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Abstract
In this paper, with the help of potential function, we extend the classical Brezis–Lieb
lemma on Euclidean space to graphs, which can be applied to the following Kirchhoff
equation

{− (
1 + b

∫
V

|∇u|2dμ
)
�u + (λV (x) + 1) u = |u|p−2u in V,

u ∈ W 1,2(V),

on a connected locally finite graph G = (V,E), where b, λ > 0, p > 2 and V (x) is
a potential function defined on V. The purpose of this paper is four-fold. First of all,
using the idea of the filtration Nehari manifold technique and a compactness result
based on generalized Brezis–Lieb lemma on graphs, we prove that there admits a
positive solution uλ,b ∈ Eλ with positive energy for b ∈ (0, b∗) when 2 < p < 4. In
the sequel, when p � 4, a positive ground state solution wλ,b ∈ Eλ is also obtained
by using standard variational methods. What’s more, we explore various asymptotic
behaviors of uλ,b, wλ,b ∈ Eλ by separately controlling the parameters λ → ∞ and
b → 0+, as well as jointly controlling both parameters. Finally, we utilize iteration to
obtain the L∞-norm estimates of the solution.
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1 Introduction

Consider the following Kirchhoff type equation

utt −
(
a + b

∫
�

|∇u|2dx
)

�u = f (x, u) (1.1)

with a bounded domain � ⊂ R
N , which received much attention on mathematical

studies, was originally introduced by Kirchhoff [18] to describe the transversal oscil-
lations of a stretched string. Above equation is a general version of the Kirchhoff
equation

ρ
∂2u

∂t2
−
(
P0
h

+ E

2L

∫ L

0

∣∣∣∣∂u∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0 (1.2)

with a strong physical background, where L is the length of the string, h is the area of
cross section, ρ is themass density, E is the Young’s modulus of thematerial, and P0 is
the initial tension. Equation (1.2) can be also seen as a generalization of the classical
D’Alembert’s wave equation for free vibrations of elastic strings. For more details
in the physical and mathematical background of Kirchhoff type equations, one can
refer to [23]. In addition, some early classical studies of Kirchhoff equations can be
seen in Bernstein [4]. Afterwards, Lions [20] proposed an abstract functional analysis
framework for the Kirchhoff type equation (1.1) in 1978, which attracted the attention
of several researchers. Subsequently, based on variational methods, the solvability
of (1.1) has been thoroughly investigated when nonlinear f satisfies various growth
conditions, see [9, 24]. Moreover, there are numerous interesting results were built on
the corresponding elliptic version, like

{− (
a + b

∫
RN |∇u|2dx)�u + V (x)u = f (x, u) in RN ,

u ∈ H1
(
R

N
)
,

(1.3)

where N � 1, a, b > 0, V ∈ C
(
R

N ,R
)
and f ∈ C

(
R × R

N ,R
)
. To deal with

(1.3) in the case where f (x, u) := f (u) with N = 3, via using the mountain pass
theorem and Nehari manifold, He and Zou [17] established the existence of positive
ground state solutions. Later, Li and Ye [19] obtained the existence of positive ground
state solutions when f (x, u) := |u|p−2u with 3 < p < 6 in (1.3). For more results
about Kirchhoff type problems, we refer the readers to [7, 8, 21, 22, 27–30] and the
references therein.

In recent years, analysis on graphs has begun to attract attention and has had several
applications in different fields, data analysis, optimal transport, machine learning, etc
[1, 10, 12]. Particularly, there are many interesting directions about graph in mathe-
matics. It’s remarkable that, Grigor’yan et al. [13, 15, 16] established the variational
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framework on graphs for some nonlinear equations, and the existence of solution was
considered, where mountain pass theorem and a method of upper and lower solutions
have been uesd. Furthermore, they pointed out that the Sobolev space Wm,p(V) on a
finite graph G = (V,E) is pre-compact. Soon after, Zhang and Zhao [33] introduced
two Sobolev embedding theorems on graphs and investigated the equation

− �u + (λV (x) + 1) u = |u|p−2u in V, (1.4)

where V (x) � 0 satisfies following conditions:
(V1) V (x) � 0 on V, and the potential well � = {x ∈ V : V (x) = 0} is a non-

empty, connected and bounded domain in V.
(V2) There exists a vertex x0 ∈ V such that V (x) → +∞ as d (x, x0) → +∞.

Specifically, they proved that there exists a ground state solution uλ of (1.4) and it
converges in W 1,2(V) to a ground state solution of the Dirichlet problem

{
−�u + u = |u|p−2u in �,

u = 0 on ∂�,

as λ → ∞ along a subsequence. For more interesting resuts on graphs, we refer the
readers to [2, 3, 6, 26].

Now, We turn our attention to the Kirchhoff equation. Pan and Ji [25] used the
constrained variational method to study

−
(
a + b

∫
V

|∇u|2dμ

)
�u + c(x)u = f (u) (1.5)

on a locally finite graph, where f (u) satisfies super cubic growth condition and the
other suitable assumptions. More precisely, the authors showed that (1.5) has a least
energy sign-changing solution ub, and its energy is strictly larger than twice that of
least energy solutions firstly. Then, they proved that ub converges to a least energy
sign-changing solution of the problem

−a�u + c(x)u = f (u), x ∈ V,

as b → 0+ along a subsequence.
Based on the above works, for the Kirchhoff equation on graphs, there is a lack of

relevant results when the nonlinear terms are associated with subcubic growth. Thus,
in the following article, we attempt to investigate the existence of positive solutions
to the Kirchhoff type problem

{− (
a + b

∫
V

|∇u|2dμ
)
�u + (λV (x) + 1) u = |u|p−2u in V,

u ∈ W 1,2(V),
(1.6)

on a connected locally finite graph G = (V,E), where a > 0 is a constant, b and λ

are positive parameters, p > 2 and the potential V (x) satisfies conditions (V1), (V2).
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We shall consider (1.6) for 2 < p < 4 and p � 4 separately. For the former,
in order to overcome the barrier of lacking compactness on graphs, we introduce
two embedding theorems based on steep potential. Moreover, to obtain compactness
results for 2 < p < 4, we extend Brezis–Lieb lemma on graphs. For the latter, we use
standard Nehari manifold to seek the positive ground state solution for the equation
(1.6). What’s more, various asymptotic behaviors and the L∞-norm estimates of the
solution are considered.

1.1 Notations

Let G = (V,E) be a graph which is locally finite and connected, where V and E

denote the vertex set and the edge set, respectively. Here, a graph G is said to be
locally finite if for any x ∈ V, there are only finite y ∈ V such that xy ∈ E. And
a graph is connected if any two vertices x and y can be connected via finite edges.
For any x, y ∈ V with xy ∈ E, we assume it has a positive symmetric weight on G,
namlely wxy = wyx > 0.

Then we define the measure μ : V → R
+ on the graph, which is a finite positive

function on V. And we call it a uniformly positive measure if there exists a constant
μ0 > 0 such that μ(x) � μ0 for all x ∈ V. For any function u : V → R, the
μ-Laplacian (or Laplacian for short) of u is defined as

�u(x) := 1

μ(x)

∑
y∼x

wxy(u(y) − u(x)), (1.7)

where y ∼ x means xy ∈ E or y is adjacent to x . We denote the gradient form of two
functions u and v on the graph by

�(u, v)(x) := 1

2μ(x)

∑
y∼x

wxy(u(y) − u(x))(v(y) − v(x)).

Denote �(u) = �(u, u) and ∇u∇v = �(u, v), then the length of gradient u is
represented by

|∇u|(x) := √
�(u)(x) =

(
1

2μ(x)

∑
y∼x

wxy(u(y) − u(x))2
)1/2

.

The integral of a function f over V is given as

∫
V

f dμ =
∑
x∈V

μ(x) f (x).

We denote the space of functions on V by C(V). For u ∈ C(V), its support set is
defined as supt(u) = {x ∈ V : u(x) 	= 0}. Let Cc(V) be the set of all functions with
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finite support and W 1,2(V) be the completion of Cc(V) under the norm

‖u‖W 1,2(V) =
(∫

V

(
|∇u|2 + u2

)
dμ

)1/2

.

Obviously, W 1,2(V) is a Hilbert space with the inner product

〈u, v〉 =
∫
V

(�(u, v) + uv)dμ, ∀u, v ∈ W 1,2(V).

What’s more, the space L p(V) is defined as

L p(V) = {
u ∈ C(V) : ‖u‖L p(V) < ∞}

,

where

‖u‖L p(V) =

⎧⎪⎪⎨
⎪⎪⎩

(∑
x∈V

μ(x)|u(x)|p
) 1

p

if 1 � p < ∞,

sup
x∈V

|u(x)| if p = ∞.

Consider a domain� ⊂ V. The distance d(x, y) of two vertices x, y ∈ � is defined
by the minimal length of a path which connect x and y.� is said a bounded domain in
V, if the distance d(x, y) is bounded for any x, y ∈ �. The boundary of � is defined
as

∂� := {y /∈ � : ∃x ∈ � such that xy ∈ E}

and the interior of � is denoted by �◦. Obviously, we can see that �◦ = �, which
is different from the Euclidean case. Furthermore, the Hilbert space W 1,2

0 (�) is the
completion of Cc(�) under the norm

‖u‖W 1,2
0 (�)

=
(∫

�∪∂�

|∇u|2dμ +
∫

�

u2dμ

) 1
2

.

Because of the formula for integral by parts which will be introduced in Sect. 2, there
is an extral integral on ∂� for the gradient form of u.

And for more details about graphs, we refer the reader to [14].
Furthermore, if conditions (V1), (V2) are satisfied, we denote m� the ground state

energy of the equation

{
−�u + u = |u|p−2u in �,

u = 0 on ∂�,
(1.8)

where p > 2 and � = {x ∈ V : V (x) = 0}.
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1.2 Main Results

After explaining the notations, we introduce the main results achieved. In this paper,
we always assume that G = (V,E) is a locally finite and connected graph with pos-
itive symmetric weight and uniformly positive measure. We consider Kirchhoff type
problem (1.6) satisfying the conditions (V1) and (V2). To state our main results, with-
out loss of generality, we may assume that a = 1. Consequently, we shall investigate
the Kirchhoff type problem

{− (
1 + b

∫
V

|∇u|2dμ
)
�u + (λV (x) + 1) u = |u|p−2u in V,

u ∈ W 1,2(V),
(Kλ,b)

with the associated energy functional

Iλ,b(u) = 1

2

∫
V

[|∇u|2 + (λV (x) + 1) u2
]
dμ + b

4

(∫
V

|∇u|2dμ

)2

− 1

p

∫
V

|u|p dμ.

Then it is natural to consider a function space

Eλ =
{
u ∈ W 1,2 (V) :

∫
V

(λV (x) + 1) u2dμ < ∞
}

with the norm

‖u‖λ =
{∫

V

[
|∇u|2 + (λV (x) + 1) u2

]
dμ

}1/2
.

The space Eλ is also a Hilbert space and its inner product is

〈u, v〉λ =
∫
V

[�(u, v) + (λV (x) + 1) uv] dμ, ∀u, v ∈ Eλ.

We now summarize our main results as follows. The first main result is concerned
with the existence of positive solutions.

Theorem 1.1 (i) Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2)

hold. Then there exists b∗ > 0 such that for every b ∈ (0, b∗) and λ > 0, Eq. (Kλ,b)

has one positive solution uλ,b ∈ Eλ satisfying

0 < μ
1
2
0 �

∥∥uλ,b
∥∥

λ
<

√
2pm�

p − 2

(
2

4 − p

) 1
p−2

and

0 <
p − 2

4p
μ0 � Iλ,b

(
uλ,b

)
<

m�

2

(
2

4 − p

) 2
p−2

.
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Fig. 1 The graph G6

(ii) Suppose that p = 4 and conditions (V1) , (V2) hold. Then there exists b̂ > 0
such that for every b ∈ (0, b̂), λ > 0, Eq. (Kλ,b) has a positive ground state solution
wλ,b ∈ Eλ satisfying Iλ,b

(
wλ,b

) = lλ,b > 0.
(iii) Suppose that p > 4 and conditions (V1) , (V2) hold. Then for every λ >

0, b > 0, Eq. (Kλ,b) has a positive ground state solution wλ,b ∈ Eλ satisfying
Iλ,b

(
wλ,b

) = lλ,b > 0.

Remark 1.1 To illustrate that the conditionμ0 � 2p
p−2m� can be achieved, we consider

a finite connected graph G6 = (V,E) as shown in the Fig. 1. The vertex set V is
{x1, x2, · · · , x6} and the edge set E is {x12, x13, x23, x24, x25, x34, x35, x45, x46, x56},
where xi j represents the edge connecting vertices xi and x j . For simplicity, we take
the measure μ satisfying μ (xi ) = 1 for i = 1, 2, · · · , 6 and take the weight wxi x j =
wx j xi = 1 for all xi j ∈ E. Hence, G6 is a finite and connected graph with positive
symmetric weight and uniformly positive measure.

Next, let V (x) be

V (xi ) =
{
0 if i = 1,

1 if i = 2, 3, 4, 5, 6.

We consider the equation (1.8) in a Hilbert space W 1,2
0 (�), with corresponding func-

tional

I�(u) = 1

2

(∫
�∪∂�

|∇u|2dμ +
∫

�

u2dμ

)
− 1

p

∫
�

|u|pdμ.

Clearly, the potential well is � = {x1} with boundary ∂� = {x2, x3}. Note that

u1(x) =
{
1 if x = x1,
0 if x = x2, x3,
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satisfying u1(x) ∈ N�, and so

0 < m� := inf
u∈N�

I�(u) � 1

2
− 1

p
,

where

N� :=
{
u ∈ W 1,2

0 (�)\{0} : ‖u‖2
W 1,2

0 (�)
= ‖u‖p

L p(�)

}
.

Thus, we can take μ0 = 1 satisfying μ0 � 2p
p−2m�.

Note that Zhang and Du [32] applied the truncation technique to handle the similar
Kirchhoff equation inR3 space successfully, however, this technique is not applicable
to graphs. Therefore, we need to identify an alternative approach. Inspired by Sun and
Wu [29], we apply a novel constraint method, which will be introduced in Sect. 3, to
obtain the boundedness of the Palais-Smale sequences. Furthermore, to overcome the
compactness, we extend the classical Brezis–Lieb lemma [5] on Euclidean space to a
connected locally finite graph in Sect. 2.2.

To study the asymptotic behavior of uλ,b, wλ,b ∈ Eλ as λ → ∞, it is advisable to
consider the Dirichlet problem

{− (
1 + b

∫
�

|∇u|2dμ
)
�u + u = |u|p−2u in �,

u = 0 on ∂�.
(K∞,b)

Similar to Eq. (Kλ,b), the Dirichlet problem
(K∞,b

)
also has a positive solution under

some assumptions.

Theorem 1.2 (i) Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2)

hold. Then there exists b∗ > 0 such that for every b ∈ (0, b∗), Eq.
(K∞,b

)
has one

positive solution u∞,b ∈ W 1,2
0 (�).

(ii) Suppose that p = 4 and conditions (V1), (V2) hold. Then there exists b̂ > 0
such that for every b ∈ (0, b̂), Eq. (K∞,b) has a positive ground state solution
w∞,b ∈ W 1,2

0 (�).
(iii) Suppose that p > 4 and conditions (V1), (V2) hold. Then for every b > 0, Eq.

(K∞,b) has a positive ground state solution w∞,b ∈ W 1,2
0 (�).

Remark 1.2 For convenience, we use the same notations b∗, b̂ here as in Theorem 1.1.

Next, we have the following result:

Theorem 1.3 (i) Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2)

hold. Then there exists b∗ ∈ (0, b∗), for any sequence λn → ∞, pass to a
subsequence, uλn ,b ∈ Eλn converges in W 1,2(V) to a positive solution of Eq.(K∞,b

)
with b ∈ (0, b∗) fixed, where uλn ,b ∈ Eλn is the positive solution of Eq.

(Kλn ,b) obtained by Theorem 1.1(i).
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(ii) Suppose that p = 4, and conditions (V1), (V2) hold. Then, for any sequence
λn → ∞, pass to a subsequence, wλn ,b ∈ Eλn converges in W 1,2(V) to a
positive solution of Eq.

(K∞,b
)
with b ∈ (0, b̂) fixed, where wλn ,b ∈ Eλn is the

positive ground state solution of Eq. (Kλn ,b) obtained by Theorem 1.1(ii).
(iii) Suppose that p > 4, and conditions (V1), (V2) hold. Then, for any sequence

λn → ∞, pass to a subsequence, wλn ,b ∈ Eλn converges in W 1,2(V) to a
positive solution of Eq.

(K∞,b
)
with b ∈ (0,+∞) fixed, where wλn ,b ∈ Eλn is

the positive ground state solution of Eq. (Kλn ,b) obtained by Theorem 1.1(iii).

After exploring the asymptotic behavior of uλ,b, wλ,b ∈ Eλ as λ → ∞, we turn
our attention to study asymptotic behavior of uλ,b, wλ,b ∈ Eλ as b → 0+, thus

{−�u + (λV (x) + 1) u = |u|p−2u in V,

u ∈ W 1,2(V),
(Kλ,0)

is considered naturally. According to [33], if conditions (V1) , (V2) are satisfied, Eq.
(Kλ,0) has a positive solution for p > 2.

Theorem 1.4 (i) Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2)

hold. Let uλ,b ∈ Eλ be the positive solution of Eq.
(Kλ,b

)
obtained by theorem

1.1(i). Then for each λ ∈ (0,∞) fixed, up to a subsequence, uλ,b → uλ,0 in Eλ

as b → 0+, where uλ,0 ∈ Eλ is a positive solution of Eq. (Kλ,0).
(ii) Suppose that p = 4 and conditions (V1), (V2) hold. Letwλ,b ∈ Eλ be the positive

ground state solution of Eq.
(Kλ,b

)
obtained by Theorem 1.1(ii). Then for each

λ ∈ (0,∞) fixed, up to a subsequence, wλ,b → wλ,0 in Eλ as b → 0+, where
wλ,0 ∈ Eλ is a positive solution of Eq. (Kλ,0).

(iii) Suppose that p > 4 and conditions (V1), (V2) hold. Letwλ,b ∈ Eλ be the positive
ground state solution of Eq.

(Kλ,b
)
obtained by Theorem 1.1(iii). Then for each

λ ∈ (0,∞) fixed, up to a subsequence, wλ,b → wλ,0 in Eλ as b → 0+, where
wλ,0 ∈ Eλ is a positive solution of Eq. (Kλ,0).

Next, we present a theorem that describes the asymptotic behavior of uλ,b, wλ,b ∈
Eλ as λ → ∞ and b → 0+. According to [33], if conditions (V1) , (V2) are satisfied,
then

{−�u + u = |u|p−2u in �,

u = 0 on ∂�,
(K∞,0)

has a positive solution for p > 2.

Theorem 1.5 (i) Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2)

hold. Let uλ,b ∈ Eλ be the positive solution of Eq.
(Kλ,b

)
obtained by Theorem

1.1(i). Then up to a subsequence, uλ,b → u∞,0 in W 1,2(V) as b → 0+ and
λ → ∞, where u∞,0 ∈ W 1,2

0 (�) is a positive solution of Eq.
(K∞,0

)
.

(ii) Suppose that p = 4, and conditions (V1), (V2) hold. Letwλ,b ∈ Eλ be the positive
ground state solution of Eq.

(Kλ,b
)
obtained by Theorem 1.1(ii). Then up to a

123
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subsequence, wλ,b → w∞,0 in W 1,2(V) as b → 0+ and λ → ∞, where w∞,0 ∈
W 1,2

0 (�) is a positive solution of Eq.
(K∞,0

)
.

(iii) Suppose that p > 4, and conditions (V1), (V2) hold. Letwλ,b ∈ Eλ be the positive
ground state solution of Eq.

(Kλ,b
)
obtained by Theorem 1.1(iii). Then up to

a subsequence, wλ,b → w∞,0 in W 1,2(V) as b → 0+ and λ → ∞, where
w∞,0 ∈ W 1,2

0 (�) is a positive solution of Eq.
(K∞,0

)
.

Finally in this subsection, we give the estimate of solutions.

Theorem 1.6 Let uλ,b, wλ,b ∈ Eλ be obtained by Theorem 1.1. Then there exist
C1,C2 > 0 (independent of λ) satisfying

∥∥uλ,b
∥∥
L∞(V)

� C1 and
∥∥wλ,b

∥∥
L∞(V)

� C2

for all λ > 0.

The paper is organized as follows: in Sect. 1, we describe the development of
Kirchhoff type equation and some research results about it on Euclidean Space. Fol-
lowing that, the research results of discrete equation in recent years are presented.
What’s more, we provide an explanation ofmain notations and present themain results
achieved, including the existence of positive solution and its asymptotic behavior for
Eq. (Kλ,b). In Sect. 2, in order to derive themain results, we undertake essential prepa-
rations. This includes introducing the formula for integral by parts and the Sobolev
embedding theorem on graphs. Subsequently, we introduce a generalized Brezis–Lieb
lemma on graphs. In Sect. 3, we filtrate the Nehari manifold Nλ,b associated with Eq.
(Kλ,b) laying the foundation of the proof in next section. In Sect. 4, we show that the
existence of the positive solution uλ,b ∈ Eλ for Eq. (Kλ,b) when 2 < p < 4, where
we have employed calculus of variations. In Sect. 5, we prove the multiple results
regarding the asymptotic behavior of uλ,b ∈ Eλ by controlling parameters λ and b. In
Sect. 6, by applying standard variational methods, we show that the existence of the
positive ground state solution wλ,b ∈ Eλ for Eq. (Kλ,b) when p � 4. In Sect. 7, we
analyze the asymptotic behavior of the solution wλ,b ∈ Eλ by controlling parameters
λ and b. In Sect. 8, we give the estimate involving the L∞-norm of solutions by using
iteration.

2 Preliminaries

We will introduce some useful results on graphs.

2.1 Formula for Integral by Parts and Embedding Theorems

In this subsection, we shall present two lemmas about integral by parts on graphs first.
According to the work of Zhang and Zhao [33], we have the following lemmas.
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Lemma 2.1 Suppose that u ∈ W 1,2(V) and its Laplacian �u is defined by (1.7). Then
for any v ∈ Cc(V), we have

∫
V

∇u · ∇vdμ =
∫
V

�(u, v)dμ = −
∫
V

�uvdμ.

Lemma 2.2 Suppose that u ∈ W 1,2(V) and its Laplacian �u is well-defined. Let v

be a function which belongs to Cc(�), where � ⊂ V is a bounded domain. Then we
have

∫
�∪∂�

∇u · ∇vdμ =
∫

�∪∂�

�(u, v)dμ = −
∫

�

�uvdμ.

After that, since the graph has no concept of dimension, the Sobolev embedding
theorem becomes unusual. For this, we introduce two compactness results related to
Eλ.

Lemma 2.3 Assume that λ > 0 and V (x) satisfies conditions (V1), (V2). Then Eλ is
weakly pre-compact and Eλ compactly embedded into Lq(V) for any q ∈ [2,∞] and
the embedding is independent of λ. Namely, there exists a constant C depending on
μ0 and q such that for any u ∈ Eλ, ‖u‖Lq (V) � C‖u‖λ. Particularly, there holds

‖u‖λ � μ

q−2
2q
0 ‖u‖Lq (V) for 2 � q < +∞. (2.1)

Moreover, for any bounded sequence {un} ⊂ Eλ, there exists u ∈ Eλ such that, going
if necessary to a subsequence,

⎧⎪⎨
⎪⎩
un⇀u in Eλ,

un(x) → u(x) ∀x ∈ V,

un → u in Lq(V).

Proof We assume that u ∈ Eλ, take any vertex x1 ∈ V and fix it, there holds

‖u‖2λ =
∫
V

[
|∇u|2 + (λV (x) + 1) u2

]
dμ

�
∫
V

u2dμ =
∑
x∈V

μ(x)u2(x) � μ0u
2 (x1) ,

which implies

u (x1) �
√

1

μ0
‖u‖λ.
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Thus Eλ ↪→ L∞(V) continuously and the embedding is independent of λ. When
2 � q < +∞, we have

‖u‖qλ =
{∫

V

[
|∇u|2 + (λV (x) + 1) u2

]
dμ

} q
2

�
(∫

V

u2dμ

) q
2

=
[∑
x∈V

μ(x)u2(x)

] q
2

�
∑
x∈V

μ
q
2 (x)|u(x)|q

� μ
q
2 −1
0

∑
x∈V

μ(x)|u(x)|q = μ
q
2 −1
0

∫
V

|u|qdμ,

so we get ‖u‖λ � μ

q−2
2q
0 ‖u‖Lq (V). Then we obtain the continuous embedding Eλ ↪→

Lq(V) for any 2 � q � ∞.
The rest of the proof is similar to the lemma 2.6 in [33], so we omit it here. ��
For the space W 1,2

0 (�), we have another embedding theorem as following.

Lemma 2.4 (See [33], Lemma 2.7) Assume that � is a bounded domain in V.
Then W 1,2

0 (�) is continuously embedded into Lq(�) for any q ∈ [1,∞]. Namely,
there exists a constant C depending only on q and � such that for any u ∈
W 1,2

0 (�), ‖u‖Lq (�) � C‖u‖W 1,2
0 (�)

. Moreover, for any bounded sequence {un} ⊂
W 1,2

0 (�), there exists u ∈ W 1,2
0 (�) such that, going if necessary to a subsequence,

⎧⎪⎨
⎪⎩
un⇀u in W 1,2

0 (�),

un(x) → u(x) ∀x ∈ �,

un → u in Lq(�).

2.2 A Generalization of Brezis–Lieb Lemma

After introducing two embedding theorems, we establish a generalization of Brezis–
Lieb lemma on graphs as following.

Lemma 2.5 Suppose that conditions (V1) and (V2) hold. If {un} ⊂ Eλ is bounded and
there exists u ∈ Eλ such that un⇀u, then there holds

lim
n→∞

(
‖un‖qLq (V)

− ‖un − u‖qLq (V)

)
= ‖u‖qLq (V)

for 2 � q < ∞.

Proof We assume that {un} has a upper bound M in Eλ, then

‖u‖λ � lim
n→∞

‖un‖λ � M .
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Fix ε > 0, there exists Cε > 0 such that, for all α, β ∈ R,

∣∣|α + β|q − |α|q ∣∣ � ε|α|q + Cε|β|q .

If we let

f ε
n := (∣∣|un|q − |un − u|q − |u|q ∣∣− ε|un − u|q)+

and take α = un − u, β = u, then

f ε
n = (∣∣|α + β|q − |α|q − |β|q ∣∣− ε|α∣∣q)+

� (
∣∣|α + β|q − |α|q ∣∣+ |β|q − ε|α|q)+

�
(
ε|α|q + Cε|β|q + |β|q − ε|α|q)+

= [
(1 + Cε)|β|q]+ = (1 + Cε)|β|q = (1 + Cε)|u|q ,

so there exists a constant C such that

∫
V

V (x)
∣∣ f ε

n

∣∣ dμ � (1 + Cε)

∫
V

V (x)|u|qdμ

� (1 + Cε)C

λ
q
2

‖u‖qλ � (1 + Cε)C

λ
q
2

Mq .

In view of (V2), let x0 ∈ V be fixed, there exists some R > 0 such that

V (x) � (1 + Cε)CMq

λ
q
2 ε

when dist (x, x0) > R.

Hence, we obatin

∫
dist(x,x0)>R

∣∣ f ε
n

∣∣ dμ � λ
q
2 ε

(1 + Cε)CMq

∫
dist(x,x0)>R

V (x)
∣∣ f ε

n

∣∣ dμ � ε. (2.2)

Since {un} ⊂ Eλ is also bounded in L2(V) and we have the weak convergence in
L2(V), then

lim
n→∞

∫
V

(un − u) ϕdμ = lim
n→∞

∑
x∈V

μ(x) [un(x) − u(x)]ϕ(x) = 0 (2.3)

for any ϕ ∈ L2(V). Take any x1 ∈ V and let

ϕ1(x) =
{
1 if x = x1,

0 if x 	= x1,
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141 Page 14 of 36 S. Cheng et al.

which belongs to L2(V). By substituting ϕ1 into (2.3), we get lim
n→∞ μ (x1) [un(x1) −

u(x1)] = 0. Thus, lim
n→∞ un(x) = u(x) for any x ∈ V, and so f ε

n (x) → 0 for any

x ∈ V. Moreover, because {x ∈ V : dist (x, x0) � R} is a finite set, there holds

lim
n→+∞

∫
dist(x,x0)�R

∣∣ f ε
n

∣∣ dμ = 0. (2.4)

We conclude from (2.2) and (2.4) that lim
n→+∞

∫
V

∣∣ f ε
n

∣∣ dμ = 0, then

lim
n→+∞

∫
V

f ε
n dμ = 0.

Note that

∣∣|un|q − |un − u|q − |u|q ∣∣ � f ε
n + ε|un − u|q ,

we obtain

lim
n→∞

∫
V

∣∣|un|q − |un − u|q − |u|q ∣∣dμ � lim
n→∞

∫
V

f ε
n dμ + ε lim

n→∞

∫
V

|un − u|q dμ

� 0 + ε · 2q lim
n→∞

∫
V

(|un|q + |u|q) dμ.

Now let ε → 0, there exists

lim
n→∞

∫
V

∣∣|un|q − |un − u|q − |u|q ∣∣dμ = 0,

which implies that

lim
n→∞

∫
V

(|un|q − |un − u|q − |u|q) dμ = 0.

We finish the proof now. ��

Remark 2.1 If ‖un‖W 1,2
0 (�)

is bounded and there exists u ∈ W 1,2
0 (�) satisfying un⇀u,

then lim
n→∞ un(x) = u(x) for all x ∈ � is obviously, which implies that

lim
n→∞

(
‖un‖qLq (�) − ‖un − u‖qLq (�)

)
= ‖u‖qLq (�)

for q � 1.
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3 The Construction of a Noval Constraint Manifold

To find the solutions of Eq. (Kλ,b), it is naturally to consider the critical points of the
functional Iλ,b(u). A direct calculation shows that

〈
I ′
λ,b(u), ϕ

〉 =
[
1 + b

(∫
V

|∇u|2dμ

)]∫
V

∇u∇ϕdμ

+
∫
V

(λV (x) + 1) uϕdμ −
∫
V

|u|p−2uϕdμ

for all ϕ ∈ Eλ, where I ′
λ,b denotes the Fréchet derivative of Iλ,b. Next, we can define

the Nehari manifold

Nλ,b := {
u ∈ Eλ\{0} : 〈I ′

λ,b(u), u
〉 = 0

}
,

then u ∈ Nλ,b if and only if ‖u‖2λ + b
(∫

V
|∇u|2dμ

)2 = ∫
V

|u|pdμ.
Motived by Sun andWu [29], we filtrate the Nehari manifoldNλ,b with 2 < p < 4.

For each r ∈ [2,+∞), suppose that conditions (V1) and (V2) hold, in view of (2.1),
we find

∫
V

|u|r dμ � μ
− r−2

2
0 ‖u‖rλ for λ > 0.

Hence, for u ∈ Nλ,b, there holds

‖u‖2λ � ‖u‖2λ + b

(∫
V

|∇u|2dμ

)2

=
∫
V

|u|pdμ � μ
− p−2

2
0 ‖u‖p

λ ,

which implies that

∫
V

|u|pdμ � ‖u‖2λ � μ0 for all u ∈ Nλ,b. (3.1)

It’s noteworthy that the Nehari manifold Nλ,b is closely linked to the behavior of
fibrering map of the form hb,u : t → Iλ,b(tu) as

hb,u(t) = t2

2
‖u‖2λ + bt4

4

(∫
V

|∇u|2dμ

)2

− t p

p

∫
V

|u|pdμ for t > 0.

For u ∈ Eλ, it is easy to see

h′
b,u(t) = t‖u‖2λ + bt3

(∫
V

|∇u|2dμ

)2

− t p−1
∫
V

|u|pdμ
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and

h′′
b,u(t) = ‖u‖2λ + 3bt2

(∫
V

|∇u|2dμ

)2

− (p − 1)t p−2
∫
V

|u|pdμ.

Thus, for u ∈ Eλ\{0} and t > 0, h′
b,u(t) = 0 holds if and only if tu ∈ Nλ,b. Especially,

we can see that h′
b,u(1) = 0 holds if and only if u ∈ Nλ,b. According to [31], we may

decompose Nλ,b into three disjoint parts

N+
λ,b := {

u ∈ Nλ,b : h′′
b,u(1) > 0

}
,

N0
λ,b := {

u ∈ Nλ,b : h′′
b,u(1) = 0

}
,

N−
λ,b := {

u ∈ Nλ,b : h′′
b,u(1) < 0

}
.

Then we have the following result.

Lemma 3.1 Suppose that u0 is a local minimizer for Iλ,b onNλ,b and u0 /∈ N0
λ,b. Then

I ′
λ,b (u0) = 0 in Eλ

−1.

Proof Ifu0 is a localminimizer for Iλ,b onNλ,b, thenu0 is a solution of the optimization
problem

minimize Iλ,b(u) subject to γ (u) = 0,

where γ (u) = ‖u‖2λ + b
(∫

V
|∇u|2dμ

)2 − ∫
V

|u|pdμ. It follows from Lagrange mul-
tiplier rule that I ′

λ,b (u0) = θγ ′ (u0) for some θ ∈ R. Hence, we have

〈
I ′
λ,b (u0) , u0

〉 = θ
〈
γ ′ (u0) , u0

〉
.

For u0 ∈ Nλ,b, there holds

0 = 〈
I ′
λ,b (u0) , u0

〉

= ‖u0‖2λ + b

(∫
V

|∇u0|2dμ

)2

−
∫
V

|u0|pdμ.
(3.2)

The condition u0 /∈ N0
λ,b means that

‖u0‖2λ + 3b

(∫
V

|∇u0|2dμ

)2

− (p − 1)
∫
V

|u0|pdμ 	= 0. (3.3)

So combining (3.2) and (3.3) gives

(p − 2) ‖u0‖2λ − b(4 − p)

(∫
V

|∇u0|2 dμ

)2

	= 0. (3.4)
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Thus, by (3.2) and (3.4), we have

〈
γ ′ (u0) , u0

〉 = 2 ‖u0‖2λ + 4b

(∫
V

|∇u0|2 dμ

)2

− p
∫
V

|u0|p dμ

= −(p − 2) ‖u0‖2λ + b(4 − p)

(∫
V

|∇u0|2 dμ

)2

	= 0,

which implies that θ = 0, and so I ′
λ,b (u0) = 0. The proof is completed. ��

Lemma 3.2 Suppose that 2 < p < 4 and conditions (V1), (V2) hold. Then Iλ,b is
coercive and bounded below on N−

λ,b. Furthermore, for all u ∈ N−
λ,b, there holds

Iλ,b(u) � p − 2

4p
μ0.

Proof Note that

h′′
b,u(1) = ‖u‖2λ + 3b

(∫
V

|∇u|2dμ

)2

− (p − 1)
∫
V

|u|pdμ

= −2‖u‖2λ + (4 − p)
∫
V

|u|pdμ

(3.5)

for all u ∈ Nλ,b. So combining (3.1) and (3.5) implies that

Iλ,b(u) = 1

2
‖u‖2λ + b

4

(∫
V

|∇u|2dμ

)2

− 1

p

∫
V

|u|pdμ

= 1

4
‖u‖2λ − 4 − p

4p

∫
V

|u|pdμ

� p − 2

4p
‖u‖2λ � p − 2

4p
μ0

(3.6)

for all u ∈ N−
λ,b. This completes the proof. ��

Next, we attempt to do more analysis withN−
λ,b. Suppose that conditions (V1), (V2)

hold. For any u ∈ Nλ,b with Iλ,b(u) < m�

2

(
2

4−p

) 2
p−2

, it is easy to obtain

m�

2

(
2

4 − p

) 2
p−2

> Iλ,b(u) = 1

2
‖u‖2λ + b

4

(∫
V

|∇u|2dμ

)2

− 1

p

∫
V

|u|p dμ

= p − 2

2p
‖u‖2λ − b(4 − p)

4p

(∫
V

|∇u|2dμ

)2

� p − 2

2p
‖u‖2λ − b(4 − p)

4p
‖u‖4λ.
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Hence, if 0 < b <
(p−2)2

2pm�(4−p)

(
4−p
2

) 2
p−2

, one has two positive numbers D1 and D2

satisfying

√
pm�

p − 2

(
2

4 − p

) 1
p−2

< D1 <

√
2pm�

p − 2

(
2

4 − p

) 1
p−2

< D2

such that

‖u‖λ < D1 or ‖u‖λ > D2.

Clearly, one can see that D1 → ∞ as p → 2+ or p → 4−. Therefore, one has

Nλ,b

(
m�

2

(
2

4 − p

) 2
p−2

)
:=

{
u ∈ Nλ,b : Iλ,b(u) <

m�

2

(
2

4 − p

) 2
p−2

}

=N(1)
λ,b ∪ N(2)

λ,b,

where

N(1)
λ,b :=

{
u ∈ Nλ,b

(
m�

2

(
2

4 − p

) 2
p−2

)
: ‖u‖λ < D1

}

and

N(2)
λ,b :=

{
u ∈ Nλ,b

(
m�

2

(
2

4 − p

) 2
p−2

)
: ‖u‖λ > D2

}
.

Moreover, for 0 < b <
(p−2)2

2pm�(4−p)

(
4−p
2

) 2
p−2

, there holds

‖u‖λ < D1 <

√
2pm�

p − 2

(
2

4 − p

) 1
p−2

for all u ∈ N(1)
λ,b. (3.7)

If μ0 � 2p
p−2m�, combining (3.5) and (3.7) gives

h′′
b,u(1) = −2‖u‖2λ + (4 − p)

∫
V

|u|pdμ

� −2‖u‖2λ + (4 − p)μ
− p−2

2
0 ‖u‖p

λ

< 0

for all u ∈ N(1)
λ,b, and this shows that N

(1)
λ,b ⊂ N−

λ,b. Therefore, the following statement
is true.
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Lemma 3.3 Suppose that 2 < p < 4, 0 < b <
(p−2)2

2pm�(4−p)

(
4−p
2

) 2
p−2

, μ0 � 2p
p−2m�

and conditions (V1), (V2) hold, then N(1)
λ,b ⊂ N−

λ,b is sub-manifold. Moreover, each

local minimizer of the functional Iλ,b in the sub-manifold N(1)
λ,b is a critical point of

Iλ,b in Eλ.

For u ∈ Eλ\{0}, we define

Tλ(u) =
(

‖u‖2λ∫
V

|u|pdμ

) 1
p−2

for convenience.

Lemma 3.4 Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2) hold.

For every b > 0 and u ∈ Eλ\{0} satisfying
∫
V

|u|pdμ >
p

4 − p

[
b(4 − p)

p − 2

] p−2
2 ‖u‖p

λ ,

there exist two constants t+b and t−b which satisfy

Tλ(u) < t−b <

(
2

4 − p

) 1
p−2

Tλ(u) < t+b

such that t±b u ∈ N±
λ,b.

Proof For each u ∈ Eλ\{0} and t > 0, we define

m(t) = t−2‖u‖2λ − t p−4
∫
V

|u|pdμ for t > 0,

then

h′
b,u(t) = t‖u‖2λ + bt3

(∫
V

|∇u|2dμ

)2

− t p−1
∫
V

|u|pdμ

= t3
[
m(t) + b

(∫
V

|∇u|2dμ

)2
]

.

This implies that tu ∈ Nλ,b if and only if m(t) + b
(∫

V
|∇u|2dμ

)2 = 0. Based on a
calculation, there hold

m (Tλ(u)) = 0, lim
t→0+ m(t) = +∞, lim

t→+∞m(t) = 0
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and

m′(t) = t−3
[
−2‖u‖2λ + (4 − p)t p−2

∫
V

|u|pdμ

]
.

Note that m(t) is decreasing when 0 < t <
(

2
4−p

) 1
p−2

Tλ(u) and is increasing when

t >
(

2
4−p

) 1
p−2

Tλ(u). Hence, when

∫
V

|u|pdμ >
p

4 − p

[
b(4 − p)

p − 2

] p−2
2 ‖u‖p

λ ,

we have

inf
t>0

m(t) =m

((
2

4 − p

) 1
p−2

Tλ(u)

)

= −
(
p − 2

4 − p

)(
2‖u‖2λ

(4 − p)
∫
V

|u|pdμ

) −2
p−2

‖u‖2λ

< − b
( p
2

) 2
p−2 ‖u‖4λ < −b

(∫
V

|∇u|2dμ

)2

,

herewehave applied
( p
2

) 2
p−2 > 1.Then there exist twoconstants t+b , t−b > 0 satisfying

Tλ(u) < t−b <

(
2

4 − p

) 1
p−2

Tλ(u) < t+b

such that

m
(
t±b
)+ b

(∫
V

|∇u|2dμ

)2

= 0,

and so t±b u ∈ Nλ,b. Note that

m′(t) = −2t−3‖u‖2λ − (p − 4)t p−5
∫
V

|u|pdμ

= t−5
[
−2t2‖u‖2λ + (4 − p)t p

∫
V

|u|pdμ

]

= t−5
[
−2‖tu‖2λ + (4 − p)

∫
V

|tu|pdμ

]
,
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then through calculation, one has

h′′
b,t−b u

(1) = −2
∥∥t−b u

∥∥2
λ

+ (4 − p)
∫
V

∣∣t−b u
∣∣p dμ

= (
t−b
)5
m′ (t−b ) < 0.

Similarly, there holds h′′
b,t+b u

(1) > 0 and so t±b u ∈ N±
λ,b. Then the proof is completed.

��
Nextwe focus onwhetherN(1)

λ,b is non-empty. To see this, let’s consider theDirichlet

problem (1.8) in a Hilbert space W 1,2
0 (�), with corresponding functional

I�(u) = 1

2

(∫
�∪∂�

|∇u|2dμ +
∫

�

u2dμ

)
− 1

p

∫
�

|u|pdμ.

According to [33], suppose that p > 2 and conditions (V1), (V2) hold, then there
exists a ground solution w� satisfying

0 < m� := inf
u∈N�

I�(u) = 1

2
‖w�‖2

W 1,2
0 (�)

− 1

p
‖w�‖p

L p(�) ,

where

N� :=
{
u ∈ W 1,2

0 (�)\{0} : ‖u‖2
W 1,2

0 (�)
= ‖u‖p

L p(�)

}
.

Furthermore, we obtain

‖w�‖λ = ‖w�‖W 1,2
0 (�)

=
√
2pm�

p − 2

and

‖w�‖L p(V) = ‖w�‖L p(�) =
(
2pm�

p − 2

) 1
p

.

Then for

0 < b < b∗ := (p − 2)2

2pm�(4 − p)

(
4 − p

p

) 2
p−2

<
(p − 2)2

2pm�(4 − p)

(
4 − p

2

) 2
p−2

,

it has

∫
V

|w�|p dμ >
p

4 − p

[
b(4 − p)

p − 2

] p−2
2 ‖w�‖p

λ .
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Consider lemma 3.4, it is easy to obtain positive constants t−b and t+b satisfying

Tλ (w�) < t−b <

(
2

4 − p

) 1
p−2

Tλ (w�) < t+b

such that t±b w� ∈ N±
λ,b, where

Tλ (w�) =
(

‖w�‖2λ∫
V

|w�|p dμ

) 1
p−2

= 1.

Moreover, when 1 < t−b <
(

2
4−p

) 1
p−2

, there hold

Iλ,b
(
t−b w�

) =
(
t−b
)2

4
‖w�‖2λ − 4 − p

4p

(
t−b
)p ∫

V

|w�|p dμ

= 1

4

[(
t−b
)2 − 4 − p

p

(
t−b
)p] 2pm�

p − 2

<
1

4

[(
2

4 − p

) 2
p−2 − 4 − p

p

(
2

4 − p

) p
p−2

]
2pm�

p − 2

= m�

2

(
2

4 − p

) 2
p−2

(3.8)

and

∥∥t−b w�

∥∥
λ

<

(
2

4 − p

) 1
p−2

Tλ (w�) ‖w�‖λ =
√
2pm�

p − 2

(
2

4 − p

) 1
p−2

,

so t−b w� ∈ N(1)
λ,b. Thus, we obtain the following statement.

Lemma 3.5 Suppose that 2 < p < 4, μ0 >
2p
p−2m� and conditions (V1), (V2) hold.

When

0 < b < b∗ := (p − 2)2

2pm�(4 − p)

(
4 − p

p

) 2
p−2

,

the sub-manifold N(1)
λ,b is non-empty.

4 The Proof of Theorem 1.1(i)

Now, we are ready to investigate the compactness for the functional Iλ,b(u). In the
following key proposition, we shall show that for c sufficiently small, the sequence
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{un} ⊂ N(1)
λ,b satisfying Iλ,b (un) → c and

∥∥∥I ′
λ,b (un)

∥∥∥
E−1

λ

→ 0 has a convergent

subsequence.

Proposition 4.1 Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1) , (V2)

hold. Then Iλ,b satisfies (PS)c-condition inN
(1)
λ,b with c < m�

2

(
2

4−p

) 2
p−2

for all λ > 0

and 0 < b < b∗.

Proof Let {un} ⊂ N(1)
λ,b be a (PS)c-sequence for Iλ,b with c < m�

2

(
2

4−p

) 1
p−2

. Then

we have ‖un‖λ < D1 by (3.7). Passing to a subsequence if necessary, there exists
u0 ∈ Eλ such that

un⇀u0 in Eλ, (4.1)

un(x) → u0(x) ∀x ∈ V, (4.2)

un → u0 in L p(V), (4.3)

where we have used Lemma 2.3. Then, we aim to prove that vn := un − u0 → 0
strongly in Eλ. We conclude from Lemma 2.5 that

∫
V

|vn|p dμ =
∫
V

|un|p dμ −
∫
V

|u0|p dμ + on(1). (4.4)

Since ‖un‖λ is bounded, we infer that, up to a subsequence,

lim
n→∞

∫
V

|∇un|2 dμ = A,

where A is a positive constant.
For any ϕ ∈ Eλ, by (4.1) and (4.2),

on(1) = 〈
I ′
λ,b (un) , ϕ

〉
= 〈un, ϕ〉λ + b

∫
V

|∇un|2 dμ

∫
V

∇un∇ϕdμ −
∫
V

|un|p−2 unϕdμ

= 〈u0, ϕ〉λ + bA
∫
V

∇u0∇ϕdμ −
∫
V

|u0|p−2 u0ϕdμ + on(1).

Then take ϕ = u0 in above equality, there holds

‖u0‖2λ + bA
∫
V

|∇u0|2 dμ −
∫
V

|u0|p dμ = on(1). (4.5)

By un ∈ N(1)
λ,b ⊂ Nλ,b, we have

‖un‖2λ + b

(∫
V

|∇un|2 dμ

)2

−
∫
V

|un|p dμ = 0. (4.6)
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Combining (4.4), (4.5) and (4.6), we yield that

on(1) = ‖un‖2λ + b

(∫
V

|∇un|2 dμ

)2

−
∫
V

|un|p dμ − ‖u0‖2λ

− bA
∫
V

|∇u0|2 dμ +
∫
V

|u0|p dμ

= ‖vn‖2λ + 2 〈vn, u0〉λ + b

(∫
V

|∇un|2 dμ

)2

− bA
∫
V

|∇u0|2 dμ

−
∫
V

|vn|p dμ + on(1)

= ‖vn‖2λ + b
∫
V

|∇un|2 dμ

(∫
V

|∇un|2 dμ −
∫
V

|∇u0|2 dμ

)

−
∫
V

|vn|p dμ + on(1)

= ‖vn‖2λ + b
∫
V

|∇un|2 dμ

∫
V

|∇vn|2 dμ −
∫
V

|vn|p dμ + on(1)

� ‖vn‖2λ −
∫
V

|vn|p dμ + on(1).

It’s easy to see ‖vn‖λ → 0, where we have applied (4.3). Then the proof is completed.
��

According to lemma 3.2, 3.3 and 3.5, we can define

mλ,b = inf
u∈N(1)

λ,b

Iλ,b(u)

when 0 < b < b∗. By using (3.6) and (3.8), we deduce that

0 <
p − 2

4p
μ0 � mλ,b <

m�

2

(
2

4 − p

) 2
p−2

. (4.7)

Obviously, there exists a sequence {un} ⊂ N(1)
λ,b such that

Iλ,b (un) = mλ,b + on(1) (4.8)

and

I ′
λ,b (un) = on(1) in Eλ

−1 (4.9)

from the Ekeland variational principle [11].
We have made sufficient preparations to prove the theorem 1.1(i) and we give the

proof now.
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It from (4.7), (4.8), (4.9) and proposition 4.1 that Iλ,b satisfies the (PS)mλ,b con-
dition in Eλ for all 0 < b < b∗ and λ > 0. So we can find a subsequence {un} and
uλ,b ∈ Eλ such that un → uλ,b strongly in Eλ for all 0 < b < b∗ and λ > 0. Thus,
uλ,b ∈ Eλ is a minimizer for Iλ,b in N

(1)
λ,b. Since

∣∣uλ,b
∣∣ ∈ N(1)

λ,b and

Iλ,b
(∣∣uλ,b

∣∣) = Iλ,b
(
uλ,b

) = mλ,b,

we can derive that uλ,b ∈ Eλ is a non-negative solution for Eq. (Kλ,b) easily, by using
lemma 3.3. If uλ,b (x1) = 0 for some x1 ∈ V, then �uλ,b (x1) = 0, i.e.

0 = �uλ,b (x1) = 1

μ (x1)

∑
x∼x1

wxx1

[
uλ,b(x) − uλ,b (x1)

]

= 1

μ (x1)

∑
x∼x1

wxx1uλ,b(x),

which means
∑
x∼x1

wxx1uλ,b(x) = 0 with wxx1 > 0, uλ,b(x) � 0 for x ∼ x1. Hence

there holds uλ,b(x) = 0 for all x ∼ x1, we deduce from the arbitrariness of x1 that
uλ,b(x) ≡ 0 in V, which implies that uλ,b is a positive solution. Moreover, we deduce

from (3.1) that any critical point uλ,b ∈ N(1)
λ,b ⊂ Nλ,b satisfying ‖uλ,b‖λ � μ

1
2
0 > 0.

The proof is now finished. ��

5 Asymptotic Behavior of Positive Solution u�,b

After obtaining the existence of the positive solution uλ,b ∈ Eλ of Eq.
(Kλ,b

)
for

2 < p < 4, we turn to study the asymptotic behavior of uλ,b ∈ Eλ obtained by the
theorem 1.1(i).

5.1 Asymptotic Behavior as � → ∞

In this subsection, we investigate the asymptotic behavior of uλ,b ∈ Eλ of Eq.
(Kλ,b

)
as λ → ∞ and give the proof of theorem 1.2(i) and 1.3(i).

To deal with Eq.
(K∞,b

)
, it is naturally to consider

I∞,b(u) = 1

2

(∫
�∪∂�

|∇u|2dμ +
∫

�

|u|2 dμ

)
+ b

4

(∫
�∪∂�

|∇u|2dμ

)2

− 1

p

∫
�

|u|p dμ

with corresponding Nehari manifold

N∞,b :=
{
u ∈ W 1,2

0 (�)\{0} : ‖u‖2
W 1,2

0 (�)
+ b

(∫
�∪∂�

|∇u|2dμ

)2

=
∫

�

|u|p dμ

}
.
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Similar to the filtration of Nehari manifold Nλ,b, we can define

N(1)
∞,b :=

{
u ∈ N∞,b : I∞,b(u) <

m�

2

(
2

4 − p

) 2
p−2

, ‖u‖W 1,2
0 (�)

< D1

}

and

m∞,b = inf
u∈N(1)

∞,b

I∞,b(u).

Just as what we have done for Eq.
(Kλ,b

)
, we can get a positive solution u∞,b ∈

W 1,2
0 (�) of Eq.

(K∞,b
)
for 2 < p < 4, which achieves m∞,b of the functional

I∞,b(u) in N(1)
∞,b. Thus, we prove the theorem 1.2(i). ��

Before proving the theorem 1.3(i), we establish the following lemma.

Lemma 5.1 Suppose that 2 < p < 4, μ0 � 2p
p−2m� and conditions (V1), (V2) hold.

Then there exists b∗ ∈ (0, b∗) such that mλ,b → m∞,b as λ → ∞ for all b ∈ (0, b∗)
fixed.

Proof It is easy to see mλ,b < m∞,b for any λ > 0. If not, we can find a nontrivial
solution uλ,b ∈ Eλ of Eq.

(Kλ,b
)
which vanishes outside�. So we have uλ,b (x0) = 0

for some x0 ∈ V, obviously there holds �uλ,b (x0) = 0. In view of the maximum
principle, we may deduce that uλ,b(x) ≡ 0 in V, which leads to a contradiction.

Taking a sequence λn → ∞ such that

lim
n→∞mλn ,b = M � m∞,b,

where mλn,b is associated with the positive solution uλn ,b ∈ N(1)
λn,b

of Eq.
(Kλn ,b

)
obtained by theorem 1.1(i). We may deduce from (4.7) that M > 0. In addition,{
uλn ,b

}
is uniformly bounded in Eλ. Going if necessary to a subsequence, we have

u0 ∈ Eλ such that

uλn ,b⇀u0 in Eλ, (5.1)

uλn ,b(x) → u0(x) ∀x ∈ V, (5.2)

and for any q � 2,

uλn ,b → u0 in Lq(V), (5.3)

by applying lemma 2.3. Then we shall prove that u0|�c = 0, otherwise we can assume
u0 (x1) 	= 0 for some x1 /∈ �. In view of uλn ,b ∈ N(1)

λn,b
, there holds

Iλn,b

(
uλn ,b

)
� p − 2

4p

∥∥uλn ,b
∥∥2

λn
� p − 2

4p

∫
V

λnV (x)u2λn ,bdμ
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� p − 2

4p
λnμ (x1) V (x1) u

2
λn ,b (x1) ,

and then lim
n→∞ Iλn ,b

(
uλn ,b

) = +∞ by using V (x1) > 0, uλn ,b (x1) → u0(x1) 	= 0

and μ (x1) > 0. Hence, we get a contradiction to the fact that mλn ,b < m∞,b < +∞.
Furthermore, in view of (4.7), u0 	≡ 0 is clearly.

Consider that � is a finite set and (5.2), we get

lim
n→∞

∫
�∪∂�

∣∣∇uλn ,b
∣∣2 dμ = lim

n→∞
1

2

∑
x∈�∪∂�

∑
y∼x

wxy
[
uλn ,b(y) − uλn ,b(x)

]2

= lim
n→∞

1

2

∑
x∈�∪∂�

∑
y∼x

wxy [u0(y) − u0(x)]
2

=
∫

�∪∂�

|∇u0|2 dμ,

then

lim
n→∞

∫
V

∣∣∇uλn ,b
∣∣2 dμ

� lim
n→∞

∫
V

∣∣∇uλn ,b
∣∣2 dμ �

∫
�∪∂�

|∇u0|2 dμ =
∫
V

|∇u0|2 dμ, (5.4)

where we have used u0|�c = 0. Notice that

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20 dμ + b

(∫
�∪∂�

|∇u0|2 dμ

)2

�
∫
V

(
|∇u0|2 + u20

)
dμ + b

(∫
V

|∇u0|2 dμ

)2

� lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞

∫
V

∣∣uλn ,b
∣∣p dμ =

∫
V

|u0|p dμ =
∫

�

|u0|p dμ

by (5.4) and u0|�c = 0. We obtain t ∈ (0, 1] such that tu0 ∈ N(1)
∞,b for b sufficiently

small since
∫
�∪∂�

|∇u0|2 dμ has a bound independent of parameter b, i.e.

∫
�∪∂�

|t∇u0|2 dμ +
∫

�

|tu0|2 dμ + b

(∫
�∪∂�

|t∇u0|2 dμ

)2

=
∫

�

|tu0|p dμ.

Hence, the following two cases are considered: 0 < t < 1 and t = 1.
For the former, by (5.4), we have

m∞,b � I∞,b (tu0)
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= p − 2

2p

(∫
�∪∂�

|t∇u0|2 dμ +
∫

�

|tu0|2 dμ

)
− b

4 − p

4p

(∫
�∪∂�

|t∇u0|2 dμ

)2

<
p − 2

2p

[∫
V

(|∇u0|2 + u20
)
dμ

]
− lim

n→∞ b
4 − p

4p

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2

� lim
n→∞

{
p − 2

2p

∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ

− b
4 − p

4p

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞

Iλn,b

(
uλn ,b

) = M

for b small enough, which contradicts lim
n→∞mλn ,b = M � m∞,b.

For the latter, we deduce from (5.4) that

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20dμ + b

(∫
�∪∂�

|∇u0|2 dμ

)2

= lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

(5.5)

and

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20 dμ + b

(∫
�∪∂�

|∇u0|2 dμ

)2

� lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

� lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞

∫
V

∣∣uλn ,b
∣∣p dμ =

∫
V

|u0|p dμ =
∫

�

|u0|p dμ,

which implies

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20 dμ + b

(∫
�∪∂�

|∇u0|2 dμ

)2

= lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

.

s(5.6)
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So the combination of (5.5) and (5.6) gives

lim
n→∞

∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ =

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20 dμ

(5.7)

and

lim
n→∞

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2

=
(∫

�∪∂�

|∇u0|2 dμ

)2

. (5.8)

According to (5.7) and (5.8), there holds

m∞,b � I∞,b (u0)

= p − 2

2p

(∫
�∪∂�

|∇u0|2 dμ +
∫

�

|u0|2 dμ

)
− b

4 − p

4p

(∫
�∪∂�

|∇u0|2 dμ

)2

= lim
n→∞

{
p − 2

2p

∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ − b

4 − p

4p

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞ Iλn,b

(
uλn ,b

) = M .

Consequently, we conclude from the above two cases that m∞,b = M , and so
lim
n→∞mλn ,b = m∞,b. This completes the proof. ��

Based on the above discussion, the theorem 1.3(i) can be proved. Next, We need
to prove that for any sequence λn → ∞, the positive solution uλn ,b ∈ N(1)

λn ,b
of Eq.(Kλn ,b

)
satisfying Iλn ,b

(
uλn ,b

) = mλn ,b converges in W 1,2(V) to a positive solution

u∞,b ∈ W 1,2
0 (�) of Eq.

(K∞,b
)
obtained by theorem 1.2(i) along a subsequence.

Similar to the discussion in the above lemma, there hold (5.1), (5.2), (5.3),u0|�c = 0
and u0 	≡ 0 obviously. Then we aim to show that as n → ∞, up to a subsequence,
there hold

λn

∫
V

V (x)u2λn ,bdμ → 0 (5.9)

and

∫
V

∣∣∇uλn ,b
∣∣2 dμ →

∫
V

|∇u0|2 dμ. (5.10)

If not, let’s analyze it in two cases that (5.9) and (5.10) aren’t valid respectively.
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For the former, we assume that (5.9) doesn’t hold, then lim
n→∞ λn

∫
V
V (x)u2λn ,bdμ =

δ1 > 0, and so

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20 dμ + b

(∫
�∪∂�

|∇u0|2 dμ

)2

<

∫
V

(
|∇u0|2 + u20

)
dμ + δ1 + b

(∫
V

|∇u0|2 dμ

)2

� lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞

∫
V

∣∣uλn ,b
∣∣p dμ =

∫
V

|u0|p dμ =
∫

�

|u0|p dμ, (5.11)

where we have used (5.4) and u0|�c = 0.
For the latter, we assume that (5.10) doesn’t hold, then

lim
n→∞

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2

=
(∫

V

|∇u0|2 dμ

)2

+ δ2

with δ2 > 0, thus

∫
�∪∂�

|∇u0|2 dμ +
∫

�

u20 dμ + b

(∫
�∪∂�

|∇u0|2 dμ

)2

<

∫
V

(
|∇u0|2 + u20

)
dμ + b

(∫
V

|∇u0|2 dμ

)2

+ bδ2

� lim
n→∞

{∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ + b

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞

∫
V

∣∣uλn ,b
∣∣p dμ =

∫
V

|u0|p dμ =
∫

�

|u0|p dμ, (5.12)

by applying (5.4) and u0|�c = 0.
We deduce from (5.11) and (5.12) that there exists t ∈ (0, 1) such that tu0 ∈ N(1)

∞,b
with a sufficiently small parameter b, i.e.

∫
�∪∂�

|t∇u0|2 dμ +
∫

�

|tu0|2 dμ + b

(∫
�∪∂�

|t∇u0|2 dμ

)2

=
∫

�

|tu0|p dμ.

Thus, in view of (5.9) and (5.10), we get

m∞,b � I∞,b (tu0)

= p − 2

2p

(∫
�∪∂�

|t∇u0|2 dμ +
∫

�

|tu0|2 dμ

)
− b

4 − p

4p

(∫
�∪∂�

|t∇u0|2 dμ

)2

<
p − 2

2p

∫
V

(|∇u0|2 + u20
)
dμ − lim

n→∞ b
4 − p

4p

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
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� lim
n→∞

{
p − 2

2p

∫
V

[∣∣∇uλn ,b
∣∣2 + (λnV (x) + 1) u2λn ,b

]
dμ − b

4 − p

4p

(∫
V

∣∣∇uλn ,b
∣∣2 dμ

)2
}

= lim
n→∞

Iλn,b

(
uλn ,b

) = m∞,b

for b sufficiently small, which leads to a contradiction. So we find that u0 is a solution
of Eq.

(K∞,b
)
. Furthermore, lemma 5.1 gives that u0 is a positive solution of Eq.(K∞,b

)
, which achieves m∞,b of the functional I∞,b(u) in N(1)

∞,b. This completes the
proof. ��
Remark 5.1 According to the proof of lemma 5.1 and the proof of this theorem, we
can take the same b∗ ∈ (0, b∗) in lemma 5.1 and this theorem.

5.2 Asymptotic Behavior as b → 0+

In this subsection, we focus on reasearching asymptotic behavior of uλ,b ∈ Eλ as
b → 0+. Based on the theorem 1.1(i), we give the proof of theorem 1.4(i).

Fix λ ∈ (0,∞), for any sequence bn → 0, let uλ,bn ∈ Eλ be the positive solution
of Eq.

(Kλ,bn

)
obtained by theorem 1.1(i). Note that

0 < μ
1
2
0 �

∥∥uλ,bn

∥∥
λ

<

√
2pm�

p − 2

(
2

4 − p

) 1
p−2

, (5.13)

going to a subsequence if necessary, there exists u0 ∈ Eλ such that uλ,bn⇀u0 in Eλ.
As we have discussed in Sect. 4, we can deduce uλ,bn → u0 in Eλ. Now we just have

to prove that u0 is a positive solution of Eq.
(Kλ,0

)
. Since

〈
I ′
λ,bn

(
uλ,bn

)
, ϕ
〉
= 0 for

all ϕ ∈ Eλ, it is easy to check that

∫
V

∇u0∇ϕ + (λV (x) + 1) u0ϕdμ =
∫
V

|u0|p−2u0ϕdμ,

which implies that u0 is a nonnegative solution of Eq.
(Kλ,0

)
. And we have u0 	= 0

by (5.13). Furthermore, consider the maximum principle, we may obtain u0 > 0 in
V. The proof is now finished. ��

5.3 Asymptotic Behavior as � → ∞ and b → 0+

Finally, we explore the asymptotic behavior of the positive solution uλ,b as λ → ∞
and b → 0+ in this subsection. And we are ready to give the proof of theorem 1.5(i).

Fix a sufficiently small b, for any sequence λn → ∞, we may obtain the positive
solution uλn ,b of Eq.

(Kλn,b

)
by using theorem1.1(i). Passing to a subsequence, uλn ,b ∈

Eλn converges to the positive solution u∞,b ∈ W 1,2
0 (�) of Eq.

(K∞,b
)
as λn → ∞

by applying theorem 1.3(i). Then, in view of the proof of theorem 1.4(i), we derive
that u∞,b ∈ W 1,2

0 (�) converges to a positive solution of Eq.
(K∞,0

)
as b → 0+.
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Alternatively, up to a subsequence, we can consider fixing λ ∈ (0,∞) and letting
b → 0+ subsequently, after then letting λ → ∞. We may get similar result and the
proof of theorem 1.5(i) is complete. ��

6 The Proof of Theorem 1.1(ii) and (iii)

For p � 4, it is easy to prove that the existence of a ground state solution for Eq.
(Kλ,b

)
by standard variational methods. First, we give several useful preliminary results about
energy functional Iλ,b and Nehari manifold Nλ,b.

Lemma 6.1 (i) Suppose that p = 4 and conditions (V1) , (V2) hold. Then there exists
b̂ > 0 such that for any b ∈ (0, b̂) and any λ > 0, Nλ,b is non-empty.

(ii) Suppose that p > 4 and conditions (V1) , (V2) hold, Then Nλ,b is non-empty for
any b > 0, λ > 0.

Proof (i) For any u ∈ Eλ\{0}, there holds

〈
I ′
λ,b(tu), tu

〉 = t2‖u‖2λ + bt4
(∫

V

|∇u|2dμ

)2

− t p
∫
V

|u|pdμ.

Hence, for sufficiently small b, it can be find t0 ∈ (0,+∞) such that〈
I ′
λ,b (t0u) , t0u

〉
= 0, which means that Nλ,b is non-empty.

(ii) Similarly, we can prove (ii). ��
Lemma 6.2 (i) Suppose that p = 4 and conditions (V1) , (V2) hold, then lλ,b :=

inf
u∈Nλ,b

Iλ,b(u) > 0 for any b ∈ (0, b̂) and λ > 0.

(ii) Suppose that p > 4 and conditions (V1) , (V2) hold, then lλ,b > 0 for any b > 0
and λ > 0.

Proof (i) Consider (3.1), we deduce that

Iλ,b(u) = 1

2
‖u‖2λ + b

4

(∫
V

|∇u|2dμ

)2

− 1

p

∫
V

|u|pdμ

=
(
1

2
− 1

4

)
‖u‖2λ +

(
1

4
− 1

p

)∫
V

|u|pdμ

� 1

4
‖u‖2λ � 1

4
μ0

for any u ∈ Nλ,b, so lλ,b � 1
4μ0 > 0.

(ii) We may prove (ii) similarly. ��
Lemma 6.3 Suppose that p � 4 and conditions (V1) , (V2) hold. Then for each λ > 0,
b > 0, Iλ,b satisfies the (PS)c condition in Nλ,b for any c ∈ R.
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Proof To prove that Iλ,b satisfies (PS)c condition, we can assume {un} ⊂ Eλ such
that

Iλ,b (un) = 1

2
‖un‖2λ + b

4

(∫
V

|∇un|2 dμ

)2

− 1

p

∫
V

|un|p dμ = c + on(1)

(6.1)

and

〈
I ′
λ,b (un) , ϕ

〉 = 〈un, ϕ〉λ + b
∫
V

|∇un|2 dμ

∫
V

∇un∇ϕdμ −
∫
V

|un|p−2 unϕdμ

= on(1)‖ϕ‖λ
(6.2)

for any ϕ ∈ Eλ. Replacing ϕ by un in (6.2), there holds

‖un‖2λ + b

(∫
V

|∇un|2 dμ

)2

−
∫
V

|un|p dμ = on(1) ‖un‖λ . (6.3)

Combining (6.1) and (6.3) gives

‖un‖2λ = −
(
1 − 4

p

)∫
V

|un|p dμ + 4c + on(1) ‖un‖λ + on(1) � 4c + on(1),

which implies that {un} is bounded in Eλ. Then we omit the rest of the proof due to
its similarity with proposition 4.1. Now, the proof is completed. ��

Basedon the above discussion,Wemayprovide the proof of theorem1.1(ii) and (iii).
In view of the Ekeland variational principle [11], there exists a sequence {un} ⊂ Nλ,b

such that

Iλ,b (un) = lλ,b + on(1) (6.4)

and

I ′
λ,b (un) = on(1) in Eλ

−1 (6.5)

obviously. We yield from lemmas 6.1, 6.2, 6.3 and (6.4), (6.5) that there exists wλ,b ∈
Eλ such that un → wλ,b strongly in Eλ. Hence, wλ,b ∈ Eλ is a minimizer for Iλ,b in
Nλ,b. Note that

∣∣wλ,b
∣∣ ∈ Nλ,b and

Iλ,b
(∣∣wλ,b

∣∣) = Iλ,b
(
wλ,b

) = lλ,b,

we obtain a positive ground solutionwλ,b ∈ Eλ for Eq. (Kλ,b) satisfying Iλ,b
(
wλ,b

) =
lλ,b > 0 by the maximum principle. This ends the proof of theorem 1.1(ii) and (iii). ��

Similar to the above discussion, we can obtain the positive ground solutionw∞,b ∈
W 1,2

0 (�) of Eq.
(K∞,b

)
for p � 4. And the remaining proof of the theorem 1.2 is

omitted. ��
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7 Asymptotic Behavior of Positive Ground Solutionw�,b

After studying the existence of positive ground state solutionwλ,b ∈ Eλ for Eq.
(Kλ,b

)
,

just as what we have discussed in Sect. 5, we may investigate the asymptotic behavior
of wλ,b ∈ Eλ analogously, so we omit the proof of remaining part of theorems 1.3,
1.4, 1.5 here.

8 The Estimate of the Solution u�,b,w�,b ∈ E�

After exploring the existence and the asymptotic behavior of the solution uλ,b, wλ,b ∈
Eλ, we are interested in the estimate involving the L∞-norm of solutions. For this
purpose, we have the following research. And the proof of theorem 1.6 is as following.

Let ‖ · ‖q := ‖ · ‖Lq (V) for convenience. We assume m > 0 satisfying m > p, then

∑
x∈V

∣∣uλ,b(x)
∣∣mτ

μ(x) � μ

p−m
p

0

[∑
x∈V

∣∣uλ,b(x)
∣∣pτ μ(x)

]mτ
pτ

for any τ > 1, it follows

∥∥uλ,b
∥∥
mτ

� μ

p−m
mpτ
0

∥∥uλ,b
∥∥
pτ . (8.1)

Set σ = m
p > 1. When τ = σ in (8.1), there holds

∥∥uλ,b
∥∥
mσ

� μ

p−m
mpσ
0

∥∥uλ,b
∥∥
m .

Arguing by iteration, let τ = σ j in (8.1), we can deduce that

∥∥uλ,b
∥∥
mσ j � μ

p−m
mp

(
1
σ

+ 1
σ2

+···+ 1
σ j

)
0

∥∥uλ,b
∥∥
m

� μ

p−m
mp

1
1−σ

0

∥∥uλ,b
∥∥
m .

(8.2)

Note that
∥∥uλ,b

∥∥
p+1 � μ

− 1
p(p+1)

0

∥∥uλ,b
∥∥
p, let j → ∞ and take m = p + 1 in (8.2),

we find

∥∥uλ,b
∥∥∞ � μ

1

p(p+1)
(
p+1
p −1

)
0

∥∥uλ,b
∥∥
p+1 � μ

p−1
p(p+1)
0

∥∥uλ,b
∥∥
p .
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Considering (2.1), (3.6) and mλ,b < m∞,b, we obtain

∥∥uλ,b
∥∥∞ � μ

p−1
p(p+1)
0 · μ

− p−2
2p

0

∥∥uλ,b
∥∥

λ
� μ

3p−p2

2p(p+1)
0

(
4p

p − 2
mλ,b

) 1
2

� μ

3p−p2

2p(p+1)
0

(
4p

p − 2
m∞,b

) 1
2

.

Similarly, we may analyze the case of wλ,b ∈ Eλ. Hence, we finish the proof. ��
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