about colored partitions in [18] and [19].
These conjectures of Sandon and Zanello have been proved utilizing modular equa-
tions and theta-function identities by Berndt and the first author in the paper [10] and
[11]. Baruah and Boruah [6] have also established many of the conjectures of Sandon
and Zanello. Soon after, the first author [21] found some colored partition identities
which did not belong to the general and unified combinatorial framework provided by
Sandon and Zanello. In 2021, Kim [15] established a generalization of the modular
equations of degrees 5, 11 and 23, which could be used to prove most of Sandon and
Zanello’s conjectures from a computational perspective. So far, no bijective proofs of
Sandon and Zanello’s conjectures has been found.

In this paper, we establish six modular equations of degrees 1, 3, 5, 15, and six
modular equations of degrees 1, 3, 9, respectively. we also find two modular equations
of degree 7 and formula for multiplier for degree 7. By employing elementary algebra
and Kim’s generalization in [15], we provide the proofs of those equations in Sect. 3.
Next, proofs of twelve partition identities relying on new modular equations and
reciprocation are also given in Sect. 4.

2 Preliminary Results
For any complex numbers @ and |¢| < 1, define

(@; @)oo = [ [ (1 — ag™),

n=0
and
lat, ..., an; qloo = (a1 @)oo (q/a15 @)oo - - - (An; @)oo (G /an's @) oo-

Recall that Ramanujan’s theta-functions ¢ (—¢) and f (—q), and his function y (¢) are
defined by

p(—q) = Y (~1)'q" = % @1
f(=9) = (q; Qo> (2.2)
X(@) = (¢ 4o (2.3)
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The latter equality in (2.1) is a consequence of Jacobi’s triple product identity. Recall
the Euler’s famous identity (see [1, 3, 12])

1
——— =(4:9) 2.4
;4% oo >
i.e., the number of partitions of the positive integer n into odd parts is identical to
the number of partitions of # into distinct parts. Naturally, we may get the following
identity:

1
xX(—q) = (¢ ¢*)oo = ra—— (2.5)

The complete elliptic integral of the first kind is defined for |k| < 1 by

K = K (k) _/
1—k231n

The number k is called the modulus. The complementary modulus &’ is defined by
k' = «/1 —k?. Set K’ = K(k'). Expanding the integrand in a binomial series and
integrating termwise, we find that

T 11
k=2.F 1k2>
PR ‘(2 2’

where ; F (2 5 L kz) denotes the ordinary hyper-geometric function.
In the context of the classical theory of elliptic functions, we recall some of the
principal results [8, p. 123, Theorem 5.2.8]:

Set
k1 ﬁ"j 9, 2.6)
@
If
AL 11—x K’
g=e¢7 :=F(x)=exp 2 1 12 ; ) = exp (—n—), 2.7
2F1(5. 53 15 x) K
then

11
20\ _ AL
% (61)—2F1(2, 2,1,X) 'z, (2.8)

where ¢(g) is defined by (2.1).
Let K, K', L, and L', denote the complete elliptic integrals of the first kind asso-
ciated with the moduli k, k', £, and ¢’ := +/1 — €2, respectively. Suppose that the
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equality

K L
n—=—

X 7 (2.9)

holds for some positive integer n. A relation between k and £ induced by (2.9) is
called a modular equation of degree n. Ramanujan recorded his modular equations in
terms of o and 8, where o = k% and 8 = ¢2. We often say that 8 has degree n over «.
If we further set z,, := ¢2(¢"), then the multiplier m of degree n is defined by
_a

m:= —. (2.10)
Zn

Theorem 2.1 (Method of Reciprocation) If we replace a by 1 — 8, B by 1 — «, and m
by n/m in a modular equation of degree n, then we obtain a new modular equation of
the same degree.

We need certain evaluations of Ramanujan for theta functions given in the following
lemma [7, p. 124, Entry 12], [8, p. 127].

Lemma 2.2 If«, q, and 7 are related by (2.6), (2.7) and (2.8), then

fl=q) =270 /z(1 — &) /%(a/q)'/**, (2.11)
f(=g*) =273 /z{a(l — a)/q}' /12, (2.12)
f=gH =272 Y2/ 01 — )/, (2.13)

x(q) =28 (1l — a)/q) V4, (2.14)

x(—q) =2Y8(1 — )12 (a/q)~ 1, (2.15)

x(=g*) =231 — ) (a/q)~ 112, (2.16)

Suppose that g has degree n over «. If we replace g by g” above, then the same
evaluations hold with « replaced by 8 and with z = z; replaced by z,,.

Recall the principle of duplication and the principle of dimidiation [7, p. 125], [8,
p. 125], [17]:

Define, for 0 < x’ < 1,

1—JT—x\?
—X
from which it follows that
4 /
x = —‘/; (2.18)
(14 /x)2

Furthermore, define

eV = F(x') and 7 :=2F1<l,l;1;x’>,
22
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and there are the following formulas:
/ 1
eV =V 2= +Vx)7 and 7 = SU+VI—0z. @19

Theorem 2.3 Suppose that two sets of parameters,x, y, z and x', y', 7/, are related by
the Egs. (2.6)—(2.8) with x, v, 7 replaced x', y', 7, respectively. Suppose they satisfy
an equation of the form

Q(x/, y/’ Z/) =0,

and x is related to x' by (2.18). Then, by (2.17) and (2.19), we obtain an equation of
the form

1-VT—x\* . 1
Q| ———=) .2y, (1 + 1—xz>=0, 2.20
() o doio)n o
Applying the principle of duplication to (2.14) and (2.16), we derive that
x@*) =220+ VT =) e/ A -T2
x(=gH =271+ VT=a) M a/g) ™01 — )/, (2.22)

Theorem 2.4 Suppose that two sets of parameters,x, v, z and x', y', 7/, are related by
the Egs. (2.6)—(2.8) with x, v, 7 replaced x', y', 7, respectively. Suppose they satisfy
an equation of the form

Q(x/, y/’ Z/) =0,

and we reverse the roles of x, y, z with those of x', y', 7/, respectively. Then, by (2.18).
and (2.19), we obtain an equation of the form

4/x
QU ——=—.y/2,(1+V/x)z) =0, 2.23
((1+ﬁ)2y/( f)) (2.23)
Applying the principle of dimidiation to (2.14) and (2.15), we derive that
x(q'?) =221+ V) /) VA o), (2.24)
x(=q"?) =221 = Vo) e/ TE A =) (2.25)

3 Some New Modular Equations
Theorem 3.1 Let «, B, y, and 8 be of the first, third, fifth, and fifteenth degrees,

respectively. Let m denote the multiplier connecting o and B, and m’ be the multiplier
relating y and §. Then
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%) (ﬁ)m ( V(l_ﬁ)(l_y))s/g_ﬁ(W)m
m

as(l—a)(1—9) as(l—a)(1—29)

By (=B -8
(%) (s

(1 —oa)(1=9)

- m\ 172 1/4 B)(1 1/4
) <n7) ( ) +((1 —a) —s>)
+<ﬁy(l—ﬂ)(1—y)>”8<37 (@)1/87 ((l—ﬁ)(l—y)>1/8>
ad(l —a)(1 —9) ol (1 —a)(1-19)

<m >3/2 < >3/8 ((1—a>(1—5)>3/8 (aa(l—a)(l—a)
ity (— 2) () -
m By

@3.1)

(3.2)

3/8
1-pH0 -y ﬂy(l—ﬁ)(l—y)>
6( as(1 —a)(1 — ))1/4
By(1 =B —y)

172 1/8 B B 1/4
i (B) 4 (2) " 2o(G20)
m m’ \ By

(=1 —8)
@)1/8<<1 - Bl - y)>3/8 B ((1 - B — y))”
By (I—a)(1-9)

(3.3)

(I —a)(1 -9

+< . (3.4)
1/2 _ _ 1/8 _ _ 1/4
) (%) +2<l31’(1 B )/)) :_(ﬁy(l (! V)) (

1—pa—y)\*/16
afa)afm)

U+ VT=BA+/T—7 y))”“) (3.5)
1+ VT—a)(1+/T=39)

i) Z71_(1_}/>3/8<1+ /71_}/)1/2_4()/(1_]/))1/4

Y T\ e 1+ V-« ol —a)
(22 () ()
l—«a 1-V1—« '

o

ad(l—a)(1-96) ad(l—a)1—95)

X(((l—w —ﬁ)(l—dl—y)>1/4_<
QI=—VI—a)1—=V1=6)

(3.6)
Proof (i) Recall the partition identity given by [15]

(—q,—q", —q¢"", ¢ > — 9. 47, 4", ¢ 12,

=6q+q ([—q ,—q* —4°, —6114;430]20 1142, 4% 4% g™ P > (3.7)
In order to find the characteristics of the identity, we organize it into the following
form
. 2\3 15. ) 15. 3
(=4: 493 (=4": "% (@934 %

(=43 43, (=q% ¢'03, (g% 993, (g% q'0)3,

+q3<(—612; ) o G R ) FOSN (/R ) R (/R 6130)@0)
(—¢% ¢%3,(=q"% g3, (4% ¢93.(q'% ¢'93,

which can be transformed into

X @Dx3@")
3@ x3 (%)

=) 3(x3(—q6)x3(—qlo)
x3(=a$x3(=¢%) x3(=qHx3(=¢%9)

32y ¢3,_ 30
+f(q)f(q ))

=g (=q" )
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by (2.2), (2.3), and (2.5). Applying (2.12), (2.14)—(2.16) in Lemma 2.2, we obtain

2Ya(1 — a)/q) PP 21001 - 8)/") Y
Q2Ve{B(1 = B) /g3 V2P 2Y0(y (1 — y) /g7~ 124
B {21/6(1 _ a)1/12(a/q)71/24}3{21/6(1 _ 8)1/12(8/q15)71/24}3 i
RO = B)T2(/q%) PHPRI( — )Ty g7 727~ ™
3 2130 = BB/ PR — ) P (g% 12
{ {21/3(1 _ 0[)1/24(05/(])_1/12}3{21/3(1 _ 8)1/24(8/1115)_1/12}3
Jr{2_1/3«/1—1{06(1 —a)/q}! /2P 275 S8 = 8) /¢ )12 }
(2718 /z (B = B) /g3 /1232713 zs{y (1 — y) [go} /123 |

Multiplying both sides of the last identity by ¢! (%)U *, we get

(ﬂy(l - B - y))”s ~ <ﬂ_y>3/8 B 6(/3)/(1 - B - y))““
as(l —a)(1—29) ) T\ @Sl —a)(1—9)

(=0 =y 3/8 e 2
(1—a)( -9 2325
from which (3.1) is apparent.

(ii) For brevity, let A = (25)!/8, B = ({27118 and M = [ we rewrite
the identity (3.1) as follows:

M3 = (AB)’ — 6(AB)> — A — B. (3.8)
Recall the modular equation given by [7, p. 384, Entry 11(ix)]
—M=A+B— AB. (3.9)

Taking the third power of this identity (3.9), and adding the Eq. (3.8), after some
algebraic manipulation and simplification, we deduce that

4AB=A+B—A2— B+ (A+ B)AB. (3.10)

Using the identity (3.9), we can finish the proof of (3.2).
(iii) Rewrite the modular equation given by [7, p. 384, Entry 11(viii)] as

1—1+1 ! (3.11)
M A B AB’ '

Multiply both sides of the identity (3.11) by A B, and then take the cube of the resulting
identity,

(AB’/M? = A® + B> —1+3(A+ B){AB — (A + B) + 1}. (3.12)
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Applying the Eq. (3.10), we obtain the following identity
(AB)}/M? = A> + B> — 1 + 6AB.

Dividing both sides of the last identity by (AB)3, we can complete the proof of (3.3).
(iv) Recall the partition identity given by [15]

[—q,—q", —q", —¢"; q3°]§o[ -4 —q*, —4% —q'*; ¢

+lg.q7, 4", ¢"; %1% 1% ¢, 4%, ' 701

o0

=2+gq ([—q, —q". —¢"" 4" ¢ 1l—¢*. —¢"*. —¢®. —¢'*: ¢7°1%
.47, 4", 4" ¢ 1lg? ¢*, 4%, ¢ q3°]§o>. (3.13)

The identity (3.13) can be expressed in the following form

(—45 Do (=" 400 (=73 4P oo(—4": 630

(4% 43 00(—4%: 47) 00 (4% 49 0o (—4°; ¢'0) 0

(@: 0)00(@"; 0")00(@: 4 00(q": 470

(0% 47)00(0% 4°)00(0% )00 (q% ¢ oo
((—q; Doo(—4"%: 4)00(—47%; %) 00 (=07 ¢
(=43 4300 (=4 4°)00 (=% ¢©) 00 (—q1%: ¢19) o

(@ Dx@": 400 4P (q; q3°>oo>

(@3 43)00(@: 4°)00(q% 4%)00(q'0: ¢10)00 )

which is equivalent to
XX @Dx@"®) | FEDf (g x(px(=¢"D)

XX (=) x@x@®)  F=aD) (=) x (=g Hx(=¢>)
(x(—q3)x(—q5)x(—q6)x(—q10) B f(—q)f(—q”)f(—qz)f(—q”)>

XD x (=g x(=gHx (=g f(=¢>) f(=¢°) f(—4®) f(—q'?)

by (2.2), (2.3), and (2.5). Utilizing (2.11), (2.12), (2.14)—(2.16) in Lemma 2.2, we
deduce that

((1 -p —y>)1/8+\/m((1 — )l —8))”“_2
(1 —a)(1—28) 23z \(1 =B)d —y)
+<oe_8>”8((1—ﬂ)(1 —y))”g_ a1z (a_a>”8(<1—a><1—6))”4
By (I —a)(1—9) 2325 \ BV =B -y

which yields the desired result upon rearrangement.
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(v) Consider the partition identity given by [15]

2 7 11 13 14 17 _ 19 .22 23 _ 26 _ 29,
l-¢.—9",—q9".—q .—q 7", —q ", —q ', —q ,—q", — ;

97, —q7, —q
2 7 11 13 14 17 19 22 23 26 29. 60
—lg.97q9" 9 a9 79 "9 97,47, 97, q75q "]

=2q+q2([fq, 7[14’7(]7’7(18’7q11’7q13’7q16’7q17’7q19’ *423,*428,*(]292(160]00

qéo]oo

4 1 13 16 17 19 23 28 2
+1g.4% q7. 4% ¢ ,q3,q6,q7,q9,q3,q8,q9;q6°]oo)-

(3.14)

which can be transformed into

(=45 4)oo(—4"; 13 0s (=% 4100 (—4%%; ¢ o
(=43 400 (—4%: ') 00 (=% ') 00 (—¢ "0 4% 0
@490 47 )00(0% 4H0 @ 40 _
@ 492(@% 4005 1 Do @ 0 e 1
N 2< (—=4; 49 o0(—4"; 1300 (=% 4400 (—4%; )0
(4% 4900 (=47 4000 (=421 4100 (=% 4% 0
(@: 4%)50(@": 4700 (g% %00 (@ %) oo )
(@3 4%00(@°: 40 (@'?: 40 (4% ¢%0) o0 )

Use (2.2), (2.3), and (2.5) to obtain the equation

X@x @) x@x@)  xEox (=g x(=aHx (=" _

X @@ x @K@ XA (O () 7

+q2<x(q)x(qls)x(—q”)x(—qzo) L XEDX(=a) f(=4H (=4 )
x@Hx@)x(=qHx(=q%)  x (=) x(=q°) f(—=¢') f (=)

We utilize (2.13)—(2.16) in Lemma 2.2, and the identities (2.21) and (2.22), and elim-
inate ¢, rearrange terms, simplify to find that

(ﬂ_}/>1/8<(1 -p - y))””((l +VI—a)( +/1 —8))”“
o8 (I—a)(1-9) 1+ VT=BU+/T—y)

_(ﬂ_y>l/8<(1_a)(1_5))1/8_2

as (1—p1—y)

+((1 +VT=B) 1+ /1 —y)>1/4(a_8>‘/8((1 - B — y))”‘ﬁ
14+ VT—=a)1+/1T=9) By (I =o)(1—9)

yEEn <a_5)‘/8< (1-a)(1-9) )1/8
z3z5 \ By 1-pa-n)

Thus, (3.5) is evident.
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(vi) Consider the partition identity given by [15]

zolgo—[q,q3,q4,q7,q8,q9;q20]§o=4q
2012 2 3 202
O]OO—[q,q .¢%.4%4".4%q O]OO>.

4. —¢% —a* —q". —¢%. % q

+42 ([—q, 4% 4> —4% —4". —4%:q

(3.15)
The identity (3.15) can be expressed in the following form
(—q: D% (@ D% _
5. ,10y2 2. ,4\2 20. 2002 (5. ,10\2 2. .42 20. 2042 =4q
(=471 4"")50(=47: 450 (=47 450 (@719 )50(q7: 4750 (a7 47 )50
+q2< —a: 9% B (4 D% >
=4°:4"% (=4 ¢H%(=¢'% ?N% 4% ¢'D% (% ¢H3 @' D%

Substituting (2.2), (2.3), and (2.5) into foregoing equality, we arrive at

x*(=q*) B A (—=q) .
D@D D) (=) 1
q2< x*(=¢% B (=9 )
@2 x*@'® 2= fA=qH x> (¢ )

Applying (2.11), (2.13)-(2.16) in Lemma 2.2, as well as the identities (2.21),
and (2.22), and dividing both sides of the resulting identity by ¢, we deduce that

2) () (G2 -2) (=) -
1+V1—« y l—o 5 \Y I—y B

+1+m1/2y1/41_y1/8 DAV 1 g\ A
1+J/T—y o l—a a 1—y '

By elementary algebra, we can complete the proof of (3.6). O

Theorem 3.2 Let 8 and y be of the third and ninth degrees, respectively, with respect
toa. Letm = z1/z3 and m' = z3/z9, Then the following modular equations are valid:

) mo 52 1/2 (1—13)2 1/2
@ 3= (@) * <<1 —a)(1— y))
62(1 _ ,3)2 1/4 ﬁz ]/4 (] _ﬁ)2 1/4
+(ay<1—a)<1—y>) (5_<E> _((1 —a)(l—y)) ) (3.16)
(”) 27<ﬁ>3_ < ,32(1—,3)2 )3/4712< /32(1_'3)2 >1/2
") T \ey(—a)1—yp) ay(l—a) (1 —y)

,(ﬁ)m,( a-p2 )3/4, (3.17)

ay (1 -a)l—y)
(i) <m7/>3 = <ﬂ>3/4 + <(1 —o)(1— )’))3/4 _ (“V(l —a)(1 - V)>3/4
m) —\p? (1-p)? B2(1—B)?

@ Springer



New Modular Equations of Composite Degrees and Partition Identities Page 110f31 160

ay(l—a)(l—y))‘”
"2 . 3.18
* ( B2(1 - p)? (3-18)

w3 ) 20 (0 o
29 79 \@ T\l-«  R— o -« o e
g (1=p\ (1 JTTR\2 (1= JT=B\ /2 p\1/2

® 5‘(1%) ((1+\/17a) _(17\/170) )_(5> - 320

i) \/§7<1_y>3/]6<1+ /;1_}/)1/4_2()/(1_)/))1/8
v 9 \l—a 1+JV1 -« a(l —a)

1) )0

Proof (i) For brevity, leta = ﬁ)1/ 4, b= (%)1/4 and M = m/m’. Recall the
identities given by [7, p. 232, (3.1)]

3 — )3 _
(@) (@Y o
<%3>1/8=m2—1, ((11—_i)3>1/8=m;—1. (3.23)

Employing the last identities, we find that

(B 14 T e VY
= (%) o = G

(= S __mt )
b_<ﬁ> (A=BA=9)"" = G D

In order to prove these formulas, we first need to express m and m’ as rational functions
of a parameter ¢ given by [7, p. 354, (3.10) and (3.11)]

, (1 +20)f

7 o_ 3
T80 and m” =1+ 8¢. (3.24)
It is easy to check that
142t 142022+t +1
a+tb=—""" nd ap= LF2 @14+ D (3.25)
t(1—1) t(1—1)(1+83)

Now, pay attention to the following identity
a+b—(a+b?+@+bab=(a+b)(l —a—b+ab)=4ab (3.26)

where we have employed (3.25). Invoking the identity a + b — ab = —3M by [7,
p. 352, Entry 3(xii)], and substituting it into the identity (3.26), we can complete the
proof of (3.16).
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160 Page 12 of 31 R.R.Zhou

(i1) We consider the identity
a+b—ab=-3M (3.27)
which when cubed yields
a® + b — (ab)* + 3ab(a + b)(1 —a — b+ ab) = —2TM".

Applying the identity (3.26), we achieve the desired result.
(iii) Rewrite the identity given by [7, p. 353, Entry 3(xiii)]

1/a+1/b—1/ab=1/M (3.28)

Multiply both sides of the identity (3.28) by ab, take the third power of the resulting
identity, and use the Eq. (3.26) to deduce that

(ab)®

A+ —1+12ab = 7

(3.29)

Divide both sides of the foregoing equality by (ab). Thus, the truth of (3.18) is
manifest.

(iv) Since B and y are of the third degree in « and B, respectively, it follows from
(3.22) and (3.23) that

(Z)1/8 _ ('3_3)1/8(1)1/8 _ m'(m — 1)
o o B3 3+m
(t_z)l/isz((11165)3)1/8((11:;/)3)1/8:m;(rf ;11—1/1).

Applying (3.24), we can check that

(Z)I/SZ 1+ 2¢ _m (3.30)
o 21— 2(1—1)
<1—y)1/8: 142 +m 331)
-« 201—1)  2(1—1)

Employing (3.30) and (3.31), we find after a considerable amount of elementary alge-
bra that

1 —\3/8 1/8 1—y\3/8 1z
(1—2) <§> _<1—Z) T
_(1+2t m>2t(1+2z) (1+2t V1+83
20—1)  2(1—1) 1—1¢ 20—1)  2(1—1)
42021 -30  V1+83(1+20(1+1)
B 2(1 —1)2 2(1 —1)2 ’

3
) + (14 21)%
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On the other hand, we can also check that

Z 1/8 1 — 1/4 1/8
@) 6= ©)
=(1+2t)< 1421 _m>_2t(l+2t)< 1421 +m>
2(0—1)  2(1—1) 1—t \2(1—1) " 2(1—1)
C+20°0=3) V14883 (1+200 40
2(1 —1)? 2(1—1)?

Hence, the identity (3.19) can be established.
(v) By simple elementary algebra, (3.22) and (3.23), we can easily check that

1= Veap — VA= a)(1 = p) =2(ep —a)(1 — §))'"*. (3.32)

Multiplying both sides of (3.32) by 2 and extracting the square root on both sides of
the resulting identity, we find that

(A +VT=Pp 1 =VT=a)" = (1= VT= B + VT =)
=2(epl —e)(1 — )",

Thus, we obtain the following identity:

<1+m)1/2_ (1 —ﬂ)” _Q-2JeB-2J/T-a)d-p)'
1+ -« 1-JVi-a) al/?

(3.33)

From (3.22) and (3.23)

—2@) <<1 /3)3) (g)i=(i:5>i(2(01/3(1—0:)1(1—/3))1/8)_(S)i'

o?
(3.34)

The truth of the equality (3.20) is now manifest from (3.32), (3.33) and (3.34).
(vi) Recall the partition identity given by [15]

4 Do (=0"% Vo0 (@5 D@ 670
(=42 qHoo(—4%: 4V e (@54 (@% ¢V e
2( (=4 Do (=47 ) (@3 Dol q36>oo)
(=% 4N (—4%: 4% o0 (4% 41 (@”; %)

(3.35)

which is equivalent to

x(=ax@™  fox=a"™ _, 2<x(—q9)x(—q4) B f(—q)f(—q36)>
x—x@®»  f(=g)x(—g* xDx (=g f(=gHf(=¢°) )
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by (2.2),(2.3),and (2.5). Applying (2.11), (2.13),(2.15), (2.16) in Lemma 2.2, and the
identities (2.21) and (2.22), and eliminating g from the resulting identity, we check

that
(1+ /—)1/4< )1/8<l_y>1/16_ Z_[(g)l/S(l_a>l/8_2
l+VT—a y l—a 29\ Y -y
N 1_}_\/_ 1/4 1/8 1—‘}/ 1/16_ Z 1/8 1 -« 1/8
1+JT—y a -« o 1—y '

By elementary algebra, we easily deduce the result claimed in (3.21). O

Theorem 3.3 If B is of the seventh degree in a, and m is the multiplier for degree 7,
then

o VoA vI=pt  a-VT—alfa-yT=p
i _

@p)V /81 —a)(1 — py)l/16 @p)' 81 —a)(1 — py)l/16
_ _ 1/8
:ﬁ<1+<w> ) (3.36)
af
. T y: 141 - JT=B\ /2 B\Y24 11— g\ 1/e
) m‘Z‘(lw) <17m> +4(OT7) (1705)
1_/3 1/4 1+m 1/2 ,3 1/2
(=) Ges) () 3.3

Proof (i) Recall the partition identity given by [15]

(4 Doo(=4"5¢Noc (@5 9)0(q73 9o g2 (=4 Doo(=4": ¢ oo
0% 4M0 428400 (4% 40085 %) oo R R A
(3.38)

Employing (2.2), (2.3), and (2.5), we find that

x(=qYx(=¢*  f=q)f(=q") iy 2¢°
x(—x(=q")  f(—=g"f(=¢*®) X~ x (=g x @ x @™’

Applying (2.11), (2.13), (2.15) in Lemma 2.2, and the identities (2.21), and (2.22),
and eliminating ~/2¢, we check that

A+ VT * A+ JT=p* (1—a)1—-p)\""
@B)3((1 —a)(1 — p))l/16 _ﬁ< ap ) =2
(@B)!/8
0= =1 + VT =) A (1 + T=B)

Using the square difference formula for the last equation, we arrive at the Eq. (3.36).
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(ii) Consider Theorem 2.1 given by [15]

[—c2, —ac?, —bc?, —abc?, —d®, —ad®, —bd*, —abd®, —cd, —acd, —bcd, —abed; ¢ oo
7[02, acz, bcz, abcz, d2, ad2, bdz, abdz, cd,acd, bed, abed,; qz]oo
_ 2@ 0 @d/e)’, (@b?d®) /g% ¢7 oo
[a,b,d/c,abc?d?; g0
| (abe?a?)? e e A e . . s M PS
q3 2 ac?’ be?’ abe?’ d?’ ad?’ bd?’ abd?’ cd’ acd’ bed’ abed’ 00
q q q q q q q q q q q q

(3.39)

Replace g by ¢'*, and leta = ¢?', b = ¢’, c = ¢ ' andd = ¢~ in (3.39).
Multiplying both sides of the resulting identity by ¢**, we deduce that

3 (C44)00(=¢%dD5 JENCE a))eo(d?; aM%
(—=q7; 4" (—q'*; ¢%8)% @7 400 (@' ¢2)2,
(@' ¢*®)% (—=q; ¢H oo (—q*; g2 (75 4M o0 (g% g%

q@7:9'"M% (=474 (=43 ¢®2% (@75 4" eo(@?; ¢%)2,

which is equivalent to

3( X@x*@d  xcDxtd ):_ " | x@P=a® | xcPegh
x@Hx*q@"  xNHx2' X2 x@hHx*(=q% x4 f2%®)

by (2.2),(2.3), and (2.5). Employing (2.13)—(2.16), (2.21) and (2.22), and simplifying,
we check that

Lo\ V12 g\ (1= JT=B2 51— a\ YO [ afq \ 5/
' (1—/3) (ﬁ/tﬂ) (1—¢1—a> - (1—5) (ﬁ/tﬂ)

112 24 1 ST\ 2y (1—a\ Y6 [ ajq \ T/
= (5) () () =) ()
Pra )y 1 7p Bl wvice) ta\Ts) g

1/6 (M)W 24, and rearranging terms,

) ) B/q’
we derive the equality (3.37). O

Dividing both sides of the last equality by (}:—g)

4 Proofs of Twelve Partition Identities Using New Modular Equations

Theorem 4.1 Let Py (N) denote the number of partitions of N into distinct parts con-
gruent to £2 modulo 6 having 3 copies, multiples of 6 having 6 copies, or odd parts
not multiples of 3 having 6 copies, P»(N) denote the number of partitions of N into
parts congruent to 3 modulo 6 having 12 copies or distinct even parts not multiples of
3 having 6 copies, P3(N) denote the number of partitions of N into parts congruent
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160 Page 16 of 31 R.R.Zhou

to £1 modulo 6 having 3 copies, congruent to 3 modulo 6 having 6 copies, or distinct
parts congruent to £2 modulo 6 having 3 copies and multiples of 6 having 6 copies,
P1(N) denote the number of partitions of N into parts congruent to =1 modulo 6
having 3 copies, congruent to 3 modulo 6 having 6 copies, or distinct parts that are
multiples of 6 having 12 copies. Then, for all N > 3,

Pi(N) — P;(N) =6P3(N — 1) + 8P4(N — 3).

Proof Utilizing (3.22) and (3.23), we first see that
o \ /8 (1— ,3)3 1/4 ,33 1/4 l—a \'/8
(F) ( I—a > _<3> ((1—;3)3)
2 (mA1\ (m=1\ 2 3mP+1
Tm—1\ 2 2 m+1 m>—1"
where 8 has degree 3 over «. Indeed, by simple elementary algebra, we can find that

<i>1/8<(1 13)3>1/4 </33)1/4< Y )1/8_3+< Ol(l—Ol) >1/8
B> l—«a a (1-p)3 - pa-pr)

“.1)

Next, multiply both sides of (4.1) by 2¢ to obtain the equation

{21/6(1 _ /3)1/12(13/6]3)_1/24}9 B 3 {21/3(1 —(X)l/24(0l/q)_1/12}3

{21/6(1 _ a)l/lZ(a/q)—l/24}3 4q {21/3(1 _ ’3)1/24(,3/q3)—1/12}9

RV - g/t Y
2V5a(l —a)/q}1 /24P

From (2.14)—(2.16) in Lemma 2.2, we find that the foregoing identity can be written
as

X’ (=¢”) Y x(=q® _ . x° (@)
x*(=q) x°(=4% @)

Hence, applying the definition of x in (2.3), we obtain the g-product form of the last
identity, namely,

@ %%  (—q% a5 _6g 48 (= q 792

@93 (4D (—q% ¢D3

(—=4%993.(=q%4%%

Multiplying both sides of the foregoing equality by GO and applying
Euler’s identity (2.4), we have
(% 4% (=a% 423(=4% 9% (4% e
(45 99)% (q% 49)2(—4% 4%
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_ o Ca7aD (9% g0 e (—q% ¢%)22
(a5 473 (q%; %3, (q: 423 (q%; %3

Equating the coefficients of g" on both sides of this equation, we finish the proof. O

Remark: A modular equation can be obtained from Theorem 3.1 in Kim’s paper
[19], which is the reciprocal of the modular Eq. (4.1) in Theorem 4.1.

Theorem 4.2 Let S denote the set of positive integers where multiples of 4 but not
multiples of 3 occur in 2 copies, and odd numbers not multiples of 3 occur in 1 copy.
Let T denote the set of positive integers that consists of 2 copies of integers congruent
to 2 modulo 4, but not multiples of 3, and 1 copy of odd numbers not multiples of 3. Let
P1(N) denote the number of partitions of N into an odd number of distinct elements of
S, and let P>(N) denote the number of partitions of N into an even number of distinct
elements of T. Then, for all N > 2,

Pi(N) = Py (N —1).

Proof First we recall the modular Eq. (3.20)

() (D (22000

23
where B has degree 3 over «. Rearranging terms and multiplying both sides of the

resulting identity by (L;%) 1/6 (%)7/24

1+m 1/2 1—,3 1/12 a/q 7/24 2 -« 1/6 Ot/q 7/24
<1+¢_1—a> (1—a> (W) _Z<1—ﬂ) (ﬂ/q3>

1—JT—B 12 1 g\ 112 «/q 7/24 1 —a\1/6 8/q° 5/24
(=) (=) Gl 6= ()
4.2)

, we obtain the equation

First, from (2.14) and (2.22),

x(@x*(—q' <1 +m>1/2(1 _ﬂ)1/12<ﬂ>7/24 s
1+VT—a l—a B/q° : :

x(@Hx2(—g
Second, from (2.13) and (2.15),
X f2(=qh z_1<1 - a)“(ﬂ)””
x(—=¢>fH=q"?)  z\1-8 Bla*)
Third, from (2.14) and (2.21)

xX@x*@q* (1+‘/1__“>1/2<1—ﬂ)1/12<ﬂ/q3>5/24
e "1+ T=p 1 —a «/q

(4.4)
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1= JT=B\ 2 /1= N2 [ ajg \ 7/
=<1—¢1—a) <1—a> </3/q3> ' )

Fourth, from (2.15) and (2.16),

xX(—)x*(—q*) (1 —a)]/6<ﬁ/43)5/24 “6)
=% ~ N 1-p a/q ' '
Hence, from (4.3)—(4.6), we have
X@x*(=4"  x(=)f(=q" iy X(@x*@*) . XD x*(=q%)
x@x2(=gY  x(=gH =g T x@Hx*q® T x (=) x*(=¢%’
%))

Employing the definitions of f, and x from (2.2), and (2.3), respectively, we can
convert (4.7) into g-products, namely,

(—4:0D)0(—4% 4% (@547 g5

(=43 4%00(—q"%: a2, (4% ¢%)00(q'?: )%,
B < (—4: 40 (=¢* qH% (@ 4P (q? g% )
(4% 4900(—q% ¢ (47 4% (q% D)

Equating the coefficients of g on both sides of the last equation, we finish the proof.
O

Theorem 4.3 Let S denote the set of partitions with even parts that are not multiples
of 3 having 2 copies, with odd parts that are not multiples of 3 having 4 copies. Let T
denote the set of partitions with distinct odd parts that are not multiples of 3 having 2
copies, or with distinct parts in multiples of 4 but not multiples of 3 having 2 copies,
with parts congruent to 2 modulo 4 not multiples of 3 having 3 copies. If P1 (N) denotes
the number of partitions of N in S, and if P»(N) denotes the number of partitions of
N inT. Then, forall N > 1,

3P|(N) = 2P,(2N + 1).

Proof Consider the modular Eq. (3.20). Applying Theorem 2.1, we can get

S0 (0296297

Multiplying both sides of (4.8) by {%} v 2, rearranging terms and rewriting the result-
ing identity, we arrive at

L (VBB =plgHY 2<1—ﬂ)1/3 B\ "
Jaa(—w/o ) \T=«)  \'aq
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1 5 5 2 2 :
S ) (2T G () - (29)

Hence, from (2.12), (2.14)—(2.16), (2.24), and (2.25), we obtain

a2t g (xz(q”z) B xz(—ql/z)) x> (=4"x°(=¢*)
=g x*(=q) xX2@ =) (=X (=)

Using the definitions of f and yx from (2.2) and (2.3), respectively, we can convert the
last equation into g-products, namely,

2(q; g% 29D

(4% 493 @ 4% f—g "% 0% @705 | CataDi@ e
(4% ¢»3 3% 05% @ aDH% ) (—4% 903

Multiplying both sides of the last identity by ¢'/2, and replacing g by g2, we derive
that

@' ¢"M%@% ¢ | ( —4:4M3 (q;q2)§o> (=q* qh% % a"%
(@* aH% (% ghH% —4%49% @ 99% ) (—q'2:9¢'D% % gh3

Equating the coefficients of g>V*! on both sides of the last equation, we finish the
proof. O

Theorem 4.4 Let S denote the set of partitions with even parts that are not multiples
of S having 2 copies, with distinct odd parts that are not multiples of 5 having 2 copies.
Let T denote the set of partitions with distinct odd parts not multiples of 5 having 2
copies, or with distinct parts that are multiples of 4 not multiples of 5 having 2 copies.
Let P1(N) denote the number of partitions of N in S. Let Py(N) denote the number
of partitions of N into an odd number of parts in S. Let P3(N) denote the number of
partitions of N in T. Then, forall N > 1,

2P (N)+ P,(N) = P3(2N + 3).

Proof Taking the reciprocal of the equality (3.6), and rearranging terms, we deduce
that

2=0)" ()G ()
2 \y 1+7 -7 y(l—y) l—y)

(4.9)

(1—a)a/q )]/4

where y has degree 5 over «. Dividing both sides of the last equality by ( Ty /a5

we get the equation

bl
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s (VB =yt 2 @ —a)/q)-1/24 \?
Vae -/l | \ (- y)/g)=1/%

_ 3p < (+/a) 4@/ /48 (1 —ay /12 >27< (=) (/)8 (1 —ay /12 >2
- A+ M4y /g5 /81— y) /12 (A= yMVAy /g5 /81 —y) /12

2 B WO B A T e L Vel I IR
(=) a/q)~1/12 A=)y /g5 1A =) Py g1 12 )

Utilizing (2.2), (2.14)—(2.16), and (2.24), (2.25), we arrive at

L4 @ _P (xz(ql/z) B xz(—ql/z)) x*(=¢'%) _ag! x> =) x*(=4¢%)

2= x*@) 2@ x2(=¢>?)) x2(=4¢?) X2 (=) x> (—q'0)
Referring to the definition of f and x from (2.2) and (2.3), respectively, we can convert
the foregoing identity into ¢g-products, namely,

" q"%(=a:9M3 _ _3p (=4714P)5% <(—q”2;q)§o B (ql/z;q)§o>
(g% ¢P3 (=g ¢'0% —1 (=q'% g2\ (=42 )2 (@/% ¢
-] (q: 972 (=" ¢"%

(@ 9" (=4 gP)2

-3

Next, divide both sides of the resulting identity by g , and substitute ¢ by g2,

rearrange terms to obtain

q3< e S o e 0 - C A 0 o qzo)&)

(614; q4)go(_q10; qZO)gO (qlo; qZO)%o(_q4; 614)%o
_ (=q*h% ( —a:97%  (@:9M)% )_4
(g% g2\ (=% ¢'9% (¢ ¢'0% '

Equating the coefficients of g>V*3 on both sides of the last equation, we finish the

proof. O

Theorem 4.5 Let S denote the set of partitions with distinct parts that congruent to 7
modulo 14 and congruent to 14 modulo 28 having 2 copies,, congruent to 1 modulo 2
not multiples of 7 and congruent to 2 modulo 4 not multiples of 7 having 1 copy. Let
T denote the set of partitions with distinct parts that are multiples of 2 not multiples
of 7 having 1 copy, and multiples of 14 having 2 copies, or with parts that congruent
to 1 modulo 2 not multiples of 7 having 1 copy, congruent to T modulo 14 having 2
copies, If P1(N) denotes the number of partitions of N in S, and if P»(N) denotes the
number of partitions of N in T, then, forall N > 1,

Pi(2N +3) =2P5(N).
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Proof Consider the modular equation

A+VApa+ vt a-pta -yl
(1—a)(1 = BNB@B)/16 (1 —a)(1 — )3 (p)!/16

af 1/8
=21 _— 4.10
f( +(<1—a><1—/3>) ) @10

which is the reciprocal of the equality (3.36), and B has degree 7 over «. First,
from (2.14) and (2.24),

(1+\/_)1/4(1+«/_)1/4
7 172 7/2y _ 1/2 172
Second, from (2.14) and (2.25),
_ 1/4 1/4
X@x (@) (~g"x (g = 212 L= VB TA = V&) 5 4.12)

(1 =a)(1 = )3 (ep)!/!

Third, from (2.15) and (2.16),

1/8
! - 2_1q_1<L> (4.13)
X (=) x(=g») x (=g x(—q'*) 1-—a)1-p)

Hence, from (4.11)—(4.13), we derive that

7 12,0, 7/2 _ 1/2 72019 1/2<1+ 24 )
X(@x@qHx(qg " Ixq")—xq x4} =2q DX xcaDx g™

Employing above the definition of x from (2.3) and Euler’s identity (2.4), we can find
that

q"% 2 o0}

(~4: 4o (=q"; 4ol (=0 D)oo (=77 oo — ; oo(q
32 (=67 4D 00(=q"5 ¢ oo

(7: 4P oo(q”; ¢ o

=2q"7 +4q

By replacing ¢ with ¢ in last equality, we deduce that
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(=% 400 (=0 4™ 00 l(=4: oo (=07 Moo — (@5 3P0 (@5 ¢ o0)
3 (=4% qM00 (=% %) 0

=2q +4q
(0% qH00 (@' 4% 0

2N+3

Equate the coefficients of g on both sides of the last equation to finish the proof.

m}

Theorem 4.6 Let S denote the set of partitions with parts that are not multiples of 7
having 2 copies. Let T denote the set of partitions with distinct odd parts not multiples
of 7 having 2 copies, or with distinct parts that are multiples of 4 not multiples of
7 having 3 copies, congruent to 2 modulo 4 not multiples of 7 having 1 copy. Let
W denote the set of partitions with distinct parts congruent to 1 modulo 2 having
4 copies, multiples of 2 not multiples of 7 having 3 copies, multiples of 14 having
2 copies. Let P1(N) denote the number of partitions of N in S. Let P»(N) be the
number of partitions of N into an even number of parts in S. Let P3(N) be the number
of partitions of N in T. Let P4(N) denote the number of partitions of N in W. Then,
forall N > 1,

3P1(N) + Py(N) = —P3(2N +3) + 2P4(N + 1).

Proof Referring to the reciprocal of the formulas (3.37), we can check that

1 1

B0 (=D 6 0 )

where has the degree 7 over «. Next, multiply both sides of (4.14) b
g ply y
(1—ﬂ)1/3(ﬁ/q7)1/12

—a /q and rearrange terms to obtain the equation

e N N W R VA A N
V(L —a)l/6(a/q)l/24 1-pV12/qT)=-1/24

_ 3 (<1—ﬁ)”“(a/qu/“sa—a)*‘/”)27(<1+\/E>1/4<a/q)*1/48<1—a)*‘/”)2
-1 A=VBYAB/gy A=y /12) N+ VBB (1= py /12

(=52 B2\ = Y 207 I — PR BT (-0
(1- a)1/24(a/q)_1/12 (1— 0()1/12(0[/q)—1/24 (1 a)zlj(a/q)%zl .

Utilizing (2.11), (2.14)~(2.16), (2.24) and (2.25), we arrive at

LPed) | e _3/2<x2(—ql/2)_xz(q1/2)> ea'xeah |, '™ @)
e e X2 12 q7) 1P x4 e’

Applying the definition of f and x from (2.2) and (2.3), and Euler’s identity (2.4), we
can convert the last identity into g-products, namely,
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@:qh3  (=a"aD% _ ,3/2< @' 9% (—ql/z;q)go) (=4%: %36 (=43 Do
(@ D% (—¢: D% @ qh% (=4 4Dk (=4 ¢'Hi (47 4D
_1(=0%4P00(=q: 422 (=43 )2

+4q
(=q'*; 400

Replace g by g2 and eliminate ¢ —> from the resulting identity to obtain that

3% "M% I (—q'4;q]4)§o_7( Ca:9M% (q;qz)%o> % aH% % 6P
4% 9H% 42 ¢H% 75 ¢"% @795/ 428428314 ¢ o
(—g* gH3(—a% gHd,

+ 4q
(—4%8;¢%%) o

Equating the coefficients of g>V*3 on both sides of the last equation, we finish the

proof. O

Theorem 4.7 Let P1(N) denote the number of partitions of N into distinct odd parts
that are not multiples of 3 having 12 copies or even parts congruent to +2, £10,+14
modulo 36 having 12 copies, and even parts congruent to +4, +6,+8, +16 modulo
36 having 6 copies, Po(N) denote the number of partitions of N into odd parts that
are multiples of 3 but not multiples of 9 having 12 copies or even parts not multiples
of 3 having 6 copies, P3(N) denote the number of partitions of N into odd parts that
are not multiples of 9 having 6 copies or parts multiples of 6 but not multiples of 18
having 6 copies, P4(N) denote the number of partitions of N into distinct odd parts
not multiples of 9 having 6 copies or even parts congruent to 2 modulo 4 not multiples
of 6 having 18 copies, and multiples of 4 but not multiples of 3 having 6 copies, Ps(N)
denote the number of partitions of N into odd parts not multiples of 9 having 6 copies
or even parts not multiples of 3 having 6 copies. Then, for all N > 3,

Pi(N) — Py(N) =27P3(N —3) + P4(N —3) + 12P5(N — 1).

Proof Recall the modular Eq. (3.17)
3 2 2 3/4 2 2 1/2
27<g) :< B -8 ) _12< F1-B) )
m' ay(l—a)d—y) ay(l—a)d—yp)
B2\ a-p> "
_<E) _(u—a)(l—y))

where g is third degree over «, and y is ninth degree over «. Next, multiply both sides

of the last identity by ¢ (%) 12 (0 obtain the equation

ms(ﬁ (a(l—a)/q)fzﬁ(yu—y)/q"’)']2>6: ((a(l—a)/q)ﬂ<y<1—y>/q9>54'>6
(VBB = /g 122 (B(1 — By/g) T2
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o ) (/g% 7\ & B/03 T2 6
_12q—<(1_°‘) (a/q) l(l—y) 71(1//61 ) ) _q3< (1(1 —,3)71 (Blq )l ) 71) ‘
(1= B)12(B/q3) 7 )? (1—a) 23 (a/q) T2 (1—y) 2 (y/q°) 12

Hence, from (2.12), (2.14)—(2.16), we find that

P @) |, xCax®a’) s xe®)
f12(=4% x12(q) x12(=4 x0(=ax0(=q"®)’

Employing the identity (2.2), (2.3), and (2.5), and rearranging terms, we arrive at

(=4:4M8(=4" a"%  (@:4M)%(@% ")

(—q%; q%)12 (@35 q)12
3@ D% @ ™S (=% qD8(—q'% ¢S,
=q°(27 6. 6712 6. 6712 +129.
(4% g°)o5 (—4°9°) 55

9. 1816 6. ,6\6
730 )o0(@3q oo )“, and using Euler’s

Multiplying both sides of foregoing identity by PR

identity (2.4), we deduce that

=4:4)8 @"%:¢*% @% D% @5 a™E @% g9
(=398 @2 4H% @D @392 0% DS

_ @008 @™ | 5 caia®S @%aE @D |, @8 a0
@aD%  @%4% T =% ™% @*aHE @D @: 4% 4% aD%

Equating the coefficients of g™ on both sides of the last equation, we finish the proof.
O

Theorem 4.8 Let Py (N) denote the number of partitions of N into odd parts that are
not multiples of 9 having 6 copies or even parts that are not multiples of 3 having 6
copies, P»(N) denote the number of partitions of N into distinct odd parts that are not
multiples of 3 having 6 copies or even parts congruent to 6 modulo 12 not multiples
of 18 having 18 copies, and multiples of 12 but not multiples of 36 having 6 copies,
P3(N) denote the number of partitions of N into odd parts not multiples of 3 having
12 copies or multiples of 6 that are not multiples of 18 having 6 copies, P4(N) denote
the number of partitions of N into distinct odd parts multiples of 3 but not multiples of
9 having 12 copies or even parts congruent to 2 modulo 4 not multiples of 18 having
6 copies, and multiples of 6 but not multiples of 18 having 6 copies, P5(N) denote
the number of partitions of N into odd parts not multiples of 9 having 6 copies or
multiples of 6 that are not multiples of 18 having 6 copies. Then, for all N > 3,

Pi(N) — Py(N) = P3(N —3) — P4(N —3) + 12P5(N — 2).

Proof Consider the modular Eq. (3.18)

(g’f _ (g)m N ((1 —a)(1 - y>>3/4 ~ (ay(l —a)(1 - y>)3/4
m B2 (1-p)? B2(1 - B)?
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ay(l—a)(1—y)\'"?
12
+( P21 B )

where 8 and y are of third and ninth degrees. Multiplying both sides of the last equality

by qz(%)l/z, we can check that

1 _
( WEBA ~ BT )6=q3( (1= B Blg") )2 )6
Va1 —a)/q) T2 E5(y (1-7)/g9) T2 (1-) T (a/q) 7 (1=y) D (/g%
1 -1 1 -1 _
(1-0)2 (/) T2 (1=y) % (y/g") 2 \® 4 (BU—P)/q*) 7 )* 6 5
+ I 1 4q 1 —T | +12¢
(1= B)H (B/g}) )2 (@(-a)/q) 2 (y(1-)/q") 7

which can be transformed into

(=4 IR G a0 S S o0 i o 0 W R G 0 PO

F5=aD 5= T x5 x°(—¢% x12(—¢%) X6 @x°@%)

by (2.12), (2.14)—(2.16). Employing the definition of f and x from (2.2) and (2.3),
and (2.5), respectively, and rearranging terms, we can derive a reformulation of the
last equation into g-products, namely,

(q% ¢ B (—q% ¢®!2
(4% 4)5%(@'3: 4™ (=% ¢M)% (a3 ¢S
_ 3( @998 (—q°: 4% )+12 >
T \g:495%@% 48 (=3 4% (—q% ¢S, !

In order to find a beautiful partition interpretation, we convert the above equality by

. @'3:4")%, (¢%:¢')6,
multiplying it by W~

@5 a"™% @M Caad @8 @ a™E
@:99% @ q>8  (—=q°: 4% 4% a2 (4% g%
_3@%e™% @58 5@ a8 @' ™S . 5 (@' g8 (¢%; 'S,
TG @2 ! @ Ca%a™®E @5 a0% 45 098 @ %

Equating the coefficients of g on both sides of the last equation, we finish the proof.
O

Theorem 4.9 Let S denote the set of positive integers that consists of 2 copies of odd
numbers but not multiples of 9 and 1 copy of even numbers not multiples of 9. Let T
denote the set of positive integers that consists of 2 copies of even numbers but not
multiples of 9 and 1 copy of odd numbers not multiples of 9. Let Dg(N) and D1 (N)
denote the number of partitions of N into an odd number of distinct elements of S and
T, respectively. Then, for all N > 2,

Ds(N — 1) = Dr(N).
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Proof We consider the equality (3.19),

a [y 1/8_ 1—y 3/8_2 1=\ /4 y 1/8_ 1—p\ /8 y 1/8
29 29\ \U-« l -« o l—« o
where y has degree 9 over «. Next, multiply both sides of the foregoing identity by

q ({:—;‘j) 1/4(%) /8 to obtain

(Varle(l—a) /g2 (1 — o)/ 12 (o /q) /2
{(Vzoly 1=p) [@* W 122 (1 —y)V12(y /g)71/24
(1= )Y 2(a/q) V2 Jzifa(l—a) /q}/1?
=24 10 2 Jos(y (=) /g2
_ le=a)/g) PH( =) Py /g2
T =1/ A — ) P 2
Ha(l—a) /gy V42(1 — )1 /24y %)~V /12
Ny A=) /T PR — a) P (a/q) 12

Using (2.12) and (2.14)—(2.16), we find that

PPedne P fad)  x@x =" - X (@x(=¢'"®)
P=a®x(=a" TP f(=a"®  x@)x* (=4 x2@)x(—g>’

which can be transformed into

. (=43 49)3(=4% ¢P)oo 4 (43 4%)3(@% 4D
(—4% 4% (=% ¢ " (@ ¢'H% "% ¢
(=% )24 Do (0% 492 4% oo

= — —2q.

(=¢": 9% (=4% 4™ (@' ¢")3(q% ¢
by the definitions of f and x from (2.2) and (2.3), respectively, and rearranging terms.
Equating the coefficients of g™V on both sides of the last equation, we finish the proof.

m}

Theorem 4.10 Let S denote the set of partitions with parts not multiples of 9 having
2 copies. Let T denote the set of partitions with even parts not multiples of 9 having
1 copy. Let U denote the set of partitions with distinct even parts not multiples of 9
having 2 copies, or with odd parts not multiples of 9 having 1 copy. Let V denote the
set of partitions with distinct parts not multiples of 9 having 1 copy. Let P1(N) denote
the number of partitions of N in S. Let P(N) be the number of partitions of N in T.
Let P3(N) be the number of partitions of N in U. Let P4(N) denote the number of
partitions of N in V. Then, for all N > 1,

9P (N) —3P>(N) =2P3(2N +3) —2P4(N + 1).
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Proof By the reciprocal of the equality (3.19), we get

9Z9 ; 2 (1—0[)1/8_<Ol>3/8 2(0[)1/4<1 _a>1/8 <a>3/8<]_a>1/8
a2 Val\l-y) \y y 1—y % -y

(4.15)

wherel/z)‘/ Pas (f{c/tgree 9 over «. Next, multiply both sides of the identity (4.15) by
q(£)""(1=£) """ to obtain
3 (Valy =) /g°} 21 (1 — o) P4 /gy V'
{Vaifa(l—a) /g2 (1 —y) V24 (y /¢°)71/12
3 =P/ 2R 2ely (=) /g°) 2
{(T=p)V24(y /gy V12)2 2 fa (1 —a) /q)}V12
A= /g VA =) 2y /g%
= (1— a)1/24(a/q)—1/12(1 _ a)1/12(a/q)—1/24 -
rA=p)/a°y V?* A = )Py /g V"
Ce(—a)/q) A = ) P a2

Using (2.12) and (2.14)—(2.16), we find that

3 2(=¢")x(=¢» q3x2(—q2)f(—q18) _ x(=a"x(=¢" g x@”)x(=q"®)
F2(=qPx(—=q'® X2(=a"®f(—¢>  x(=¢®>x(—q) x(@x(—g%) °

which can be transformed into

3(q18; qIS)go(_qIS; qIS)oo B 3(q18; qlg)oo(_qlg; qIS)gO
(4% 472 (4% 4P oo (@2 4%)oo(—4%: 422

_ (0509”4 (20700 4P

T @ e T (Cq 4D (—a % 4 B

by the definitions of f and x from (2.2) and (2.3), respectively. Multiplying both sides
2.2
of the forgoing equality by % we have

>
o0

3@ d™% 5 3@ )

(@ 9M% (@* 4M o
(=% D% ((qg;qlg)oo B (—49;6118)00) ., (=% ¢Hoo
(4" 4™\ (@ 9D (=4 4*)0 (—4"%¢"®) o0

Equating the coefficients of ¢V 13 on both sides of the last equation, we finish the

proof. O

Theorem 4.11 Let S denote the set of partitions with distinct odd parts not multiples
of 9, or with even parts not multiples of 9. Let T denote the set of partitions with

@ Springer



160 Page 28 of 31 R.R.Zhou

distinct odd parts not multiples of 9, or with distinct parts that are multiples of 4 not
multiples of 9. Let P1(N) denote the number of partitions of N in S. Let P(N) be the
number of partitions of N into an odd number of parts in S. let P3(N) be the number
of partitions of N in T. Then, forall N > 1,

Pi(N)+ P,(N) = P3(2N + 3).

Proof By the reciprocal of the equality (3.21), we have

9:(g>3/16<<1+ﬁ>1/4 \/—>l/4) a(l— 0[) 1/8+<177Q)1/4 (416)
i \y 4y y(l V) I—y

where y has degree 9 over «. Multiplying both sides of (4.16) by (’;((111—’;[))//‘5)1/ ¥ and

rearranging the resulting identity, we obtain

Volr( =) /gHV? (@l —a)/g)" 1 (1 —a)!B(a/q) /B
Varle(l =) /12 (y (1= y)/q®) 124 (1 =) /B(y /q®)~1/8
L3 (V) A1 =)™ (/)™ (1= )Py /g%

I+ VA =) Y2y [q) 7148 (1 — )24 (a/q)~1/12
L =V A =) R /)T (=) Py /g7
(1_m1/4(1 _ y)—1/12(y/q9)—1/48 (1— 0[)1/24(0{/61)—1/12

Hence, from (2.12), (2.14)—(2.16), (2.24) and (2.25), we check that

—2q71.

f=a®x@  x(—ox(=¢) _ g x(—qlg)(x(ql/z) B x(—q”%)_zq,l
F=aHx@®  x(—¢")x(—q'®) x(=4) \x @) x(=¢°%)

Canceling ¢ ~3/%, and applying the definitions of f and x from (2.2), (2.3) and (2.5),
we can rewrite the last equation in the form

320%™ (=04 3 (=" 4005 4P
@ 00" a0 T (4% 4D00@% 4o

_ (—612;6]2)00 ((_ql/ZQQ)oo _ (511/2751)oo>_2 1/2

(=434 \ (4% 4% (@77 ¢%)e N

Substituting ¢ by g2, we get

3@ %005 qN% 3 (=07 ¥ (g ¢M o
(@* Moo (=43 ¢*) 0 (=% 4% 00 (q'%; 4300

_ (=q"1gY ( (—4:4Po (@3 4P)oo )_2

=% ) \ (=47 ¢ (%90 7

Equate the coefficients of g2V*+3 on both sides of the last equation to complete the

proof. O
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Theorem 4.12 Let S denote the set of 3 copies of positive integers where no multiples
of 3 and 5 occur. Let P1(N) denote the number of partitions of N into an odd number
of even elements of S, and let P,(N) denote the number of partitions of N into an odd
number of odd elements of S. Then, for all N > 3,

Pi(N) = P,(N —3).
Proof Recall the modular equation (3.3)
<Z3Z5 )3/2 _ (a_6>3/8 N ((1 —a)(l _s)>3/8 - (aS(l —a)(1-9) )3/8
aizis)  \By (1—=B) 1 —y) By (1 —B)(1—y)
6( ad(1 —a)(1 —§) )1/4
By(l—p)(1—-y))

where «, 8, v, and § are of the first, third, fifth, and fifteenth degrees, respectively.
Multiplyipg l?oth §ides of the. last equality by qz(%)l/ * and rearranging
the resulting identity, we obtain

(ﬁ(ﬂ(l = B)/a) 2z (L= y) /g )3
Vai(a(l —a) /)12 /z15(8(1 — 8)/q13)1/12
( (1 _ 06)1/24(06/(])_1/12(1 _ 8)1/24(8/6]15)_1/12 )3

(L= B (B/g") (1 =) Py [g5) T/
3= BB = ) 2y /g1
( (1= )/ (a/q) 141 = ) /2(6/q15) 112 >

- 3<(ﬂ(1 —B)/a) (1 - y)/qs)_1/24>3 + 64
(a(l —a)/q)" V24 8(1 — 8)/q15)~1/24 q-.

Hence, from (2.12), (2.14)—(2.16), we arrive at

P94 - PR =) - B =aHid =% P @@ | o
a3 3 (=43 (—¢'9) =) x3(=q") @ x3@")

Using the definitions of f and x from (2.2) and (2.3), we can rewrite the last equation
in terms of g-products, namely,

@%99%@" q"%  (=4% 93 (=4" ¢')%
(0% a23.@%% 303 (=42 gP)3 (=4 4303,
_ (@ 493%@ q"% i (—4°: 493, (—q% '3, 462
(q: 923" %3, (—4: 493 (—q"; 4703, '

Equate the coefficients of ¢ on both sides of the last equation to finish the proof. O
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