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Abstract
This article focuses on the improvement of the classic Bohr’s inequality for bounded
analytic functions on the unit disk. We give some sharp versions of Bohr’s inequality,
generalizing the previous results.
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1 Introduction

Bohr’s theorem states that if f (z) = ∑∞
n=0 anz

n is a bounded analytic function in the
unit disk D = {z ∈ C : |z| = r < 1} such that | f (z)| ≤ 1 for all z ∈ D, then

B0( f , r) :=
∞∑

n=0

|an|rn ≤ 1 (1.1)

for r ≤ 1/3, the constant 1/3 is sharp and the value is called the classical Bohr radius.
In 1914, the inequality was originally obtained by Bohr only for r ≤ 1/6 [11]. Later,
Riesz, Schur and Wiener proved the inequality (1.1) holds for r ≤ 1/3 and showed
that the constant 1/3 cannot be improved. Other proofs about this inequality in [30,
31] and also see [4, 15].

Communicated by Saminathan Ponnusamy.

B Xiaojun Hu
xiaojun605@163.com

Boyong Long
boyonglong@163.com

1 School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, People’s Republic of
China

2 School of Mathematical Sciences, Anhui University, Hefei 230601, People’s Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-024-01740-1&domain=pdf


140 Page 2 of 17 X. Hu, B. Long

The inequality (1.1) is known and classical as Bohr inequality. Recently, several
aspects of Bohr inequality and its improvements have created enormous interest in
various settings. Such as even analytic function, alternating series and odd analytic
function [10, 21], starlike logharmonic mappings [9], subordinating families and har-
monic mappings [3], the classes of quasi-subordination and K-quasiregular harmonic
mappings [24], Banach spaces and Banach algebras [12, 13], operator theory [25],
several real or complex variables [5–8]. For more general results, see [27, 28].

Let

Bk( f , r) :=
∞∑

n=k

|an|rn, || fk ||2r :=
∞∑

n=k

|an|2r2n, and f1(z) := f (z) − a0.

We denote by Sr ( f ) the area of the image of the subdisk |z| < r under the mapping
f and take Sr ( f ) as Sr for convenience.
Recently, Kayumov [20] and Liu [23] proved the following Bohr-type inequalities.

Theorem 1.1 [20] Suppose that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| < 1
in D. Then

| f (z)|2 + B1( f , r) ≤ 1 f or |z| = r ≤ 1/3,

the radius 1/3 cannot be improved.

Theorem 1.2 [23] Suppose that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1
in D. Then

B0( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r + | f1(z)| ≤ 1 f or |z| = r ≤ 1/5,

the radius 1/5 cannot be improved. Moreover,

|a0|2 + B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r + | f1(z)| ≤ 1 f or |z| = r ≤ 1/3,

the radius 1/3 cannot be improved.

Theorem 1.3 [23] Suppose that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1
in D. Then

| f (z)| + B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r ≤ 1 f or |z|

= r ≤ ra0 = 2

3 + |a0| + √
5(1 + |a0|)

,

the radius ra0 is the best possible and ra0 ≥ √
5 − 2. Moreover,

| f (z)|2 + B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r ≤ 1 |z| = r ≤ r ′
a0 ,
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where r ′
a0 is the unique positive root of the equation

(1 − |a0|3)r3 − (1 + 2|a0|)r2 − 2r + 1 = 0.

The radius r ′
a0 is the best possible. Further, we have 1/3 < r ′

a0 < 1
2+|a0| .

There are various ways to generalize the classical Bohr inequality for bounded
analytic functions. For instance, Huang and Hu extended the Bohr-type inequality by
allowing Schwarz function in place of the initial coefficients in function’s power series
expansions in [18] and [16], respectively. In [32] and [17], the authors established some
sharp Bohr-type inequalities with one parameter or involving convex combination.
Kayumov-Ponnusamy [22] improved the Bohr inequality by adding the area Sr ( f ) of
the image of the subdisk |z| < r under the mapping f . In addition, there is a harmonic
analog of Bohr inequality and another improved version about Sr ( f ) in [14, 22].

It is worth noting that initially, the Bohr radius was defined for analytic functions
mapping the unit disk to the unit disk. However, subsequent research has extended its
applicability to mappings from the unit disk to the punctured unit disk [2], the exterior
of the closed unit disk [1], and various other domains [7].

This paper is motivated by Ismagilov’s methods, which replace the constant term
with the absolute value of the function and the square of the absolute value of the
function, to obtain the sharp inequalities presented in [19]. Additionally, Ponnusamy’s
methods incorporate the classical lemma of Schwarz in the power series expansion
of the function in [29]. Given these motivations, it is natural to generalize Theo-
rems 1.1, 1.2 and 1.3 to Theorems 3.1, 3.2, 3.3 and 3.4, all of which yield sharp
results.

The paper is organized as follows. In Sect. 2, we provide some key lemmas that
play a crucial role in the proofs. In Sect. 3, we present the main results along with their
proofs.

2 Some Lemmas

In order to establish our main results, we need the following some lemmas.

Lemma 2.1 (Schwarz-Pick lemma) Let φ(z) be analytic in D and |φ(z)| < 1 in D.
Then

|φ(z1) − φ(z2)|
|1 − φ(z1)φ(z2)|

≤ |z1 − z2|
|1 − z1z2| f or z1, z2 ∈ D,

and equality holds for distinct z1, z2 ∈ D if and only if φ is a Möbius transformation.
In particularly,

|φ′(z)| ≤ 1 − |φ(z)2|
1 − |z2| f or z ∈ D,

and equality holds for some z ∈ D if and only if φ is a Möbius transformation.
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Lemma 2.2 [26] Suppose that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1 in
D. Then

B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r ≤
(
1 − |a0|2

) r

1 − r
f or r ∈ [0, 1).

The general version of this lemma is proofed in [23, Lemma 4].

Lemma 2.3 [19] Let p ∈ N, 0 ≤ m ≤ p and f (z) = ∑∞
n=0 apn+mz pn+m is analytic

in D and | f (z)| ≤ 1 in D. Then

∞∑

n=1

|apn+m |r pn ≤
⎧
⎨

⎩

r p (1−|am |2)
1−r p |am | , f or |am | ≥ r p,

r p
√

1−|am |2√
1−r2p

, f or |am | < r p.

Lemma 2.4 [22] Let |b0| < 1 and 0 < r ≤ 1/
√
2. Suppose that g(z) = ∑∞

n=0 bnz
n

is analytic and satisfies the inequality |g(z)| < 1 in D, Sr (g) denotes the area of the
image of the subdisk |z| < r under the mapping g. Then

Sr (g)

π
= 1

π

∫ ∫

|z|<r
|g(z)′|2dxdy =

∞∑

n=1

n|bn|2r2n ≤ r2
(1 − |b0|2)2

(1 − |b0|2r2)2 .

3 Main Results

In this section, we give four sharp Bohr-type inequalities for bounded analysis func-
tions.

Theorem 3.1 Assume that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1 in D.
Then

| f (z)|2 + B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r + 8

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ 1 (3.1)

for r ≤ 1/3, where

λ = 6a5 + 10a4 − 260a3 − 108a2 + 1854a + 162

324(2a − 1)(a + 1)2
= 12.704586 . . .

and a ≈ 0.555991 is the unique positive root of the equation

t5 + 2t4 + 8t3 − 34t2 − 761t + 432 = 0

in the interval (0, 1). The equality is attained for the function

f (z) = a − z

1 − az
.
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Proof Since f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1 in D, a := |a0| ∈
[0, 1), by Schwarz-Pick lemma, Lemma 2.2 and Lemma 2.4, respectively, we have

| f (z)|2 + B1( f , r) + 1 + ar

(1 + a)(1 − r)
|| f1||2r + 8

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤
(

a + r

1 + ar

)2

+ (1 − a2)
r

1 − r
+ 8

9

(1 − a2)2r2

(1 − a2r2)2
+ λ

(1 − a2)4r4

(1 − a2r2)4

:= M(a, r).

Consider the function M(a, r) which is an increasing function of r for 0 ≤ r ≤ 1/3,
then we have

M(a, r) ≤M(a, 1/3)

=
(
1 + 3a

a + 3

)2

+ 1 − a2

2
+ 8

(1 − a2)2

(9 − a2)2
+ 81λ

(1 − a2)4

(9 − a2)4

=1 − (1 + a)(1 − a)3�1(a)

2(9 − a2)4
,

where

�1(a) = 162(a − 1)(1 + a)3λ + (−a2 − 2a + 47)(3 − a)2(3 + a)2.

Now, we need to show that�1(a) ≥ 0 holds for a ∈ [0, 1). Let�′
1(a) = 0, we obtain

λ = 6a5 + 10a4 − 260a3 − 108a2 + 1854a + 162

324(2a − 1)(a + 1)2
,

then

�1(a) = a2 − 9

2a − 1
(a5 + 2a4 + 8a3 − 34a2 − 761a + 432).

One can verify that the function �1(a) in the interval [0, 1) has unique zero a ≈
0.555991 which is the unique positive root of the equation t5 + 2t4 + 8t3 − 34t2 −
761t + 432 = 0. Furthermore, by simple calculation, we obtain λ = 12.704586 . . .

and �′
1(a) = 0. Namely, the function �1(a) has exactly one stationary point a =

0.555991... in [0, 1]. Meanwhile, we have �1(0) > 0 and �1(1) > 0. Thus, �1(a) ≥
0 which proves that (3.1) holds for r ≤ 1/3.

Next we show that the constant λ is sharp, we consider the function f (z) given by

f (z) = a − z

1 − az
= a −

(
1 − a2

) ∞∑

n=1

an−1zn, z ∈ D,
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where a ∈ [0, 1). For this function, taking z = −r and computing the value on the
left side of inequality(3.1), we obtain

M1(a, r) :=| f (z)|2 +
∞∑

n=1

|an |rn + 1 + |a0|r
(1 + |a0|)(1 − r)

∞∑

n=1

|an |2r2n + 8

9

(
Sr
π

)

+ λ1

(
Sr
π

)2

=
(

a + r

1 + ar

)2
+ (1 − a2)r

1 − ar
+ (1 − a2)2r2

(1 + a)(1 − r)(1 − ar)
+ 8

9

(
Sr
π

)

+ λ1

(
Sr
π

)2

=
(

a + r

1 + ar

)2
+ r(1 − a2)

1 − r
+ 8

9

(1 − a2)2r2

(1 − a2r2)2
+ λ1

(1 − a2)4r4

(1 − a2r2)4
.

For r = 1/3, the above expression becomes

M1(a, 1/3) =
(
1 + 3a

a + 3

)2

+ 1 − a2

2
+ 8

(1 − a2)2

(9 − a2)2
+ 81λ

(1 − a2)4

(9 − a2)4

+81(λ1 − λ)
(1 − a2)4

(9 − a2)4
.

Nowchoosing a as the positive root of the equation t5+2t4+8t3−34t2−761t+432 =
0. Then, we obtain

M1(a, 1/3) = 1 + 81(λ1 − λ)
(1 − a2)4

(9 − a2)4
.

Which is obviously greater than 1 in case λ1 > λ. This proves the sharpness and the
proof of Theorem 3.1 is complete. 	


Remark 3.1 From the proof of Theorem 3.1, we have the following result: for any
function T (t) : [0,∞) → [0,∞) such that T (t) > 0 for t > 0, there exist bounded
analytic function f : D → D for which the following inequality

| f (z)|2+B1( f , r)+ 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r +
8

9

(
Sr
π

)

+λ

(
Sr
π

)2

+T (Sr ) ≤ 1

f or r ≤ 1/3

is wrong, the constant λ is in Theorem 3.1.

Theorem 3.2 Assume that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1 in D.
Then

|a0| + B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r + | f1(z)| + 16

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ 1

(3.2)
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for r ≤ 1/5, where

λ =36a7 − 189a6 − 8310a5 + 2125a4 + 264800a3 + 88125a2 − 1988750a − 578125

22500(3a − 1)(a − 1)(a + 1)3

=191.551761 . . .

and a ≈ 0.396199, is the unique positive root of the equation ψ(t) = 0 in the interval
(0,1), where

ψ(t) = 3t7 − 6t6 + 45t5 − 1152t4 − 39955t3 − 14750t2 + 258275t − 97500.

The equality is attained for the function

f (z) = a − z

1 − az
.

Proof Let a := |a0| ∈ [0, 1). By Lemma 2.3, for m = 0 and p = 1, we obtain the
following inequalities:

∞∑

n=1

|an|rn ≤

⎧
⎪⎨

⎪⎩

A(r) := r(1−a2)
1−ra f or a ≥ r ,

B(r) := r
√
1−a2√
1−r2

f or a < r .

(3.3)

At first we consider a ≥ 1/5. In this case, using (3.3), Lemma 2.2 and Lemma 2.4,
we have

a + B1( f , r) + 1 + ar

(1 + a)(1 − r)
|| f1||2r + | f1(z)| + 16

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ a + (1 − a2)
r

1 − r
+

∞∑

n=1

|an|rn + 16

9

(1 − a2)2r2

(1 − a2r2)2
+ λ

(1 − a2)4r4

(1 − a2r2)4

≤ a + (1 − a2)
r

1 − r
+ A(r) + 16

9

(1 − a2)2r2

(1 − a2r2)2
+ λ

(1 − a2)4r4

(1 − a2r2)4

:= N (a, r).
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Obviously, the function N (a, r) is an increasing function of r for 0 ≤ r ≤ 1/5, then
we have

N (a, r) ≤N (a, 1/5)

=a + 1

4
(1 − a2) + A(1/5) + 400

9

(1 − a2)2

(25 − a2)2
+ 625λ

(1 − a2)4

(25 − a2)4

=1 + 4a − a2

4
+ 1 − a2

5 − a
+ 400

9

(1 − a2)2

(25 − a2)2
+ 625λ

(1 − a2)4

(25 − a2)4

=1 −
(

1 − 1 + 4a − a2

4
− 1 − a2

5 − a
− 400

9

(1 − a2)2

(25 − a2)2
− 625λ

(1 − a2)4

(25 − a2)4

)

=1 − (1 − a)2�2(a)

36(25 − a2)4
,

where

�2(a) = −22500(1 − a)2(1 + a)4λ + (25 − a2)2(9a4 − 54a3 − 2320a2 − 1850a + 10775).

Now, we show that �2(a) ≥ 0 holds for a ∈ [1/5, 1). Let �′
2(a) = 0, we obtain

λ = 36a7 − 189a6 − 8310a5 + 2125a4 + 264800a3 + 88125a2 − 1988750a − 578125

22500(3a − 1)(a − 1)(a + 1)3
.

Then

�2(a) = 3(a2 − 25)

1 − 3a
ψ(a),

where

ψ(t) = 3t7 − 6t6 + 45t5 − 1152t4 − 39955t3 − 14750t2

+258275t − 97500.

Clearly, the function �2(a) has unique zero a ≈ 0.396199 in the interval [1/5, 1)
which is the positive root of the equation ψ(t) = 0. Thus, we obtain λ =
191.551761 . . . and �′

2(a) = 0. On the other hand, we have �2(1/5) > 0 and
�2(1) > 0. Hence, �2(a) ≥ 0 which proves that (3.2) holds for a ≥ 1/5 and
r ≤ 1/5.
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Next, we consider a < 1/5. Combining (3.3), Lemma 2.2 and Lemma 2.4, we
deduce that

a + B1( f , r) + 1 + ar

(1 + a)(1 − r)
|| f1||2r + | f1(z)| + 16

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ a + (1 − a2)
r

1 − r
+ B(r) + 16

9

(1 − a2)2r2

(1 − a2r2)2
+ λ

(1 − a2)4r4

(1 − a2r2)4

:= N∗(a, r).

Observe that N∗(a, r) is an increasing function of r for 0 ≤ r ≤ 1/5, then we obtain

N∗(a, r) ≤N∗(a, 1/5)

≤1 + 4a − a2

4
+

√
1 − a2√
24

+ 400

9

(1 − a2)2

(25 − a2)2
+ 625λ

(1 − a2)4

(25 − a2)4

:=�1(a).

Obviously,

� ′
1(a) =1 − a

2
− 1√

24

a√
1 − a2

+ 400

9

96a(a2 − 1)

(25 − a2)3
+ 625λ

192a(a2 − 1)3

(25 − a2)5

=1 − X(a, λ),

where

X(a, λ) = a

2
+ 1√

24

a√
1 − a2

+ 400

9

96a(1 − a2)

(25 − a2)3
+ 625λ

192a(1 − a2)3

(25 − a2)5
.

Observe that the function X(a, λ) is an increasing function of a for a ∈ [0, 1/5).
Then, we have X(a, λ) ≤ X(1/5, λ) < 1. Thus � ′

1(a) ≥ 0. It follows that �1(a) is
an increasing function of a for a ∈ [0, 1/5) and so �1(a) ≤ �1(1/5) ≈ 0.9677 < 1.
Therefore, inequality (3.2) holds for a < 1/5 and for r ≤ 1/5.

To show the sharpness of the constant λ, we consider the function f (z) given by

f (z) = a − z

1 − az
= a − (1 − a2)

∞∑

n=1

an−1zn, z ∈ D, (3.4)

where a ∈ [0, 1). Taking z = r and computing the value on the left side of inequality
(3.2), we have

N1(a, r) := a + r

1 − r
(1 − a2) + A(r) + 16

9

(
Sr
π

)

+ λ1

(
Sr
π

)2

.
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For r = 1/5, the above expression becomes

N1(a, 1/5) = 1 + 4a − a2

4
+ 1 − a2

5 − a
+ 400

9

(1 − a2)2

(25 − a2)2
+ 625λ

(1 − a2)4

(25 − a2)4

+625(λ1 − λ)
(1 − a2)4

(25 − a2)4
.

Now choosing a as the positive root of the equation ψ(t) = 0, we obtain that

N1(a, 1/5) = 1 + 625(λ1 − λ)
(1 − a2)4

(25 − a2)4
.

The above equality is greater than 1 for λ1 > λ. This proves the sharpness and the
proof of Theorem 3.2 is complete. 	


One can replace |a0| by |a0|2 in Theorem 3.2, but this will increase the Bohr radius.
Namely, the following theorem is valid.

Theorem 3.3 Assume that f (z) = ∑∞
n=0 anz

n is analytic in D and | f (z)| ≤ 1 in D.
Then

|a0|2 + B1( f , r) + 1 + |a0|r
(1 + |a0|)(1 − r)

|| f1||2r + | f1(z)| + 8

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ 1

(3.5)

for r ≤ 1/3, where

λ = 3a5 + 10a4 − 14a3 − 108a2 − 117a + 162

162(1 − 2a)(1 + a)2
= 3.702103 . . .

and a ≈ 0.468007, is the unique positive root of the equation φ(t) = 0 in the interval
(0,1), where

φ(t) = t5 + 3t4 + 10t3 + 46t2 + 149t − 81.

The equality is attained for the function

f (z) = a − z

1 − az
.
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Proof Let a := |a0| ∈ [0, 1). Firstly, we consider the first part. Namely, a ≥ 1/3, then
by (3.3), Lemma 2.2 and Lemma 2.4, we have

a2 + B1( f , r) + 1 + ar

(1 + a)(1 − r)
|| f1||2r + | f1(z)| + 8

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ a2 + (1 − a2)
r

1 − r
+ A(r) + 8

9

(1 − a2)2r2

(1 − a2r2)2
+ λ

(1 − a2)4r4

(1 − a2r2)4

:= R(a, r).

According to the monotony of r for 0 ≤ r ≤ 1/3, we have

R(a, r) ≤R(a, 1/3)

=1 + a2

2
+ 1 − a2

3 − a
+ 8

(1 − a2)2

(9 − a2)2
+ 81λ

(1 − a2)4

(9 − a2)4

=1 − (1 + a)(1 − a)3�3(a)

2(9 − a2)4
,

where

�3(a) = 162(a − 1)(1 + a)3λ + (9 − a2)2(a2 + 4a + 11).

Next, we show that �3(a) ≥ 0 holds for a ∈ [1/3, 1). Let �′
3(a) = 0, we obtain

λ = 3a5 + 10a4 − 14a3 − 108a2 − 117a + 162

162(1 − 2a)(1 + a)2
.

Then

�3(a) = (a2 − 9)

1 − 2a
φ(a),

where

φ(t) = t5 + 3t4 + 10t3 + 46t2 + 149t − 81.

The function �3(a) in the interval [1/3, 1) has unique zero a ≈ 0.468007. This value
corresponds to the positive root of the equation φ(t) = 0. In the same way, we obtain
λ = 3.702103 . . . and �′(a) = 0. Meanwhile, �3(1/3) > 0 and �3(1) > 0 is
obvious. Thus, �3(a) ≥ 0 which proves that (3.5) holds for a ≥ 1/3 and r ≤ 1/3.
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Secondly, we consider the case a < 1/3, then combining (3.3), Lemma 2.2 and
Lemma 2.4, we obtain that

a2 + B1( f , r) + 1 + ar

(1 + a)(1 − r)
|| f1||2r + | f1(z)| + 8

9

(
Sr
π

)

+ λ

(
Sr
π

)2

≤ a2 + (1 − a2)
r

1 − r
+ B(r) + 8

9

(1 − a2)2r2

(1 − a2r2)2
+ λ

(1 − a2)4r4

(1 − a2r2)4

:= R∗(a, r).

Observe that R∗(a, r) is an increasing function of r for 0 ≤ r ≤ 1/3, then we obtain

R∗(a, r) ≤R∗(a, 1/3)

≤1 + a2

2
+

√
1 − a2√

8
+ 8

(1 − a2)2

(9 − a2)2
+ 81λ

(1 − a2)4

(9 − a2)4

:=�2(a).

Routine and straightforward calculations show that the last expression �2(a) maxi-
mizes at a = 1/3 for a ∈ [0, 1/3). Then �2(a) ≤ �2(1/3) ≈ 0.9989 < 1. This
proves that (3.5) holds for a < 1/3 and r ≤ 1/3.

Lastly, to show the sharpness of the constant λ, in the same way, we consider the
function f (z) is same as (3.4) and compute the value on the left side of inequality
(3.5), then we get

R1(a, 1/3) := 1 + a2

2
+ 1 − a2

3 − a
+ 8

(1 − a2)2

(9 − a2)2
+ 81λ

(1 − a2)4

(9 − a2)4
+ 81(λ1 − λ)

(1 − a2)4

(9 − a2)4
.

Choose a as the positive root of the equation φ(t) = 0. Thus, we obtain that

R1(a, 1/3) = 1 + 81(λ1 − λ)
(1 − a2)4

(9 − a2)4
,

which is obviously greater than 1 for λ1 > λ. This proves λ is sharp and the proof is
complete. 	

Remark 3.2 From the proof of Theorem 3.2 and Theorem 3.3, one cannot replace 8/9
by 16/9, otherwise the inequality (3.5) is false.

Theorem 3.4 For k ≥ 2, assume that f (z) = ∑∞
n=k anz

n is analytic inD and | f (z)| ≤
1 in D. Then

| f (z)| + Bk( f , r) + (
r−k

1 + |ak | + r1−k

1 − r
)|| fk ||2r ≤ 1 (3.6)

for |z| = r ≤ rk , where rk is the unique positive root in (0, 1) of the equation

3rk+1 − 5rk − 2r + 2 = 0.
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Table 1 rk is the unique root of the equation 3rk+1 − 5rk − 2r + 2 = 0 in (0, 1)

k rk k rk k rk k rk k rk

2 0.526255 3 0.622372 4 0.681398 5 0.721997 6 0.751956

7 0.775145 8 0.793727 9 0.809013 10 0.821851 15 0.864511

20 0.889031 25 0.905228 30 0.916843 50 0.942822 100 0.966213

Table 2 r ′
k is the unique root of the equation 3r2k+1 − 5r2k − 2r + 2 = 0 in (0, 1)

k r ′
k k r ′

k k r ′
k k r ′

k k r ′
k

2 0.681398 3 0.751956 4 0.793727 5 0.821851 6 0.842302

7 0.857959 8 0.870396 9 0.880553 10 0.889031 15 0.916843

20 0.932560 25 0.942822 30 0.950117 50 0.966213 100 0.980391

The radius rk is the best possible. Moreover,

| f (z)|2 + rk Bk( f , r) +
(

1

1 + |ak | + r

1 − r

)

|| fk ||2r ≤ 1 (3.7)

for |z| = r ≤ r ′
k , where r

′
k is the unique positive root in (0, 1) of the equation

3r2k+1 − 5r2k − 2r + 2 = 0.

The radius r ′
k is the best possible.

Before proving the Theorem 3.4, we present the value of rk and r ′
k for certain values

of k ≥ 2 in Tables 1 and 2.

Proof of Theorem 3.4 For the first part of the theorem, we have f (z) = ∑∞
n=k anz

n is
analytic in D and | f (z)| ≤ 1 in D. According to the classical lemma of Schwarz we
may write f (z) = zkg(z), where g(z) = ∑∞

n=0 bnz
n is analytic in D and |g(z)| ≤ 1

in D. Then, for n ≥ 0, we have an+k = bn . Now apply Schwarz-Pick lemma and
Lemma 2.2 to the function g(z), we obtain

|g(z)| +
∞∑

n=1

|bn|rn +
(

1

1 + |b0| + r

1 − r

) ∞∑

n=1

|bn|2r2n ≤ |b0| + r

1 + |b0|r + (1 − |b0|2)r
1 − r

.

By an+k = bn , we get

|g(z)| +
∞∑

n=1

|an+k |rn +
(

1

1 + |ak | + r

1 − r

) ∞∑

n=1

|an+k |2r2n ≤ |ak | + r

1 + |ak |r + (1 − |ak |2)r
1 − r

.
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Thus, we have

rk |g(z)| +
∞∑

n=k+1

|an|rn +
(

r−k

1 + |ak | + r1−k

1 − r

) ∞∑

n=k+1

|an|2r2n

≤
[ |ak | + r

1 + |ak |r + (1 − |ak |2)r
1 − r

]

rk .

Therefore,

| f (z)| +
∞∑

n=k

|an |rn +
(

r−k

1 + |ak | + r1−k

1 − r

) ∞∑

n=k

|an |2r2n ≤
[

|ak | + r

1 + |ak |r + (1 − |ak |2)r
1 − r

]

rk

+|ak |rk +
(

r−k

1 + |ak | + r1−k

1 − r

)

|ak |2r2k .

Now, we only need to show that

[ |ak | + r

1 + |ak |r + (1 − |ak |2)r
1 − r

]

rk + |ak |rk +
(

r−k

1 + |ak | + r1−k

1 − r

)

|ak |2r2k ≤ 1

holds for r ≤ rk . Namely,

rk
[ |ak | + r

1 + |ak |r + (1 − |ak |2)r
1 − r

+ |ak | + |ak |2
1 + |ak | + r |ak |2

1 − r

]

≤ 1.

Let a := |ak | ∈ [0, 1],

C(a) := a + r

1 + ar
+ (1 − a2)r

1 − r
+ a + a2

1 + a
+ ra2

1 − r

= a + r

1 + ar
+ a + a2

1 + a
+ r

1 − r
.

Obviously, C(a) is an increasing function of a. Then, we have

rkC(a) ≤ rkC(1) = rk
5 − 3r

2(1 − r)
.

It is sufficient for us to show the above inequality is less than or equals to 1 for r ≤ rk .
It is equivalent to show D(r) ≥ 0, where D(r) = 3rk+1 − 5rk − 2r + 2. Because
D′(r) = −2 − rk−1[k(5 − 3r) − 3r ] ≤ 0 holds for k ≥ 2 and 0 ≤ r ≤ 1, then D(r)
is a decreasing function of r . It is also easy to verify that D(0)D(1) < 0. Hence, rk is
unique root of D(r) and D(r) ≥ 0 for r ≤ rk .
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Next we show the sharpness of the radius rk . Let a ∈ [0, 1),

f (z) = zk
(

a + z

1 + az

)

= azk + (1 − a2)
∞∑

n=1

(−a)n−1zn+k, z ∈ D.

For this function, taking z = r , we obtain

| f (z)| + Bk( f , r) + (
r−k

1 + |ak | + r1−k

1 − r
)|| fk+1||2r

= rk
a + r

1 + ar
+ ark+

∞∑

n=k

(1 − a2)an−krn+1+
(

r−k

1 + a
+ r1−k

1 − r

)[

a2r2k+
∞∑

n=k

(1 − a2)2a2(n−k)r2(n+1)

]

= rk
a + r

1 + ar
+ ark + (1 − a2)rk+1

1 − ar
+

(
r−k

1 + a
+ r1−k

1 − r

) [

a2r2k + (1 − a2)2r2k+2

1 − a2r2

]

= rk
[
a + r

1 + ar
+ a + a2

1 + a
+ r

1 − r

]

.

Comparison of the above expression with C(a), allowing a → 1− delivers the radius
rk is the best possible.

For the second part of the theorem, as in the previous case, let f (z) = zkg(z), where
g(z) = ∑∞

n=0 bnz
n is analytic in D and |g(z)| ≤ 1 in D. Then, we have an+k = bn

for n ≥ 0. Similarly, applying Schwarz-Pick lemma and Lemma 2.2 to the function
g(z), we have

|g(z)|2+
∞∑

n=1
|bn|rn+

(
1

1 + |b0| +
r

1 − r

) ∞∑

n=1
|bn|2r2n ≤

( |b0| + r

1 + |b0|r
)2

+ (1 − |b0|2)r
1 − r

.

Namely,

| f (z)|2 +
∞∑

n=k

|an|rn+k +
(

1

1 + |ak | + r

1 − r

) ∞∑

n=k

|an|2r2n

≤
[( |ak | + r

1 + |ak |r
)2

+ (1 − |ak |2)r
1 − r

]

r2k

+ |ak |r2k +
(

1

1 + |ak | + r

1 − r

)

|ak |2r2k .

Now we need to proof the side of last inequality is less than or equals to 1 for r ≤ r ′
k ,

let a := ak , it follows that

r2k
[(

a + r

1 + ar

)2

+ a + a2

1 + a
+ r

1 − r

]

≤ r2k
[

5 − 3r

2(1 − r)

]

≤ 1.
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The equation

E(r) := 3r2k+1 − 5r2k − 2r + 2 = 0

has a unique root in (0, 1) for k ≥ 2, since E(0) > 0, E(1) < 0 and E ′(r) ≤ 0 for fix
r ∈ [0, 1]. Thus, inequality (3.7) holds for r ≤ r ′

k .
The proof of sharpness is similar with inequality (3.6), we omit it. Therefore, the

proof of Theorem 3.4 is complete. 	
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31. Tomić, M.: Sur un théorème de H. Bohr. Math. Scand. 11, 103–106 (1962)
32. Wu, L.,Wang, Q.H., Long, B.Y.: Some Bohr-type inequalities with one parameter for bounded analytic

functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116(2), 1–13 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

http://arxiv.org/abs/1708.05585

	Some Sharp Bohr-Type Inequalities for Analytic Functions
	Abstract
	1  Introduction
	2 Some Lemmas
	3 Main Results
	Acknowledgements
	References




